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Abstract. – We show, by studying in detail the market prices of options on liquid markets,
that the market has empirically corrected the simple, but inadequate Black-Scholes formula to
account for two important statistical features of asset fluctuations: “fat tails” and correlations
in the scale of fluctuations. These aspects, although not included in the pricing models, are very
precisely reflected in the price fixed by the market as a whole. Financial markets thus behave
as rather efficient adaptive systems.

Motivations. – Options markets offer an interesting example of the adaptation of a
population (the traders) to a complex environment, through trial and errors and natural
selection (inefficient traders disappear quickly). The problem is the following: an “option”
is an insurance contract protecting its owner against the rise (or fall) of financial assets,
such as stocks, currencies, etc. The problem of knowing the value of such contracts has
become extremely acute ever since organized option markets opened twenty-five years ago,
allowing one to buy or sell options much like stocks. Almost simultaneously, Black and
Scholes (bs) proposed their famous option pricing theory, based on a simplified model for stock
fluctuations, namely the (geometrical) continuous-time Brownian-motion model [1], [2]. The
most important parameter of the model is the “volatility” σ, which is the standard deviation of
the market price’s fluctuations. The Black-Scholes model is known to be based on unrealistic
assumptions but is nevertheless used as a benchmark by all market participants. Guided by
the Black-Scholes theory, but constrained by the fact that “bad” prices lead to “arbitrage
opportunities” (that is, an easy way to make money), the option market fixes prices which are
close, but significantly and systematically different from the bs formula.

The aim of this paper is to exploit a recent reformulation of the Black-Scholes problem [3], [4]
which allows one to incorporate non-Gaussian effects, and to compare directly option prices
(as determined by the market) to their theoretical value. In order to compare theoretical prices
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to reality, we choose a very active market, such that

– reliable option prices are available (anomalies in the pricing process are rare);

– the non-Gaussian effects are small and can be treated perturbatively, using a cumulant
expansion.

Surprisingly, our study clearly shows that, despite the lack of an appropriate model, traders
have empirically adapted to incorporate some subtle information on the real statistics of price
changes, that is

– the fact that the tails of the fluctuations are much “fatter” than for a Gaussian distri-
bution;

– the fact that the volatility is itself time dependent, and reveals slowly decaying (power
law) correlations.

Although this ability to price financial assets correctly is often assumed in the literature (the
“efficient market” hypothesis), it is in general difficult to assess quantitatively, because the
“true” value of a stock is difficult to determine (or might even be an empty concept). The
case of option markets is interesting in that respect, because the “true” value of an option is,
in principle, calculable.

Option theory: a brief summary. – Let us start by recalling that a “call” option is an
“insurance contract” such that if the price x(T ) of a given asset at time T (the “maturity”)
exceeds a certain level xs (the “strike” price), the owner of the option receives the difference
x(T )−xs. Conversely, if x(T ) < xs, the contract is lost. To make a long story short [1]-[4], if T
is small enough (a few months) so that interest rate effects and average returns are negligible
compared to fluctuations, the “fair” price C of the option today (T = 0), knowing that the
price of the asset now is x0, is simply given by [5]

C(x0, xs, T ) =

∫ ∞
xs

dx′ (x′ − xs)P (x′, T |x0, 0) , (1)

where P (x′, T |x0, 0) is the conditional probability density that the stock price at time T will
be equal to x′, knowing that its present value is x0. Equation (1) means that the option
price is such that, on average, there is no winning party. Pricing correctly an option is thus
tantamount to having a good model for the probability density P (x′, T |x0, 0).

Price increments are uncorrelated, but not independent. – There is fairly strong evidence
that beyond a time scale τ of the order of ten minutes, the fluctuations of prices in liquid
markets are uncorrelated, but not independent variables [6]-[11]. In particular, it has been
observed that although the signs of successive price movements seem to be independent,
their magnitude —as represented by the absolute value or square of the price increments— is
correlated in time [6], [10]: this is related to the so-called “volatility clustering” effect [12], [7].
In order to capture these features, one can represent the price x(T ) of the asset as

x(T ) = x0 +

T
τ −1∑
k=0

δxk , (2)

where the price increments δxk are obtained as the product of two random variables, i.e.
δxk = εkγk. The (εk)k≥0 are independent, identically distributed random variables of mean
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zero and unit variance which describe the direction of the instantaneous “trend”. The scale of
the fluctuation is described by another random factor, which we denote as γk, and which we
assume to be independent of the εk’s. The sequence (γk)k≥0 is considered to be a stationary
random process but allowed to exhibit non-trivial correlations (see below), describing persistent
“bursts” in the market activity. Under these hypotheses, the conditional distribution of δxk,
conditioned on γk, may be written in a scaling form, as

P (δxk) ≡
1

γk
P0

(
δxk

γk

)
, (3)

where P0 is independent of k. Models with conditionally Gaussian increments —i.e. where
P0 is a Gaussian— have been extensively studied [12] both in discrete-time (ARCH models)
and continuous-time (stochastic volatility models) settings. The present model is more general
since we do not assume a priori that P0 is Gaussian.

A simple case first. – Let us consider first the simple case where γk is independent of k, and
equal to γ0. Equation (2) then corresponds to the classical problem of a sum of independent,
identically distributed variables. Although P (δx) is strongly non-Gaussian (see, e.g., [13]), it
has a finite variance [9] and the central-limit theorem [14] tells us that for large N = T/τ ,
P (x′, T |x0, 0) will be close to a Gaussian. Using then eq. (1) essentially leads back to the bs

formula [15]. For finite N , however, there are corrections to the Gaussian, and thus corrections
to the bs price. More precisely, the difference between P (x′, T |x0, 0) and the limiting Gaussian
distribution Gx0,σ2 may be calculated using a cumulant expansion [14]. The leading correction
in the cumulant expansion turns out to be, for large N , proportional to the kurtosis κ, defined
as κ = 〈δx4〉/〈δx2〉2 − 3 [14] —to a very good approximation, the distribution P0(δx) is
symmetric [13], [4] for time scales less than a month; in particular the third cumulant, which
measures the skewness of the distribution, is small. Note that the kurtosis κ vanishes if the
increments δx are Gaussian random variables, and measures the “fatness” of the tails of the
distribution as compared to a Gaussian.

Neglecting higher-order cumulants, the expansion takes the following form:∫ x

−∞

{
P (x′, T |x0, 0)− Gx0,σ2

T
(x′)

}
dx′ =

1
√

2π
e−u

2/2
[κT

24
(u3 − 3u) + . . .

]
, (4)

where u = (x − x0)2/σ2
T , σ2

T and κT being the variance and kurtosis corresponding to the
scale T . Gx0,σ2

T
is the Gaussian density centered at x0 of variance σ2

T .

Volatility “smile” and anomalous kurtosis. – It is then easy to show, using eq. (1), that
the leading correction to the bs price can be reproduced by using the bs formula, but with a
modified value for the volatility σ =

√
〈δx2〉 (which traders call the “implied volatility” Σ),

which depends both on the strike price xs and on the maturity T through

Σ(xs, T ) = σ

[
1 +

κT

24

(
(xs − x0)2

σ2
T

− 1

)]
. (5)

The fact that implied volatility depends on the strike price xs is known as the “smile effect”,
because the plot of Σ vs. xs, for a given value of T = Nτ , has the shape of a smile.

That the volatility had to be smiled up was realized long ago by traders —this reflects the
well-known fact that the elementary increments have fat-tailed distributions: large fluctuations
occur much more often than for a Gaussian random walk.

The data reveals that the smile formula (5) indeed correctly reproduces the observed
option prices on the “bund” market provided the kurtosis κT in formula (5) becomes itself
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Fig. 1. – Plot (in log-log coordinates) of the average implied kurtosis κimp (determined by fitting the
implied volatility for a fixed maturity by a parabola) and of the empirical kurtosis κT (determined
directly from the historical movements of the bund contract), as a function of the reduced time
scale N = T/τ , τ = 30 minutes. All transactions of options on the bund future from 1993 to 1995
were analyzed along with 5 minute tick data of the bund future for the same period. We show for
comparison a fit with formula (7), with g(`) ' `−0.6, which leads to κT ' T−0.6 (dark line). A fit
with an exponentially decaying g(`) is however also acceptable (dotted line).

T -dependent. The shape of the “implied” kurtosis κimp(T ) as a function of T is given in fig. 1;
κimp(T ) is seen to decrease more slowly than κτ/T , as one should observe if the increments
δx were independent and identically distributed (i.e. γk ≡ γ0).

Let us then study directly the kurtosis of the distribution of the underlying stock,
P (x, T |x0, 0), as a function of N ≡ T/τ . In fig. 1, we have also shown κT as a function
of N . One can notice that not only κT does not decay as 1/T , but actually κT matches
quantitatively (at least for N ≤ 200) the evolution of the implied kurtosis κimp! (Note that
there is no adjustable overall factor.) In other words, the price over which traders agree
capture rather precisely the anomalous evolution of κT . A similar agreement has been found
on other liquid option markets, where bid-ask spreads are sufficiently small to ascertain that
the quoted prices should indeed be set by a fair game condition. For “over the counter” options
(i.e. options for which there is no organized market), this is likely not to be the case, since a
rather high risk premium is generally included in the price.

Interpretation: volatility correlations. – As we shall show now, the non-trivial behaviour of
κT is related to the fact that the scale of the fluctuations γk is itself a time-dependent random
variable [12], [6], with rather long-range correlations.

We define the correlation function of the scale of fluctuations as

g(`) =
〈δx2

k+`δx
2
k〉 − 〈δx

2
k〉

2

〈δx4
k〉 − 〈δx

2
k〉

2
, (6)

g(`) is normalized so that g(0) = 1. In this case, one can show that eq. (5) holds, with κT
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Fig. 2. – Plot of the daily volatility correlation function g(N) for the bund future market, from 1991

to 1995. A fit by g(N) ' N−λ with λ = 0.6 is shown for comparison. The same behaviour is found
to persist for intra-day fluctuations (see Inset).

given by

κT =
τ

T

[
κτ + 6(κτ + 2)

N∑
`=1

(
1−

`

N

)
g(`)

]
, (7)

where κτ is the kurtosis of δx = x(t+τ)−x(t). We have computed from historical data on the
bund index the correlation function g(`), which we show in fig. 2. Interestingly, g(`) decreases
rather slowly, as `−λ, with λ ' 0.6 ± 0.1, from minutes to several days (note, however, that
the data is quite noisy). A similar decay of g(`) was observed on other markets as well, with
rather close values for λ, such as the S&P500 (for which λ ' 0.37) [10] and the dem/$ market
(for which λ ' 0.57). The fact that the correlation function decays slowly was also reported
in [11]. This could be related to the presence of many relevant “periods” in financial markets
(days, weeks, months, quarters, years).

Remarkably, eq. (7) with g(`) ∝ `−0.6 leads to κT ∝ T−0.6, in good agreement with both the
direct determination of κT and the one deduced from the volatility smile, κimp. Note that the
effect of a non-zero kurtosis on Black-Scholes prices was previously investigated in [16], [17].
However, the relation between κT and κimp, and their anomalous T -dependence, were not, to
our knowledge, previously reported.

Conclusion. – In conclusion, we have shown, by studying in detail the market prices
of options, that traders have evolved from the simple, but inadequate bs formula to an
empirical know-how which encodes two important statistical features of asset fluctuations:
“fat tails” (i.e. a rather large kurtosis) and the fact that the scale of fluctuations exhibits
slowly decaying (power-law–like) correlations. These features, although not explicitly included
in the theoretical pricing models used by traders, are nevertheless reflected rather precisely in
the price fixed by the market as a whole. Option markets offer an interesting ground where
“theoretical” and “experimental” prices can be systematically compared, and were found to
agree rather well. This has enabled us to test quantitatively the idea that the trader population
behaves as an efficient adaptive system.
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