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Edificio 9, Unidad Profesional Adolfo López Mateos - Mexico D. F. 07738, Mexico
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Abstract – We find a proper quantization rule,
∫ xB
xA

k(x)dx− ∫ x0B
x0A

k0(x)dx= nπ, where n is the

number of the nodes of wave function ψ(x). By this rule the energy spectra of a solvable system can
be determined from its ground-state energy only. Particularly, we study three solvable quantum
systems —modified Rosen-Morse potential, symmetric trigonometric Rosen-Morse potential and
Manning-Rosen potential in D dimensions— with the proper quantization rule, and show that the
previous complicated and tedious calculations can be greatly simplified. This proper quantization
rule applies to any exactly solvable potential, and one can easily obtain its energy spectra with
the rule.

This work is dedicated to Professor Zhong-Qi Ma on the occasion of his 70th birthday.
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Introduction. – Finding the exact solutions of quan-
tum systems has been an important research subject and
attracted much attention in the development of quantum
mechanics since they contain all necessary information of
the quantum systems. Up to now, several main approaches
have been developed to exactly solve quantum systems.
They include the SUSYQM approach [1], the Nikiforov-
Uvarov method [2], factorization formalism [3] and exact
quantization rule method [4,5]. The latter is the general-
ization of the Bohr-Sommerfeld quantization rule [6] and
the WKB approximation [7], which are widely applied
to periodic potential, spin system and Gross-Pitaevskii
equation [8–11].
The exact quantization rule method is a powerful tool

in finding the eigenvalues of all solvable quantum systems
[12–17]. It involves complicated integral calculations. Here
we improve the method with a considerable simplification
for the calculations. This is realized by finding a proper
form of the exact quantization rule.

Preliminary. – We begin with a brief review of the
exact quantization rule. A one-dimensional Schrödinger
equation can be written as a Riccati equation

d

dx
φ(x) =−2µ

�2
[E−V (x)]−φ(x)2, (1)

(a)E-mail: dongsh2@yahoo.com

where φ(x) =ψ(x)−1dψ(x)/dx is the logarithmic deriva-
tive of the wave function ψ(x). According to the Sturm-
Liouville theorem we know that, between two turning
points, φ(x) decreases monotonically with the increas-
ing x in the region where E � V (x). Specifically, as x
goes up across a node of the wave function ψ(x), where
E � V (x), φ(x) will decrease to −∞, and jump to +∞,
and finally decrease again. By carefully studying one-
dimensional Schrödinger equation, Ma and Xu proposed
an exact quantization rule [4]

∫ xB
xA

k(x)dx=Nπ+

∫ xB
xA

k′(x)
φ(x)

φ′(x)
dx, (2)

where k(x) =
√
2M [E−V (x)]/�, xA and xB two turning

points determined by E = V (x). N = n+1 is the number
of the nodes of the φ(x) in the region E � V (x), and is
larger by one than the number n of the nodes of wave
function ψ(x). From now on, we denote the prime, such
as k′(x) and φ′(x) in the above equation, as the first
derivative with respect to the argument. The first term
Nπ is the contribution from the nodes of the logarithmic
derivative of wave function, and the second is called the
quantum correction. The authors of ref. [4] found that,
for all well-known exactly solvable quantum systems, this
quantum correction is independent of the number of nodes

10003-p1



Wen-Chao Qiang and Shi-Hai Dong

of wave function. Accordingly, it is enough to consider
the ground state in calculating the quantum correction

Q0 =
∫ xB
xA

k′0(x)
φ0(x)
φ′0(x)

dx.

This methodology can be easily extended to D dimen-
sional space. As shown in [17], the effective potential in D
dimensions is given by

Veff.(r) = V (r)+
�′(�′+1)

r2
, �′ =

(
�+

D− 3
2

)
. (3)

Thus, the quantization rule∫ rB
rA

k(r)dr=Nπ+

∫ rB
rA

k′0(r)
φ0(r)

φ′0(r)
dr,

k(r) =
√
2µ[E−Veff.(r)]/�, E � Veff.(r),

(4)

is still valid for the Schrödinger equation with a spherically
symmetric potential in D dimensions.

Proper quantization rule. – There are two integrals
in eqs. (2) and (4). In particular, the calculation of
the quantum correction term could be very difficult and
tedious for some physical potentials. We here improve this
method and find its proper quantization rule. To this end,
we notice that taking N = 1, i.e. n= 0 in eq. (2) yields∫ x0B

x0A

k0(x)dx= π+

∫ x0B
x0A

k′0(x)
φ0(x)

φ′0(x)
dx,

k0(x) =
√
2µ[E0−V (x)]/�.

(5)

Then the complicated quantum correction will become∫ x0B
x0A

k′0(x)
φ0(x)

φ′0(x)
dx=

∫ x0B
x0A

k0(x)dx−π. (6)

After substituting this into eq. (2), we obtain∫ xB
xA

k(x)dx−
∫ x0B
x0A

k0(x)dx= (N − 1)π= nπ. (7)

Similarly, eq. (4) can also be written in the same form∫ rB
rA

k(r)dr−
∫ r0B
r0A

k0(r)dr= nπ. (8)

Equations (7) and (8) are called the proper quantization
rules. The two integrals involved in the proper quantiza-
tion rule have the same mathematical form. Accordingly,
when applying it to calculate the energy levels we can
calculate its first integral with respect to k(x) or k(r), and
then replace energy levels En in the result by the ground-
state energy E0 to obtain the second integral. This will
greatly simplify the complicated calculations encountered
previously [4,5,12–17].

Applications. – To show the advantage of this proper
quantization rule, we shall calculate the eigenvalues of the
modified Rosen-Morse potential [15], symmetric trigono-
metric Rosen-Morse potential [16] and Manning-Rosen

potential in D dimensions. The modified Rosen-Morse
potential is given by [15]

V (x) =−U0−U1sinh(x/a)
cosh2(x/a)

. (9)

With y= sinh(x/a), the potential is rewritten as

V (y) =−U0−U1y
1+ y2

. (10)

Gu et al. [15] found the ground-state energy by solving the
non-linear Riccati equation (1):

E0 =−�
2(G0− 1)2
8Ma2

, (11)

where

G20 =
1

2
+
4Ma2U0

�2
+

{(
1

2
+
4Ma2U0

�2

)2

+

(
4Ma2U1

�2

)2}1/2
, (12)

and two turning points as well as their properties are given
by

yA = sinh(xA/a) =
−U1−

√
U21 − 4En(U0+En)
2En

,

yB = sinh(xB/a) =
−U1+

√
U21 − 4En(U0+En)
2En

,

yA+ yB =U1/En, yAyB = 1+U0/En.

(13)

The momentum k(x) is

k(x) =

√−2MEn

�
√
1+ y2

√
(yB − y)(y− yA). (14)

Now, let us calculate the first integral in eq. (7):∫ xB
xA

k(x)dx =

∫ xB
xA

1

�

√
2M(E−V (x)dx

= ω(En)

∫ yB
yA

√
(yB − y)(y− yA)
1+ y2

dy

= −πω(En)+ aπ
√
M

�

√
U0+

√
U20 +U

2
1 ,

(15)

where ω(En) = a
√−2MEn/�. In the above calculation,

the following integral formula [18] was used:

∫ b
a

√
(b− y)(y− a)
1+ y2

dy=

π

2

{√
1+ a2

√
1+ b2− ab+1

}1/2
−π. (16)
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Now, by replacing En in eq. (15) by E0 given in eq. (11),
we obtain∫ x0B
x0A

k0(x)dx=
π

2

[
1−G0+ 2a

√
M

�

√
U0+

√
U20 +U

2
1

]
.

(17)

Substituting eqs. (15) and (17) into eq. (7) leads to

−π
[
a
√−2EM
�

− G0− 1
2

]
= nπ. (18)

From eq. (18) we get the eigenvalues

En =−�
2(G0− 2n− 1)2
8Ma2

, (19)

where n= 0, 1, 2, . . . , [(G0− 1)/2]. This result is the same
as that in [15].
Next we look at the asymmetric trigonometric Rosen-

Morse potential

V (x) =U0 cot
2(πx/a)+U1 cot(πx/a), (20)

where U0 > 0, x∈ [0, a]. We introduce a new variable y=
−cot(πx/a), y ∈ (−∞,∞). The turning points yA and yB
are determined by solving V (x) =En, where

En =U0y
2−U1y, yA+ yB =

U1

U0
, yAyB =−En

U0
. (21)

The momentum k(x) between them is given by

k(x) =

√
2µ

�

√
En−U0y2+U1y,

k′(y) =−
√
2µU0
�

y−U1/(2U0)√
En−U0y2+U1y

.

(22)

Ma et al. found that the ground-state energy is

E0 =
�
2C2

2µ
−U0− µU21

2�2C2
,

C =
π

2a

(
1+

√
1+
8µa2U0
π2�2

)
.

(23)

The integral of the momentum k(x) is calculated as
follows:∫ xB
−xB

k(x)dx =
ξ

π

∫ yB
−yB

√
(yB − y)(y− yA)
(y2+1)

dy

=−ξ+ ξ

π

∫ yB
−yB

y(yA+ yB)− yAyB +1
(1+ y2)

√
(yB − y)(y− yA)

dy

=−ξ+ a
√
2µ

�

∣∣∣Re{√En+U0− iU1}∣∣∣, (24)

where ξ = a
√
2µU0/�.

Now, by replacing En in eq. (24) with E0 given in
eq. (23), one has∫ x0B

x0A

k0(x)dx = −ξ+ a
√
2µ

�

∣∣∣Re{√E0+U0− iU1}∣∣∣
= −ξ+ aC. (25)

Substituting eqs. (24) and (25) into eq. (7) gives

a
√
2µ

�

∣∣∣Re{√En+U0− iU1}∣∣∣= aC +nπ, (26)

from which we obtain the eigenvalues as

En =
�
2(aC +nπ)2

2µa2
− µa2U21
2�2(aC +nπ)2

−U0, (27)

where n= 0, 1, 2, . . . . When U1 = 0, this result reduces to
the symmetric case. This result is consistent with that in
ref. [16].
Finally, let us consider the Manning-Rosen effective

potential in D dimensions [19]. For this potential we
introduce a new variable,

y=
1

eαr − 1 , y′(r) =−αy(1+ y). (28)

Then the effective Manning-Rosen potential will be trans-
formed to the form

Veff.(r) =
α2

q2

{
[β(β− 1)+ �′(�′+1)] y2

+ [�′(�′+1)−A] y
}
, κ2 =

2µ

�2
, (29)

where we used a suitable approximation 1/r2 � α2e−αr/
(1− e−αr)2.
We adopt the following notations for simplicity:

V2 = α
2δ/κ2, V1 = α

2γ/κ2, V (r) = V2y
2+V1y,

δ= [β(β− 1)+ �′(�′+1)] , γ = [�′(�′+1)−A] .
(30)

Let yA and yB be two turning points satisfying V (yA) =
V (yB) =En�. One finds

yA+ yB =−V1
V2
, yAyB =−En�

V2
. (31)

The momentum k(r) is written as

k(y) =
√
2µV2(y− yA)(yB − y)/�,

k′(y) =
√
2µV2
2�

(√
yB − y
y− yA −

√
y− yA
yB − y

)
.

(32)

Based on non-linear Riccati equation (1), one gets

φ0(y) =mαy+
α

2
+
αγ

2m
,

E0 =−�
2α2

8µ

(
1+

γ

m

)2
,

(33)
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where

m=
1

2
+

√
δ+
1

4
, δ=m(m− 1). (34)

The integral of the momentum k(r) is now calculated
as ∫ rB

rA

k(r)dr=

∫ yB
yA

√
2µV2(y− yA)(yB − y)
−α�y(1+ y) dy

=−π
√
δ

(√−V1
V2
− En�

V2
+1−

√−En�
V2

− 1
)
. (35)

By using eq. (8) we have

−π
√
δ

(√−V1
V2
− En�

V2
+1−

√−En�
V2

− 1
)

+

[
π
√
δ

(√−V1
V2
− E0

V2
+1−

√−E0
V2
− 1
)]
= nπ. (36)

One can thus immediately obtain the eigenvalues for the
D-dimensional Manning-Rosen potential En� as

En� =−�
2α2

8µ

[
τ − A+β(β− 1)

τ

]2
, τ = n+m, (37)

where the relations δ− γ =A+β(β− 1) and δ=m(m− 1)
are used.
In addition, this proper quantization rule applies to

all exactly solvable potentials. The energy spectra of a
solvable potential can be obtained easily by the method.

Concluding remarks. – As shown in the above
discussions, the proper quantization rule (7) and (8)
greatly simplifies the calculations of the complicated inte-
grals in the previous works [4,5,12–17]. Before concluding
this work, we summarize its advantages over the origi-
nal quantization rule. First, in applying the original exact
quantization rule, one must find the eigenvalue and eigen-
function of the ground state simultaneously to calculate
the complicated quantum correction term, while with the
proper quantization rule only the ground-state energy is
sufficient to determine the energy levels of a quantum
system. Second, by using the proper quantization rule we
only need to calculate one of the two integrals. Finally,
the most important point is that the expression of the
proper quantization rule is more symmetrical than the
original one. The beauty and simplicity of the rule come
from its meaning —whenever the number of the nodes of
φ(x) or the number of the nodes of the wave function ψ(x)
increases by one, the momentum integral

∫ xB
xA

k(x)dx will
increase by π.
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