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Abstract – Recently Osorio et al. (Eur. J. Neurosci., 30 (2009) 1554) reported that the
probability distribution of intervals between successive epileptic seizures follows a power law with
exponent 1.5. We theoretically explain this finding by modeling the epileptic activity as a branching
process, which we, in turn, approximate by a random walk. We confirm the theoretical conclusion
by numerical simulation.
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Recently Osorio et al. [1] reported that the probability
distribution of epileptic seizure energies and inter-seizure
intervals follow a power law with exponents 1.67 and 1.5,
respectively. Earlier Beggs and Plenz [2] had observed
spontaneous neuronal avalanches in neocortical tissues.
The distribution of sizes of these avalanches, computed
by summing local field potentials, followed a power law
with exponent 1.5 as in the critical branching process. The
relevance of the branching process to the explanation of
the seizure energies distribution is thus obvious. Here we
show that, in addition, the distribution of inter-seizure
intervals is also consistent with the branching process.
Epileptic seizures result from simultaneous firing of

a large number of neurons in the brain. Anninos and
Cyrulnik [3] proposed a neural net model for epilepsy,
a simplified version of which we will use in this study.
To start with, we introduce time discretization. After a
neuron has fired, it cannot fire again for a time interval
known as refractory period. Therefore, the minimum
interval between the beginnings of two subsequent firings
of a neuron is the sum of the spike duration and the
refractory period. This interval is few milliseconds [4]. We
will use this interval as our time unit. Suppose that at a
given time step N neurons are firing. How many neurons
will be firing at the next time step? Consider one of these
firing neurons. Its axon connects to synapses of thousands
of neurons. Some of them are almost ready to fire: their
membrane potential is close to the firing threshold and
one impulse from our neuron will be sufficient to surpass
this threshold. The aforementioned experiment of Beggs
and Plenz [2] suggests that the average number λ of
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ready-to-fire neurons among those to which our neuron
is connected is very close to unity. Only in this case
we get a critical branching process and a power law
distribution of avalanches. We have many neurons that
possibly can be induced to fire by firing of our neuron and
the probability for each of them to fire is very small. Thus,
the number of induced firings is Poisson distributed with
mean λ (which is very close to unity). The variance of
the Poisson distribution equals its mean and therefore it
also equals λ. If at a given time step a large number N of
neurons are firing, then the number of neurons firing at
the next time step will come from a normal distribution
with mean λN and variance λN . In addition to induced
firings, some neurons will fire spontaneously. We assume
that the number of spontaneously firing neurons at each
time step comes from a Poisson distribution with mean p.
The change in the number of firing neurons is

∆N = (λ− 1)N + p+
√
Nz, (1)

where z is a normally distributed random number with
zero mean and unit variance. The number of firing
neurons, N, performs a random walk, with the size of the
step proportional to

√
N . Equation (1) can be simplified

by changing variable from N to x=
√
N . Using Ito’s

formula [5], we get

∆x=
(λ− 1)
2
x−
(
1

8
− p
2

)
× 1
x
+
1

2
z. (2)

In the limit of large x, the term inversely proportional to
x can be neglected in the first approximation. When λ is
very close to unity the first term can also be neglected.
Equation (2) reduces to ∆x= 1/2z, which means that√
N performs a simple random walk. A well-known result
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Fig. 1: (Colour on-line) Results of the numerical simulation of the branching epileptic process model with p= 0.5 and
λ= 1− 10−8. The simulation was run for 1011 time steps, which correspond to over six years. The longest inter-seizure interval
is over three years. The longest seizure is about five hours.

in the random-walk theory is that the distribution of
first return times to zero (or to any other chosen point)
follows a power law with exponent 3/2 (see footnote 1).
In the experiment [1], seizures were counted when the
electric intensity of the epileptic discharges reached a
certain threshold. This, in our model, is equivalent to

√
N

reaching a certain threshold. Then the distribution of first
returns into seizure (inter-seizure intervals) is the same as
the distribution of random walk’s return times.
Now let us study eq. (2) without neglecting any terms.

In the particular case p= 1/4 the second term cancels
out and in the case λ< 1 we get a well-studied problem
of Brownian motion in a harmonic potential [7]. In the
general p case we get Brownian motion in the potential

U(x) =− (λ− 1)
4
x2+

(
1

8
− p
2

)
× ln(x). (3)

One can find the probability density of x by solving
the corresponding Fokker-Planck equation. Alternatively
it can be found as a Boltzmann distribution in the poten-
tial given by eq. (3) at an appropriate temperature. The
result is

P (x)∼ exp(−8U(x)) = exp (2(λ− 1)x2) 1

x1−4p
. (4)

1One can get this by applying Stirling’s formula to the result in
Chapt. III.4 of ref. [6].

The probability distribution ofN = x2 can be immediately
found using eq. (4),

P (N)∼ exp(2(λ− 1)N) 1

N1−2p
. (5)

In the case when p= 0 and λ= 1 we get P (N)∼ 1/N . One
expects this from the theory of branching processes [8].
The survival probability after N generations for a critical
branching process is 1/N , while the expectation number
for the number of individuals is 1. This means that the
average size of a surviving family is N, while the probabil-
ity is 1/N . In the case p > 0, branching processes overlap
and this leads to a modified power law exponent. When
p= 0.5 the power law cancels out and when p > 0.5 the
power law exponent becomes positive. Experimentalists
did not report the data which can be compared to eq. (5)
but it is most likely contained in their data files and they
will be able to compare it with our theory. An important
implication of eq. (5) is that the random walk spends less
time at higher values of N. This means that seizures are
shorter than intervals between seizures.
One way to get a critical (or more precisely slightly

subcritical) branching process would be to use the self-
organized criticality model [9]. The sandpile model can be
easily recast in neural network terms: the accumulation
of sand grains corresponds to the integration, toppling to
firing, and spontaneous firing to adding sand grains. In
practice it is easier to simulate a branching process than
the SOC system generating it. Figures 1–3 show results of
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Fig. 2: (Colour on-line) Cumulative distribution function (CDF) of inter-seizure intervals. 1−CDF is fitted by a power law with
exponent −0.47. This means that the probability density function of inter-seizure intervals is a power law with exponent −1.47.
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Fig. 3: (Colour on-line) Cumulative distribution function (CDF) of seizure intensities. 1−CDF is fitted by a power law with
exponent −0.48. This means that the probability density function of seizure intensities is a power law with exponent −1.48.

such simulation. The parameters were λ= 1− 10−8 and
p= 0.5. The seizure threshold was set at 4× 108 firing
neurons. The seizure intensities were defined as the total
number of neuron firings during seizure. The system was
simulated for 1011 time steps. Remember that a time
step is the sum of firing duration and refractory period.
A reasonable estimate for this is two milliseconds. Thus,
our simulation run corresponds to over six years. The
longest inter-seizure interval was 5× 1010 time steps (over
three years). The longest seizure was 107 time steps (about

five hours). The distribution of inter-seizure intervals is
well described by an inverse power law with exponent 1.47.
And the distribution of seizure intensities is described by
an inverse power law with exponent 1.48.
This research gives an answer to the old question “do

seizures beget seizures?” [10]. After the symptoms of
seizure end, there still remains for some time epileptic
activity in the brain. It is easy for this activity to
surpass the threshold again soon. If there was no seizure
recently, this most likely means that the epileptic activity
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is minimal or absent and it will take more time to build up
the activity to pass the threshold. This model also gives
an alternative explanation to the power law distribution
of intervals in other than epileptic human activity [11].
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