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Abstract – Collective cell transport in dense tissues governs many biological processes, such as
embryonic development, cancer metastasis and wound healing. How to control the directed trans-
port of cells in dense tissues is still an interesting and open question. We numerically investigated
the directed transport of a confluent tissue containing self-propelled cells in an asymmetric periodic
potential by using the self-propelled Voronoi model. We demonstrate that cells in the confluent
tissue can be rectified and the movement direction of cells is determined by the asymmetry of the
potential. The cell shape index determines the state of the system and plays a central role in the
rectification. There exists an optimal shape index at which the average velocity takes its maximal
value. Interestingly, there exist two optimal self-propulsion speeds at which the average velocity
reaches its maximum, which is different from the single-cell case (only one optimal speed). In
addition, the average velocity is a peaked function of the cell number for small shape index and
monotonously decreases with the increase of the cell number for large shape index. Our findings
are relevant to the experimental pursuit of the control of motile confluent tissues on periodic
substrates.

Copyright c© 2022 EPLA

Introduction. – Biological processes including embry-
onic development, cancer metastasis and wound healing
require cells to move collectively in dense tissues [1,2],
which is very different from isolated cell motion. Several
models have been proposed to describe the dynamics of
cells in tissues [3–13] such as particle-based models [3,4],
cellular Potts models [5], phase field models [6,7], and
vertex models [8–13]. Vertex models are a class of such
models that consider cells as individual objects, approxi-
mated by two-dimensional polygons representing cellular
interfaces, which are highly successful in describing the
motion of two-dimensional confluent cell tissues. A re-
cent theoretical work [14] has combined the vertex model
with ideas from active matter physics to develop a self-
propelled Voronoi model of a motile tissue. Based on
vertex or Voronoi models, researchers have successfully
studied the dynamic properties of cells in dense tissues,
such as jamming and glass transitions [14–27], mechanical
heterogeneity [28–30], and collective transport [31–35].

(a)E-mail: aibq@scnu.edu.cn (corresponding author)
(b)E-mail: heyf@hbu.edu.cn

Although many studies have involved collective trans-
port of the tissue [31–35], how to manipulate the overall
movement of the motile tissue is still an open and inter-
esting question. The ratchet model provides a strategy to
control the movement of particles driven by nonequilib-
rium fluctuations [36–44]. The ratchet setup can convert
the random motion into the directional motion of parti-
cles, i.e., so-called rectification. In the strongly collec-
tive limit, ratchet reversals were found in systems with
asymmetric substrates [45,46]. Especially, in active mat-
ter ratchet systems [47–50], the interactions between par-
ticles are important and induce current reversals. Most
previous work on rectification was based on particulate
matter. However, the dense tissues are different from par-
ticulate matter in that the interactions between cells are
shape based, as opposed to metric based. Therefore, it
would be interesting to study the rectification of cells in
the dense tissue, where there are no gaps between cells and
the packing fraction is precisely at unity. In this paper, we
study the directed transport of a confluent tissue contain-
ing self-propelled cells in an asymmetric periodic potential
by using the self-propelled Voronoi model. It is found that
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Fig. 1: (a) Schematic of a confluent tissue containing N self-propelled cells in a square box of side L with periodic boundary
conditions. The red arrows describe the self-propulsion direction. (b) The profile of the potential U(x) described in eq. (4) for
different Δ. The left-hand side of the potential is steep when Δ > 0 and the right-hand side is steep when Δ < 0.

the motile confluent tissue could be manipulated by intro-
ducing an asymmetric periodic potential. The shape index
plays a key role in rectification and there exists an opti-
mal shape index at which the average velocity takes its
maximal value. There exist two optimal self-propulsion
speeds at which the average velocity reaches its maximal
value. The average velocity is a peaked function of the cell
number for small shape index and monotonously decreases
with the increase of the cell number for large shape index.

Model and Methods. – We consider a confluent tis-
sue containing N self-propelled cells (no cell divisions or
apoptosis) in a square box of side L with periodic bound-
ary conditions (shown in fig. 1(a)). Because the Voronoi-
based cellular model is highly successful in describing the
motion of two-dimensional confluent cell tissues [14,15], we
use the self-propelled Voronoi model to study the dynam-
ics of motile confluent tissues. In the Voronoi model, the
basic degrees of freedom are the set of two-dimensional
cell centers {ri = (xi, yi)}, and cell shapes are given by
the resulting Voronoi tessellation. The tissue forces are
obtained from an effective energy functional E({ri}) for
N cells, given by [8–21]

E =
N∑

i=1

Ei, Ei = KA[Ai − A0]2 + Kp[Pi − P0]2, (1)

where Ai and Pi are the cross-sectional area and perime-
ter of the cell i. A0 and P0 are the preferred cell area
and perimeter values at which the energy is minimized.
We assume that the preferred cell area A0 does not vary
from cell to cell and is set to be the average area per
cell. KA and KP represent the area and perimeter stiffness
moduli, respectively. The first term results from a com-
bination of cell volume incompressibility and the mono-
layer’s resistance to height fluctuations [51]. The second
term arises from active contractility of the actomyosin

subcellular cortex and effective cell membrane tension due
to cell-cell adhesion and cortical tension. An important
parameter in the model is the dimensionless shape index
p0 = P0/

√
A0. For example, a regular hexagon has a di-

mensionless shape index of p0 ≈ 3.72.
In the self-propelled Voronoi model, each cell can move

due to self-propelled motility. A constant self-propulsion
speed v0 is assigned along the direction of polarization
n̂ = (cos θi, sin θi) to each cell. In addition, in order to
achieve the rectification of cells, each cell experiences a
substrate force Gx

i along the x-direction which arises from
a periodic potential U(x). With these forces, the dynamics
of each Voronoi cell center ri are governed by the following
overdamped Langevin equations:

dri

dt
= μ[Fi + Gx

i ] + v0n̂, (2)

dθi

dt
=

√
2Drξi(t), (3)

where μ is the mobility. Fi = −∇iE is the effective me-
chanical interaction force on cell i, which is nonlocal and
nonadditive. Different from the particle-based models, Fi

cannot be expressed as the sum of pairwise force between
cell i and its neighboring cells. ξi(t) is the Gaussian white
noise with zero mean and unit variance. Dr is the ro-
tational diffusion constant and the time scale τ = 1/Dr

controls the persistence of single-cell dynamics. The trans-
lational diffusion is assumed to be negligibly small, thus
we do not consider the translational diffusion in the model.

The profile of the potential U(x) (shown in fig. 1(b)) is
described by

U(x) = −U0

[
sin

(
2πx

L

)
+

Δ
4

sin
(

4πx

L

)]
, (4)

where U0 and L are the height and period of the poten-
tial, respectively. Δ is the asymmetric parameter of the
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potential in the x-direction and the potential is completely
symmetric at Δ = 0.

Equations (1)–(4) can be rewritten in the dimension-
less forms by introducing the characteristic length

√
A0

and time 1/(μKAA0). The parameters in the dimension-
less forms can be rewritten as v̂0 = v0/(μKAA

3/2
0 ), D̂r =

Dr/(μKAA0), Û0 = U0/(KAA2
0), K̂P = KP /(KAA0),

L̂ = L/
√

A0. From now on, we will use only the dimen-
sionless variables and shall omit the hat for all quantities
occurring in the above equations.

Because directed transport only occurs in the x-
direction, the average velocity of the particle along the
x-direction in the asymptotic long-time regime can be ob-
tained from the following formula:

Vx = lim
t→∞

1
N

N∑
i=1

〈xi(t)〉
t

, (5)

where the symbol 〈. . .〉 denotes an average over the ran-
dom initial conditions.

Results and discussion. – We solve numerically
eqs. (2), (3) by using a stochastic Runge-Kutta algorithm.
The time step is chosen to be smaller than 0.01 and the
total integration time is more than 5 × 106. The stochas-
tic averages are obtained as ensemble averages over 100
trajectories with random initial conditions. For conve-
nience, we set the average cell area Ā = L2/N equal to one,
thus L =

√
N . Unless otherwise noted, we set KP = 1,

N = 400, and U0 = L/2π throughout the simulations. In
the following, we explore the ratchet transport of cells by
varying the asymmetry parameter Δ, the shape index p0,
the self-propulsion speed v0, and the rotational diffusion
constant Dr.

First, we plot the solid-liquid phase diagram as a func-
tion of v0 and p0 for different cases in fig. 2. Cell shape is a
structural order parameter for the solid-liquid transition.
We define the structural order parameter based on cell
shapes q = 1

N

∑ Pi√
Ai

, which was shown to be an excellent
order parameter for the solid-liquid transition in the self-
propelled Voronoi model [14]. The solid-liquid transition
is identified by the structural order parameter q = 3.81.
It is found that the appearance of the external potential
makes it easier for the system to behave as a liquid. This
is because cells are isotropic in solid state and anisotropic
in liquid state and the external potential will cause the
system to become anisotropic. In order to obtain the rec-
tification of cells, the system should be in liquid state.
Therefore, most of the parameters we use can ensure that
the system is in liquid state.

Figure 3(a) shows the average velocity Vx of cells as
a function of the asymmetry parameter Δ for different
p0. We find that the average velocity Vx is positive when
Δ > 0, zero at Δ = 0 and negative when Δ < 0. When
the potential is completely symmetric (shown in the mid-
dle panel of fig. 1(b)), the probabilities of crossing the
right and left barriers are the same, so that the average

Fig. 2: The solid-liquid transition in the v0-p0 phase space
for different cases at Dr = 0.001. Lines represent the solid-
liquid transition identified by the structural order parameter
q = 3.81.

velocity Vx is equal to zero. When Δ > 0, the left side
from the minima of the potential is steeper (shown in the
top panel of fig. 1(b)), and it is easier for cells to move to-
ward the slanted side than toward the steep side, so cells
on average move to the right (Vx > 0). Similarly, cells on
average move to the left (Vx < 0) when Δ < 0. Therefore,
the asymmetric orientation of the potential determines the
movement direction of cells. In addition, when |Δ| is very
large, the effective height of the potential is too high for
cells to pass across the potential barrier, so Vx tends to
zero. Therefore, there exists an optimal value of |Δ| at
which Vx takes its maximal value. In the discussion be-
low, we only consider the case of Δ > 0.

Figure 3(b) describes the average velocity Vx as a func-
tion of the self-propulsion speed v0 for different p0 at
Δ = 4.0. In order to investigate the role of the interac-
tions between cells, we calculate the average velocity for
a single-cell case (denoted by the solid line in fig. 3(b)),
where KA = 0 and KP = 0. For the single-cell case,
the average velocity is always zero when v0 < 2.0 (par-
ticles cannot pass across the potential barrier) and there
is a peak in the curve when v0 > 2.0. However, when
the shape-based interactions are considered, there are two
peaks in each curve, which are, respectively, distributed
in the region v0 < 2.0 and the region v0 > 2.0. The first
peak is due to the shape-based interactions.

A qualitative explanation of the behaviors in fig. 3(b)
is presented as follows. When v0 < 2.0, the effective me-
chanical interaction force (determined by the shape index
p0) plays an important role in the dynamics of cells. The
competition between the self-propulsion speed v0 and the
shape index p0 determines the rectification of cells. In this
case, when v0 → 0, cells cannot pass across the potential
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Fig. 3: (a) Average velocity Vx as a function of the asymmetry parameter Δ for different shape index p0 at v0 = 1.0 and
Dr = 0.001. (b) Average velocity Vx as a function of the self-propulsion speed v0 for different p0 at Δ = 4.0 and Dr = 0.001.
The solid line denotes the single cell case, where KA = 0 and KP = 0.

Fig. 4: Average velocity Vx as a function of the shape index p0

for different v0 at Δ = 4.0 and Dr = 0.001.

barrier, thus Vx → 0. As v0 increases, cells begin to pass
across the potential barrier and rectification occurs. How-
ever, when v0 increases to larger values, cells can easily
pass across the potential barrier, which reduces the effect
of the asymmetry potential, so Vx decreases. Therefore,
in this case, there exists an optimal value of v0 at which
Vx is maximal. In addition, the position of the peak shifts
to small v0 as p0 is increased. When v0 > 2.0, the self-
propelled motility is large enough and each cell can move
freely and the self-propelled motility dominates the dy-
namics of cells. In this case, on increasing v0, the average
velocity Vx firstly increases to its maximum, and then de-
creases to zero, thus there is a peak in each curve. Similar
to the previous case, the position of the peak also shifts to
small v0 as p0 is increased. Note that when v0 reaches to a
certain value (e.g., v0 = 7.0), the effect of the shape index
can be negligible, all curves p0 will completely coincide.

Fig. 5: Average velocity Vx as a function of the rotational
diffusion constant Dr for different shape index p0 at v0 = 1.0
and Δ = 4.0.

The dependence of the average velocity Vx on the shape
index p0 is shown in fig. 4 for different v0 at Δ = 4.0. It
is found that the average velocity Vx is a peaked function
of the shape index p0. Note that the peak in the curve
for v0 = 2.0 will appear in the range of p0 < 3.0, which
is not shown in fig. 3. The emergence of the peak in each
curve can be explained as follows. The system exhibits a
jamming transition from a solid-like state to a fluid-like
state [14], which is determined by the shape index, the
self-propelled motility, and the rotational diffusion con-
stant. When p0 is small, the system shows the solid-like
state and it is very difficult for cells to pass across the
potential barrier, thus Vx is very small. When p0 is large,
the system shows the fluid-like state, the self-propelled
motility dominates the transport. Cells can pass across
the potential barrier easily and the effect of the potential
can be negligible, so the rectification of cells is very weak.

58002-p4
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Fig. 6: Average velocity Vx as a function of the cell number N
for different p0 at v0 = 1.0, Δ = 4.0, and Dr = 0.001.

Therefore, there exists an optimal value of p0 at which Vx

takes its maximal value, which is different from the single-
cell case. In addition, the position of the peak shifts to
small p0 with an increase in v0. This is because the shape
index p0 at the solid-liquid transition decreases with the
increase of v0. Therefore, the shape index determines the
state of the system and strongly affects the rectification of
cells.

Figure 5 depicts the average velocity Vx as a function
of the rotational diffusion constant Dr for different p0 at
v0 = 1.0 and Δ = 4.0. In the adiabatic limits Dr → 0,
the self-propelled velocity can be expressed by two oppo-
site static velocity v0 and −v0, which is similar to the
adiabatic case in the force thermal ratchet [36], thus Vx

is large. As Dr increases, the average velocity Vx de-
creases. When Dr → ∞, the time scale τ = 1/Dr →
0, eq. (2) approaches simple Brownian motion and the
nonequilibrium driving disappears, thus Vx tends to zero.
Therefore, on increasing Dr from zero, the average ve-
locity Vx monotonically decreases and finally tends to
zero.

In fig. 6, we show how the cell number N affects the
average velocity Vx for different p0 at v0 = 1.0 and Δ =
4.0. It is found that the average velocity Vx is a peaked
function of N for small p0 and monotonously decreases
with the increase of N for large p0. This can be explained
as follows. An increase of the cell number N can cause two
results: a) activating motion in analogy with the thermal
noise activated motion for a single stochastically driven
ratchet, which facilitates the rectification of cells and b)
reducing the effective mobility of cells, which blocks the
rectification of cells. When p0 is small (e.g., p0 = 3.0
and 3.5), the effective mobility of each cell is small and
cells cannot easily pass the potential barrier. In this case,
on increasing N from zero, the factor a) first dominates
the transport, so Vx increases with N . However, when
N is very large and the effective mobility of each cell is

reduced, which blocks the rectification of cells, thus Vx

decreases with the increase of N . Therefore, there exists
an optimal cell number at which the average velocity Vx

is maximal. When p0 is large (e.g., p0 = 3.8, and 4.0), the
system shows the fluid-like state and cells can easily pass
the potential barrier. In this case, the factor b) always
dominates the transport, Vx monotonously decreases with
the increase of N .

Concluding remarks. – In this paper, we numerically
study the directed transport of a confluent tissue contain-
ing self-propelled cells in an asymmetry periodic potential
by using the self-propelled Voronoi model. We can manip-
ulate the movement of cells in the dense tissue by intro-
ducing the asymmetric periodic potential. The movement
direction of cells is determined by the asymmetry of the
potential, the average velocity is positive for Δ < 0, zero
at Δ = 0 and negative for Δ > 0. Because the shape
index determines the state of the active tissue, it strongly
affects the rectification of cells. The average velocity is a
peaked function of the shape index and the position of the
peak shifts to small shape index when the self-propulsion
speed is increased. The self-propelled motility of each cell
is another important factor in determining the state of
the system. When v0 < 2.0, the competition between the
self-propulsion and the shape index determines the rec-
tification of cells, so there is an optimal value of v0 at
which Vx takes its extreme value. When v0 > 2.0, the
self-propelled motility dominates the rectification, there
is another optimal value of v0 at which Vx is extreme.
Therefore, there exist two optimal self-propulsion speeds
in different speed ranges. The rotational diffusion con-
stant Dr controls the persistence of single-cell dynamics
and the the persistent time decreases with increasing Dr.
Therefore, the average velocity monotonically decreases
with the increase of Dr and tends to zero when Dr → ∞.
In addition, the cell number can also affect the rectifica-
tion of cells, the average velocity is a peaked function of
the cell number for small shape index and monotonously
decreases with the increase of the cell number for large
shape index.

Our study suggests the possibility to manipulate motile
confluent tissues on periodic substrates, which provides a
theoretical framework for predicting manipulation of cells
in cancer tumorogenesis, embryogenesis, and wound heal-
ing. In addition, most previous work on rectification was
based on particulate matter, here we have achieved rec-
tification of cells in dense tissues, where the interactions
between the cells are shape based and the packing frac-
tion is precisely at unity. We hope that our results can be
realized in the experiments of motile confluent tissues on
periodic substrates.
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