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Abstract. – We consider the finite-size corrections in the Dicke model and determine the
scaling exponents at the critical point for several quantities such as the ground-state energy or
the gap. Therefore, we use the Holstein-Primakoff representation of the angular momentum and
introduce a canonical transformation to diagonalize the Hamiltonian in the normal phase. As
already observed in several systems, these corrections turn out to be singular at the transition
point and thus lead to nontrivial exponents. We show that for the atomic observables, these
exponents are the same as in the Lipkin-Meshkov-Glick model, in agreement with numerical
results. We also investigate the behavior of the order parameter related to the radiation mode
and show that it is driven by the same scaling variable as the atomic one.

Superradiance is the collective decay of an excited population of atoms via spontaneous
emission of photons. This phenomenon first predicted by Dicke in 1954 [1] has, since then,
been observed experimentally in several quantum optical as well as solid-state systems (for a
review see ref. [2]). The phase diagram of the Dicke model, which is the subject of the present
study, has been established in the thermodynamical limit by Hepp and Lieb [3] revealing the
existence of a second-order quantum phase transition. This transition has been shown to
be associated to a crossover between Poisson and Wigner-Dyson level statistics for a finite
number of atoms N , thus raising the question of the finite-size corrections in this system [4,5].
These corrections have also been shown to be crucial in the understanding of entanglement
properties [6,7] which become trivial if one directly considers the thermodynamical limit [6,7].
In these latter studies, nontrivial finite-size scaling exponents have been numerically found at
the critical point and further been compared to those obtained in the Lipkin-Meshkov-Glick
model [8]. The aim of the present work is to determine these exponents.

To achieve this goal, we proceed in several steps. First, we use the Holstein-Primakoff
boson representation [9] for the atomic degrees of freedom which is well adapted for a 1/N
expansion of the Hamiltonian, N being the number of atoms. Second, we exactly diagonal-
ize the expanded (quartic) Hamiltonian at order 1/N . In a recent series of papers [10–12],
this diagonalization was performed using the Continuous Unitary Transformations (CUTs)
methods [13] but here, the problem is more complicated for several reasons: i) it involves
two different degrees of freedom; ii) the parameter space is two-dimensional; and iii) the total
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number of particles is not fixed. These complications render the analytical resolution of the
flow equations coming from CUTs approach difficult [14]. We are thus led to use an alternative
approach relying on a canonical transformation of the initial bosonic operators. This trans-
formation provides both the eigenstates and the eigenspectrum of H, and thus allows one to
compute any matrix element of any observable. Here, we focus on the quantities which have
been numerically investigated and we show that their 1/N expansion is singular at the critical
point. The analysis of these divergences directly provides the finite-size scaling exponents
which are the same as in the Lipkin-Meshkov-Glick model, at least for the physical quantities
involving atomic degrees of freedom. We also compute this exponent for the order parameter
which is found to vanish as N−2/3 at the transition point. Finally, we discuss numerical data
which are in good agreement with our predictions.

Let us consider the single-mode Dicke Hamiltonian [1] without the rotating-wave approx-
imation

H = ω0Jz + ωa†a +
λ√
2j

(
a† + a

)
(J+ + J−) , (1)

where a† and a are bosonic creation and annihilation operators satifying [a, a†] = 1. The
angular momentum operators are defined as Jα =

∑N
i=1 σi

α/2, where the σα’s are the Pauli
matrices, and J± = Jx ± iJy.

This Hamiltonian, which describes the interaction of a photon field with N two-level atoms
(spins 1/2), conserves the magnitude j of the pseudo-spin

([
H,J2

]
= 0

)
. In the following, we

focus on the sector j = N/2 to which the ground state belongs. Further, one has [H,Π] = 0
where

Π = eiπ(a†a+Jz+j), (2)

is the parity operator. An appropriate basis of the Hilbert space is thus provided by the states
|n〉⊗|j,m〉, where |n〉 denotes an eigenstate of the photon density operator a†a with eigenvalue
n, and |j,m〉 the eigenstate of J2 and Jz associated to eigenvalues j and m, respectively.

In the thermodynamical limit and at zero temperature, the system described by this Hamil-
tonian undergoes a second-order quantum phase transition at a critical coupling λc =

√
ωω0/2.

As an order parameter of the transition, one can choose the expectation value of the photon
number per atom in the ground state which satisfies:

lim
N→∞

〈a†a〉/N =

{
0 for λ < λc,

λ2

ω2 − ω2
0

16λ2 for λ ≥ λc.
(3)

As we shall see, nontrivial exponents are only found at the critical point that we will in-
vestigate from the normal (symmetric) phase, i.e., for λ < λc. A convenient starting point to
perform a 1/N expansion of the Hamiltonian is to use the Holstein-Primakoff boson represen-
tation of the angular momentum [9] which reads:

J+ = b†
√

N − b†b = (J−)
†
, (4)

Jz = b†b − N

2
, (5)

with [b, b†] = 1, so that we now have to consider a two-boson problem. In the thermodynamical
limit and for λ < λc, one has 〈b†b〉/N 	 1 and we can expand the square root in (4) to obtain
the following expanded form of the Hamiltonian:

H = −N

2
ω0 + ω0b

†b + ωa†a + λ
(
a† + a

) (
b† + b

) −
− λ

2N
(
a† + a

) (
b†b

2
+ b†

2
b
)
+O

(
1/N2

)
. (6)
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Note that we restrict this expansion at the order 1/N which, as we will see thereafter, is
sufficient for our purpose. At order (1/N)0, the Hamiltonian is quadratic and can thus be
diagonalized via a Bogoliubov transformation as already discussed in ref. [5]. The real problem
arises at the order 1/N where one has to diagonalize a quartic form.

As explained above, the CUTs formalism used in recent studies [10–12] for this step is
difficult to implement in the Dicke model. Instead, we use here an approach that simply
requires to solve a set of algebraic equations instead of differential equations. The main idea
of this method is to perform the following canonical transformation:

a† =
p∑

j=0

A†
j

N j
, (7)

b† =
p∑

j=0

B†
j

N j
, (8)

where the A†
p and B†

p are polynomials functions of new bosonic operators c†, c, d†, d, such that
H expanded at order 1/Np is a polynomial function in nc and nd.

At order zero, this transformation coincides with the Bogoliubov transformation and one
has to determine 8 independent coefficients. Indeed, one has schematically:

A†
0 =

∑
i,j,k,l

α
(0)
i,j,k,lc

†i
cjd†

k
dl, (9)

B†
0 =

∑
i,j,k,l

β
(0)
i,j,k,lc

†i
cjd†

k
dl, (10)

where α
(q)
i,j,k,l (respectively β

(q)
i,j,k,l) stands for the coefficient of c†i

cjd†k
dl in the expansion of

A†
q (respectively B†

q). Since, at this order, the transformation is linear, the sum is constrained
by i + j + k + l = 1. The eight equations to be solved which are quadratic forms of the α′s
and β’s are, as usual, obtained by i) requiring the cancellation of (nonconstant) terms which
are not proportional to nc and nd, and ii) imposing the following commutation rules:[

a, a†] = 1,
[
b, b†

]
= 1,

[
a, b†

]
= 0,

[
a, b

]
= 0. (11)

The full solution of these equations can be found in ref. [5].
Now, let us turn to the next order p = 1 for which H is quartic. At this order, the

corresponding transformation reads

A†
1 =

∑
i,j,k,l

α
(1)
i,j,k,lc

†i
cjd†

k
dl, (12)

B†
1 =

∑
i,j,k,l

β
(1)
i,j,k,lc

†i
cjd†

k
dl, (13)

where the sum now contains two types of terms: linear (i + j + k + l = 1) and cubic
(i + j + k + l = 3). There are thus 48 independent parameters to be determined. At this
order, these are the only terms that need to be present since the Hamiltonian (6) only contains
quadratic and quartic terms. We also emphasize that once the α

(0)
i,j,k,l’s and the β

(0)
i,j,k,l’s are

known, the constraints to be satisfied are linear functions of the α
(1)
i,j,k,l’s and β

(1)
i,j,k,l’s. More

generally, to determine the parameters for p ≥ 1, we must solve a set of linear equations
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involving only the α
(q)
i,j,k,l’s with q < p. At order p = 1, the equations to be solved are given

by requiring the cancellation of (nonconstant) terms not proportional to nc, nd, n2
c , n2

d, and
ncnd, but also by requiring the commutation rules (11) to be satisfied. Note that the spirit of
this approach is the same as the one issued from the CUTs in which the running couplings,
in the infinite time limit, identify with the α and β’s [14].

The exact solutions of this set of equations are obviously too long to be given here, but
let us sketch the main results that can be extracted from them. As already shown in several
models [10–12], the 1/N corrections to physical observables such as the gap or the order
parameter display some singularities at the critical point. As detailed in [14], the schematic
form of an observable Φ in the vicinity of the critical point is

ΦN (λ) = Φreg
N (λ) + Φsing

N (λ), (14)

where the superscripts reg and sing stand for regular and singular functions at λ = λc. By
singular, we mean that the function and/or its derivatives with respect to λ diverges at the
critical point. Further, a close inspection of the 1/N expansion shows that near λc one has

Φsing
N (λ) 
 Ξ(λ)ξΦ

NnΦ
FΦ

[
NΞ(λ)3/2

]
, (15)

where Ξ(λ) = λc − λ and FΦ is a function depending only on the scaling variable NΞ(λ)3/2.
The exponents ξΦ and nΦ are characteristics of the observables Φ. In the present study,
we have only checked this scaling hypothesis at order 1/N but we strongly believe that, as
in previous models we studied, one indeed has such a scaling variable. For instance, the
ground-state energy per atom near the critical point reads:

e0 
 c0 +
1
N

[
c1 + c2Ξ(λ)1/2

]
+

1
N2

c3

Ξ(λ)
+ O

(
1/N3

)
, (16)

with

c0 = −ω0/2, (17)

c1 =
1
2

[
−ω − ω0 + (ω2 + ω2

0)
1/2

]
, (18)

c2 =
(ωω0)3/4

(ω2 + ω2
0)1/2

, (19)

c3 =
3ω5/2ω

3/2
0

64(ω2 + ω2
0)

. (20)

Using the hypothesis (15), these expressions allow us to identify ξe0 = 1/2 and ne0 = 1. Note
that for the spectrum (only), one can also obtain these corrections by a standard first-order
perturbation theory. The most striking result is that the scaling variable NΞ(λ)3/2, which
is the key ingredient for our study, does not depend on the observable. This remarkable
fact already observed for single-boson model [10] is rather surprising here since one may
have expected one different variable for each type of degrees of freedom. Furthermore, the
Hamiltonian depends on two independent parameters but their value does not change the
scaling variable. In particular, we find no difference between the resonant (ω = ω0) and the
off-resonant case.

To obtain the finite-size scaling exponent from the general form (15), it is sufficient to
underline that, at finite N , no divergence can occur in the behavior of the observables, even
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Table I – Finite-size scaling exponents at the critical point for the ground-state energy e0, the gap
∆, the order parameter 〈a†a〉/N . the magnetization per atom 〈Jz〉/N , and the two-point correlation
function 〈J2

α〉/N2 for α = x, y, z.

Φ limN→∞ ξΦ nΦ −(nΦ + 2ξΦ/3)

e0 −ω0/2 1/2 1 −4/3
∆ 0 1/2 0 −1/3

〈a†a〉/N 0 −1/2 1 −2/3
2〈Jz〉/N −1 −1/2 1 −2/3
4〈J2

z 〉/N2 1 −1/2 1 −2/3
4〈J2

y 〉/N2 0 1/2 1 −4/3
4〈J2

x〉/N2 0 −1/2 1 −2/3

at the critical point. This straightforwardly implies that, to cure the singularity coming from
Ξ(λ)ξΦ , one must have FΦ(x) ∼ x−2ξΦ/3. This behavior of F then leads to Φsing

N (xc) ∼
N−(nΦ+2ξΦ/3). We have computed the finite-size scaling exponents for several observables
which are summarized in table I. For completeness, we also give the value of these quantities
in the thermodynamical limit.

It is clear that the canonical transformations (12)-(13) we used to diagonalize the Hamil-
tonian at order 1/N allow us to compute any matrix element (not only diagonal) of any
observable expressed in terms of the initial operators. Here, we only focused on ground-state
expectation values (except for the gap) because these have already been numerically computed
and can thus be directly checked.

The finite-size scaling exponents at the critical point have been computed for three quanti-
ties [8]: 〈Jz〉/N (−0.54±0.01),

√〈J2
z 〉/N (−0.35±0.01) and indirectly 〈J2

y 〉/N (−0.26±0.01).
These results are very close to our predictions which are −2/3, −1/3 and −1/3, respectively,
as can be read in table I. Nevertheless, it is true that our results do not lie within the error
bars proposed by Reslen et al. The same discrepancy was already observed in the LMG model
for which we have explicitly shown that it was due to the too small system sizes investi-
gated [10,14]. Here, we strongly believe that the asymptotic regime was also not reached but,
unfortunately, it is difficult to consider significantly larger sizes as those studied in ref. [8]. This
clearly requires further numerical efforts [15] which are beyond the scope of the present study.

Let us also mention that the concurrence C studied in ref. [6] which measures the spin-spin
entanglement [16] reads

(N − 1)C = 1− 4〈J2
y 〉/N. (21)

We thus predict a finite-size scaling exponent for this (rescaled) concurrence which is −1/3.
At first glance, these results are strikingly similar to those obtained in the LMG model [10,

14] and this calls for several comments. Indeed, it is well known that if one focuses on the
atomic degrees of freedom, both systems are equivalent in the thermodynamical limit as
shown with different methods [8, 17–19]. However, the finite-size corrections fail to be cap-
tured through this mapping. For instance, in the Dicke model, one has limN→∞ 4〈J2

y 〉/N =
ω0/(ω2 + ω2

0)
1/2, whereas it vanishes in the LMG model [10, 14]. Moreover, for the LMG

model, these exponents were found to be related to the upper critical dimension and the
mean-field critical exponents of the Ising model in a transverse magnetic field [20] which is
the counterpart of the LMG model with short-range interactions. For the Dicke model, it is
difficult to find such a mapping since one cannot simply consider it as a long-range interacting
system which would admit a short-range equivalent. Consequently, the similarity between the
exponents of these two models is a nontrivial result which shed light on a recent controverse
on that subject [21–23].
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Unlike previous studies using CUTs, we have developed here an alternative simple per-
turbative approach relying on a canonical transformation which allows one to diagonalize the
Hamiltonian at order 1/N . This method can, in principle, be applied to many similar models
involving more than one type of boson and requires to solve a set of linear equations. It is
thus, a priori simpler than the CUTs technique even if the number of equations to be solved
quickly grows with the order of the 1/N expansion. Whatever the approach chosen, the main
result to keep in mind is that if one accepts the hypothesis of a unique scaling variable, it
is sufficient to compute the first nontrivial correction of one observable (for example, the
ground-state energy) to get all the exponents. Indeed, the determination of ξΦ and nΦ for the
other ones can already be inferred only from the quadratic approximation.

Finally, let us quote a recent work [24] where a semi-classical approach has been introduced
to obtain the finite-size scaling exponent in the LMG model. It would be interesting to analyze
the Dicke model within this framework to have a better understanding of the similarities
between these two systems.
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