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, A. Löfgren

1
, Hongqi Xu

1

P. Omling
1 and P. E. Lindelof

2

1 Solid State Physics, Lund University, Box 118 - S-22100 Lund, Sweden
2 Niels Bohr Institute, University of Copenhagen, Universitetsparken 5
DK-2100 Copenhagen Ø, Denmark

(received 12 June 1998; accepted in final form 15 September 1998)

PACS. 73.23Ad – Ballistic transport.
PACS. 73.50Fq – High-field and nonlinear effects.
PACS. 85.30St – Quantum interference devices.

Abstract. – Particles in a ratchet, that is, a potential without spatial inversion symmetry, can
move in one direction even in the absence of macroscopic forces, provided that there is a source
of energy. In this paper, a quantum ratchet, based on an asymmetric (triangular) quantum
dot, is investigated experimentally and theoretically. We find that coherent electron transport
through such a device depends on the sign of the applied voltage. In this way a net current can
be obtained even when the applied ac voltage is zero on average. Strikingly, the direction of the
current depends on the amplitude at which the quantum dot ratchet is rocked.

Particles in an asymmetric potential can on average drift in one direction even when the
time and space average of all macroscopic forces or gradients is zero (force-free motion). For
directional net motion in such a device, called a ratchet, only a source of energy is required,
for instance external, time-correlated fluctuations [1]. This phenomenon, which is believed
to be relevant to biological systems [2], has been demonstrated experimentally by subjecting
Brownian particles [3] and mercury drops [4] to asymmetric, periodic potentials. While these
ratchets relied on classical effects, recently also ratchet devices involving quantum processes
have been proposed. In particular, in theoretical studies of an asymmetric SQUID [5], of an
incoherent tunneling ratchet [6], and of a Josephson junction close to a source of asymmetric,
dichotomic noise [7], quantum ratchet effects were predicted.

Here we present an experimental and theoretical study of a novel quantum ratchet: Using
nanolithography techniques, it is today possible to confine electrons in semiconductors in
two-dimensional potentials of almost any desired shape, for instance a triangular quantum dot
coupled to the environment via point contacts, as shown in fig. 1(a). Transport through such
a cavity, also called an electron billiard, is at low temperatures coherent and determined by
the coupling of the wave modes in the point contacts to the electron states inside the dot [8,9].
Since the density of states of the dot is nonmonotonic due to energy quantization, and also
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Fig. 1. – (a) Scanning electron micrograph of a triangular quantum dot of the type used in this work.
An additional top gate allowed to tune the Fermi energy. (b) Schematic energy diagram for a biased
quantum dot. At the point contacts barriers are formed at which a large part of the voltage drop
occurs (αeU at the source contact). The density of states inside the dot has a nonmonotonic shell
structure due to the energy quantization.

because it depends on the applied field, the response to an applied voltage is nonlinear already
at small voltages. We will show in the following, experimentally and theoretically, that these
nonlinear effects are in general asymmetric in voltage due to the broken spatial symmetry
of the triangular dot [10]. This effect can be used to partially rectify an ac voltage, i.e. to
generate a net current in one direction even when the bias is zero on average. Strikingly, we
find that the direction of the dc current induced in such a quantum-dot ratchet depends on
the amplitude of the applied ac voltage.

In the experiments, we used electron billiards defined by electron beam lithography and
shallow wet etching in modulation-doped GaAs/AlGaAs two-dimensional electron gas ma-
terial. In the present letter we will present one particular device shaped as an equilateral
triangle (fig. 1(a)). The effective, inner side length of the potential as determined by classical
magnetoresistance measurements [11] was about 1.7 µm, much less than the electron mean
free path with respect to impurity scattering of about 15 µm. Using a top gate, the Fermi
energy (EF, determined in an area outside the billiard) was tunable in the range 7–9 meV,
corresponding to a Fermi wavelength (λF) of 0.05–0.06 µm. Typically, three to four channels
were open in the point contacts. All resistance measurements were carried out at T = 0.3 K in
a current-controlled, four-terminal geometry with an excitation voltage uac < kBT ≈ 25 µeV.

To study the symmetry of electron transport through the billiard we measured the differen-
tial resistance R = ∂U(I)/∂I as a function of a dc bias current (I) which was added to the ac
component used for lock-in detection. In fig. 2(a), we show a number of such measurements,
recorded at different values of the Fermi energy, as a function of the bias voltage U . The most
important observation is that the nonlinear resistance, which exhibits a rich, nonmonotonic
behaviour, depends in general on the direction of the current. A point that should be noted is
that the details of the signal depend on the exact value of the Fermi energy. In the following
we will discuss these experimental observations.

To understand the details of the nonlinear resistance it is useful to study the variation of the
linear-response resistance (no bias voltage applied) with Fermi energy as shown in fig. 2(b).
A monotonic background (related to the gradual depletion of the point contacts) has been
subtracted from the raw data (shown in the inset) such that only the resistance fluctuations as
a function of EF remain. The physical reason for these fluctuations is the nonmonotonic shell
structure of the density of states inside the dot, formed by overlapping, quantized electron
states [9, 12]. At small voltages (linear response) only states within kBT around the Fermi
energy contribute to the transport [13], and, consequently, the resistance fluctuates as the
Fermi energy is tuned [8]. From this linear-response behaviour, one can also understand the
basic features of the nonlinear resistance at small voltages. When a bias voltage U is applied,
also the states within an energy window of size e | U | around the Fermi energy contribute to
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the transport (fig. 1(b)). Consider, for instance, curve D in fig. 2(a), which was recorded at
the top gate voltage Vtg = −3.08 V (EF ≈ 8.34 meV) where the linear-response resistance has
a local minimum (point D in fig. 2(b)). In the energy range in the close vicinity of this Fermi
energy the linear-response resistance is higher than exactly at this Fermi energy, such that
the nonlinear differential resistance initially increases. The opposite behaviour is observed for
curve B in fig. 2(a), which was recorded at a value of EF, where the linear-response resistance
is close to a local maximum. In this case, R(U) decreases rapidly for low voltages because
the vicinity of the Fermi energy yields a lower resistance. This behaviour at low voltages is
superposed on an overall trend of R(U) to decrease at higher voltage (| U |> 1 meV), which
may be related to heating effects [14] or to the point contacts [15].

This first, qualitative analysis indicates that the nonlinear resistance, which contains the
asymmetric behaviour, is related to quantum interference inside the dot. This conclusion is
also strongly supported by several other observations: Firstly, weak magnetic fields of the order
of one flux quantum through the area of the device, enough to alter the interference of different
electron paths due to the Aharanov-Bohm phase shift (but too small to change the classical
electron trajectories [9, 11]), change the nonsymmetric resistance (NSR) significantly [10].
Secondly, the NSR observed at small voltages (U < 1 mV) disappears at temperatures of a
few kelvins [16], where variations of the density of states are smeared out and phase coherence
is destroyed by electron-electron (e-e) interaction [13]. Further, the asymmetric resistance
fluctuations are not observed at applied dc voltages larger than a few mV, where phase breaking
occurs by e-e scattering among the nonequilibrium electrons injected into the cavity [14].

Having established the relation between the NSR and resistance fluctuations experimentally,
we now turn to a theoretical analysis to understand the origin of the symmetry breaking.
Consider an electron billiard connected to two reservoirs at temperature T and with a Fermi-
Dirac distribution f(ε, T ) (local thermal equilibrium). The current through the billiard can
then be written as

I(U) =
e

h

∫ ∞
0

dεt(ε, U)[f(ε− (µF + eU), T )− f(ε− µF, T )] , (1)

where t(ε, U) is the quantum-mechanical transmission probability for an electron injected at
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Fig. 2. – (a) Measurements of the differential resistance vs. bias voltage recorded at different Fermi
energies as indicated by capital letters. In general, the resistance depends on the sign of the voltage.
(b) Resistance fluctuations in linear response (zero bias voltage) as a function of the top gate voltage
Vtg. The letters refer to the values of Vtg (corresponding to EF), where the curves shown in (a) where
recorded. Inset: Raw data of R(EF) before subtraction of a monotonic background.
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Fig. 3. – (a) Quantum-mechanically calculated nonlinear resistance at different Fermi energies for a
triangular dot at 0.3 K. Qualitatively the same asymmetric and nonmonotonic behaviour as in the
experimental case (fig. 2(a)) is apparent. (b) The hard-wall potential and the voltage drop distribution
used in the calculation. For the quantum-mechanical calculation, the device can be viewed as a
waveguide, and a potential drop is equivalent to a probability to wave reflection. Therefore, potential
steps are assumed at each discontinuity of the waveguide, and a linear potential slope inside the cavity.
(c) Calculated R(EF) in linear response.

energy ε. The differential resistance is given by R(U) = [∂I(U)/∂U ]−1, which yields, in the
limit of very small voltages, the linear-response resistance.

From eq. (1) one can identify two types of nonlinear effects that may, in asymmetric
potentials, depend on the sign of the voltage. Firstly, the transmission function depends
explicitly on the voltage U , because a finite electric field modifies the potential landscape.
When the billiard potential is not mirror symmetric, then the effective scattering potential at
finite voltage is not the same upon voltage reversal. Consequently, t(U) depends in general
on the sign of the voltage, causing an NSR. The second mechanism is related to the energy
dependence t(ε). The states inside the billiard that contribute to the current are those within
an energy window [EF − (1 − α)eU ;EF + αeU ], where αeU is the voltage drop at the source
contact (fig. 1(b) ). When the two contacts are not identical, then α 6= 1/2 and different states
contribute to the current when source and drain contacts are interchanged [17]. Again, this
will result in an NSR.

In the following quantum-mechanical calculation of the nonlinear resistance we will use a
simple model that considers both these effects. Specifically, we assume that the voltage drop
at the base contact is twice as large as that at the tip contact and that a fourth of the voltage
drop occurs inside the cavity. The real electric-field distribution may be complicated due to
charging effects and has to be determined for the potential as a whole by a self-consistent
calculation. For simplicity we assume a constant electric field inside the dot (fig. 3(b)). We
then calculate the transmission function t(ε, U) using a scattering matrix method [18] and
determine the differential resistance using eq. (1). For computational reasons, a triangle with
side length 1 µm was used, i.e. smaller than in the experiment, while the size of the point
contacts was chosen to be 0.1 µm, comparable to the real device. For all calculations shown
here a temperature T = 0.3 K was assumed.

In fig. 3(a) we show the calculated nonlinear resistance as a function of U for different
Fermi energies. In fig. 3(c) also the corresponding linear-response resistance R(EF) is shown.
Clearly, the experimentally observed asymmetric and nonmonotonic behaviour of R(U) as well
as the strong dependence of R(U) on EF is qualitatively reproduced by the calculations. We



h. linke et al.: a quantum dot ratchet: experiment and theory 345

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5

I n
e

t (
nA

)

U0 (mV)

(a)  

-1

0

1

2

3

0 0.5 1 1.5 2

I n
e

t (
nA

)

U 0 (mV)

(b)  From top:
C, A, E, B, D

Fig. 4. – Calculated net current as a function of the amplitude of an applied ac voltage based (a)
on the theoretical data from fig. 3(a) and, (b) on the experimental data from fig. 2(a). Both the
theoretical and the experimental data indicate that the direction of the net current depends on the
amplitude at which the dot ratchet is rocked.

have checked that, like in the experiment, the asymmetric fluctuations of R(U) are smeared
out when a temperature of a few kelvin is used. Different to the experiment is that the
fluctuations of R(U) persist to high voltages (not shown here) while in the experiment their
amplitude decreases around | U |≈ 1 mV. This difference is presumably due to phase breaking
among the injected nonequilibrium electrons in the experiment, which is not included in the
calculation.

Since the real potential in the dot is not known, we have also used several potential
distributions different to the one used above, and have verified that an NSR is observed in all
cases. It is particularly interesting that also a flat potential inside a triangular billiard and
symmetric voltage drops at the point contacts yield in calculations a weak NSR, due to the
asymmetric confinement energy [16]. This is expected because, according to the considerations
above, any breaking of the inversion symmetry of the two-dimensional scattering potential
should give rise to a NSR. In contrast, in a rectangular (reflection symmetric) potential the
quantum-mechanically calculated nonlinear resistance is found to be perfectly symmetric [16],
as is required by the symmetry of the problem.

We have thus found a voltage rectification mechanism related to quantum-interference
in asymmetric electron billiards. Similar effects have previously been found in devices in
which the symmetry of the scattering potential was broken due to the random distribution of
impurities [19]. The novel aspect of the concept used here [10] is that the symmetry of the
scattering potential is controlled in the processing of the device, an idea that also was recently
employed to study rectification in the classical transport regime [20]. The possibility to control
the symmetry of the scattering potential is particularly interesting for ratchet applications.

The key parameter for an application of asymmetric billiards as quantum ratchets is the
net current that is generated by applying an, on average, zero ac voltage U0 sin(ωt). The net
current is given by

Inet(U0) =
1

2π

∫ 2π

0

d(ωt)(U0 sin(ωt))U0 sin(ωt) , (2)

where

G(U) =
1

U

∫ U

0

dUR−1(U) (3)
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is the conventional conductance, which can be obtained either from the measured data of the
differential, nonlinear resistance R(U) (fig. 2(a)) or, theoretically, from eq. (1). In fact, both
based on the theoretical data and on the experimental data, one finds that for ac voltages of
the order of U0 ≈ 1 mV, a dc current of the order of nA can be obtained (figs. 4(a) and (b),
respectively). Interestingly, the direction of the net current depends not only on the Fermi
energy, as is expected from figs. 2(a) and 3(a), but for some values of EF also on the excitation
amplitude U0. In other words, asymmetric billiards can be used as rocking quantum ratchets
in which the direction of the net current is reversed when the rocking amplitude is varied!

Extensions of the work presented here are to study the net current in the presence of different
types of time-correlated noise, instead of the regular ac voltage, and to study electron ratchet
effects in a periodic asymmetric potential created, for instance, by coupling many asymmetric
billiards in series [21]. The behaviour of such a periodic quantum ratchet will depend on
the type of coupling: In the case of incoherent coupling one would expect the nonsymmetric
interference effects of the individual cells to average zero, because in the experimental case
the cells are different on the scale of the Fermi wavelength. At the opposite extreme of fully
coherent coupling, however, the entire device needs to be considered as a whole, and new,
interesting behaviour can be expected.
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Prost J., Rev. Mod. Phys., 69 (1997) 1269.

[3] Rousselet J., Salome L., Ajdari A. and Prost J., Nature, 370 (1994) 446; Faucheux L.

P., Bourdieu L. S., Kaplan P. D. and Libchaber A. J., Phys. Rev. Lett., 74 (1995) 1504.

[4] Gorre L., Ioannidis E. and Silberzan P., Europhys. Lett., 33 (1996) 267.

[5] Zapata I., Bartussek R., Sols F. and Hänggi P., Phys. Rev. Lett., 77 (1996) 2292; SQUID
stands for superconducting quantum interference device.

[6] Reimann P., Grifoni M. and Hänggi P., Phys. Rev. Lett., 79 (1997) 10.

[7] Zapata I., Luczka J., Sols F. and Hänggi P., Phys. Rev. Lett., 80 (1998) 829.

[8] Persson M., Pettersson J., Sydow B. V., Lindelof P. E., Kristensen A. and Berggren

K. F., Phys. Rev. B, 52 (1995) 8921; Kouwenhoven L. P., Marcus C. M., McEuen P. L.,

Tarucha S., Westervelt R. M. and Wingreen N. S., in Mesoscopic Electron Transport,
edited by L. L. Sohn, L. P. Kouwenhoven and G. Schön (Advanced Study Institute, Kluwer)
1997.

[9] Christensson L., Linke H., Omling P., Lindelof P. E., Berggren K.-F. and Zozoulenko

I. V., Phys. Rev. B, 57 (1998) 12306.

[10] Linke H., Omling P., Xu H. and Lindelof P. E., in Proceedings of the 23rd International
Conference on the Physics of Semiconductors, edited by M. Scheffler and R. Zimmermann

(World Scientific, Singapore) 1996, p. 1593.

[11] Linke H., Christensson L., Omling P. and Lindelof P. E., Phys. Rev. B, 56 (1997) 1440.

[12] Brack M. and Badhuri R. K., Semiclassical Physics (Addison-Wesley, Reading, Mass.) 1997.



h. linke et al.: a quantum dot ratchet: experiment and theory 347

[13] Datta S., Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge)
1995.

[14] Linke H., Bird J. P., Cooper J., Omling P., Aoyagi Y. and Sugano T., Phys. Status Solidi
B, 204, (1997) 318.

[15] Kouwenhoven L. P., Wees B. J. v., Harmans C. J. P. M., Williamson J. G., v. Houten

H., Beenakker C. W. J., Foxon C. T. and Harris J. J., Phys. Rev. B, 39 (1989) 8040.

[16] Linke H., Sheng W., Xu H., Omling P. and Lindelof P. E., Semicond. Sci. Technol., 13
(1998) A27.

[17] Xu H., Phys. Rev. B, 47 (1993) 15630.

[18] Sheng W. D., J. Phys. Condens. Matter, 9 (1997) 8369.

[19] Webb R. A., Washburn S. and Umbach C. P., Phys. Rev. B, 37 (1988) 8455; Kaplan S.

B., Surf. Sci., 196 (1988) 93; de Vegvar P. G. N., Timp G., Mankiewich M., Cunningham

J. E., Behringer R. and Howard R. E., Phys. Rev. B, 38 (1988) 4326; Holweg P. A. M.,

Kokkedee J. A., Caro J., Verbruggen A. H., Radelaar R., Jansen A. G. M. and Wyder

P., Phys. Rev. Lett., 67 (1991) 2549; Ralph D. C., Ralls K. S. and Buhrmann R. A., Phys.
Rev. Lett., 70 (1993) 986; Taboryski R., Geim A. K., Persson M. and Lindelof P. E., Phys.
Rev. B, 49 (1994) 7813.

[20] Song A. M., Lorke A., Kriele A., Kotthaus J. P., Wegscheider W. and Bichler M.,
Phys. Rev. Lett., 80 (1998) 3831.

[21] Linke H., PhD Thesis, Lund University, 1997.


