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Abstract – We present a universal form of the T -matrices renormalized in nonperturbative
regime and the ensuing notions and properties that fail conventional wisdoms. A universal scale
is identified and shown to be renormalization group invariant. The effective range parameters
are derived in a nonperturbative scenario with some new predictions within the realm of contact
potentials. Some controversies are shown to be due to the failure of conventional wisdoms.
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Applications of the effective field theory (EFT) meth-
ods now prevail in physical literature. In particular, the
applications of the EFT approach to nucleon systems has
been producing many encouraging results [1], pointing
towards a promising field-theoretical framework for
nuclear system. However, the nonperturbative nature
makes the renormalization of such EFTs rather nontrivial
and still creates controversies [2–4] to be settled.
Sufficient evidences have been accumulated that the
conventional wisdoms for renormalization cease to apply
straightforwardly in nonperturbative regimes. This is not
unexpected as they are established within perturbative
frameworks. Therefore it is desirable to reveal novel
notions and aspects of renormalization that deviate from
the conventional wisdoms. In particular, it is desirable to
obtain a more concrete parametrization of the prescrip-
tion dependence of the objects (here, the T -matrix) in
nonperturbative regimes as much as possible.
To this end, we work out rigorous solutions of the
T -matrices for low-energy nucleon-nucleon (NN) scatter-
ing that solve the Lippmann-Schwinger equation (LSE)
in all partial-wave channels, using contact potentials
constructed according to the chiral EFT approach [5].
The 1S0 channel has been worked out in ref. [6] up to
chiral order ∆= 4. Here, we present the universal forms
for both uncoupled and coupled channels. Then it is
immediate to see some features and notions that are
intrinsically nonperturbative and deviate from the conven-
tional wisdoms of renormalization within perturbative
frameworks. These are important conceptual gainings that
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could resolve most of the controversies about the applica-
tions of EFT in nonperturbative regimes. The notions and
scenario demonstrated below are naturally illuminating
for any problem that is beset with nonperturbative diver-
gences, especially in the systems governed by singular
short-distance interactions. In addition, the analytical
results and scenario presented here could also be seen
as a field-theoretical solution to the universality of large
scattering lengths in atomic and molecular systems [7].
According to Weinberg [5], the EFT approach to NN

scattering consists of two steps: First, the potentials
for NN scattering are systematically constructed using
chiral perturbation theory (χPT) as the relevant EFT
up to certain chiral order ∆: O({p,mπ}∆/Λ∆) with Λ
being the upper limit for low-energy NN scattering (e.g.,
Λ∼ 0.5GeV); Second, the nonperturbative NN scattering
T -matrices could be obtained by solving the LSE with
the potential constructed in the previous step. As LSE is
hard to solve rigorously for pion-exchange potentials, we
first work with contact potentials (EFT(�π)) that facilitate
rigorous solutions where the LSE for L-wave reduces to
an algebraic form by employing the following factorization
trick or ansatz [8]:

V ≡ qL(q′)L
∆/2−L∑
i,j=0

λijq
2i(q′)2j = qL(q′)LUT (q)λU(q′),

T ≡ qL(q′)L
∆/2−L∑
i,j=0

τijq
2i(q′)2j = qL(q′)LUT (q)τU(q′), (1)
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with U(q)≡ (1, q2, q4, · · ·, q∆−2L)T being a column vector
and q, q′ being the external off-shell momenta. This is
because for pionless interactions, the NN potential up to
order ∆ degrades into contact interactions that become
a polynomial in terms of external momenta up to power
∆. Here λ denotes the real symmetric matrix consisting
of the contact couplings ([C···]) as V is symmetric with
respect to the external momenta q and q′. For example, in
1S0 channels at ∆= 2, we have,

λ=

(
C0 C2
C2 0

)
.

Then the algebraic LSE takes the following form:

τ(E) = λ+λI(E)τ(E), (2)

where the matrix I(E) consists of the integrals arising
from convolution. Note that τ and I are symmetric
matrices as λ is. As I is complex, so is τ . A general element
of I can be parametrized as follows:

Ii,j(E)≡
{∫

d3k

(2π)3
k2(L+i+j−2)

E− k2/M + iε
}
R

=

L+i+j−2∑
m=1

J2m+1p
2(L+i+j−m−2)−I0p2(L+i+j−2), (3)

I0 ≡ J0+ iM
4π
p, (4)

where the subscript R denotes any possible regulariza-
tion and/or renormalization prescription rendering the
integrals finite and [J0, J2m+1] being the corresponding
parametrization. This algebraic LSE is easy to solve.
Then, for any uncoupled partial-wave channel, the
on-shell T -matrices could be readily obtained from
T = p2LUT (p)τU(p) with p=

√
ME [6,9], which can be

simplified to the following form:

1

TL
= I0+ NL([C···], [J2m+1], p2)

DL([C···], [J2m+1], p2)p2L
, (5)

where NL and DL are polynomials in terms of the follow-
ing real parameters: the couplings [C···], the constants
[J2m+1,m> 0] and p

2. While for coupled channels, the
inverse of the on-shell T -matrices would take the following
form:

T−1J = I0I+∆J ,

I≡
(
1 0
0 1

)
, ∆J ≡




NJ−1,J−1
DJ−1,J−1p2(J−1)

,
−NJ−1,J+1
DJ−1,J+1p2J

−NJ−1,J+1
DJ−1,J+1p2J

,
NJ+1,J+1

DJ+1,J+1p2(J+1)


.
(6)

Again [N···,D···] are real polynomials in terms of [C···],
[J2m+1,m> 0] and p, hence (chiral) perturbative in
nature. Note that unitarity is automatically satisfied here.
At this stage, both the real part of I0 and the constants

[J2m+1,m> 0] are prescription dependent. The overall
factors of p2··· have been factored out so that the expansion
of [N···,D···] in terms of p2 starts from p0. For example,
the results for 3S1−3D1 at chiral order ∆= 4 read,

T−13S1−3D1 = I0I+∆3S1−3D1 ,

∆3S1−3D1 ≡
1

D1p4
( N1p4, −Dsdp2
−Dsdp2, D0

)
,

(7)

where D0,2 =D2,2 =D0,0 and for convenience we intro-
duced the following notations: N1 ≡N0,0, D1 ≡D0,0,
Dsd ≡N0,2, D0 ≡N2,2. For details we refer to a forthcom-
ing report [9].
Equations (5) and (6) exhibit the following important

features: 1) First, the same complex parameter I0 appears
in all channels in the same isolated position in 1/T or
T−1 and the rest parts of 1/T or T−1 are independent of
I0, i.e., I0 is “decoupled” from [C···] and [J2m+1,m> 0]
in every channel1. This structure is most pivotal.
2) Second, with the potentials truncated at finite order,
only finite many of [J···] (or finite types of divergences)
enter the game, in spite that there are formally infinite
many divergent items in the iteration of LSE. 3) Both
[N···] and [D···] are chiral perturbative (or perturbative in
the corresponding EFT).
Since the p(=

√
ME)-dependence of the on-shell

T -matrices (and hence the inverse of T -matrices) is
physical, the prescription variations (i.e., variations of
[J···]) must be compensated by that of the couplings. This
is nothing else but the general principle of renormalization
group (RG) invariance, then appropriate combinations of
the coefficients of p in [N···] and [D···] must be RG invari-
ants. The most outstanding point is that, the isolation or
“decoupling” of I0 from [C···] and [J2m+1,m> 0] makes
itself a renormalization group invariant parameter in all
channels, hence, J0 is a physical scale [6]. Therefore, I0 is
in fact a fundamental and universal parameter in the low
energy NN scattering, and J0 is no longer an ordinary
renormalization scale. Such a RG invariant was also
predicted in the Wilsonian RG approach [10], V̂0, whose
inverse is just −Re(I0) =−J0 computed in the Wilsonian
cutoff approach. This is not the only deviation from
the conventional wisdoms for renormalization, according
to which a divergent integral usually produces sliding
scales that are physically meaningless within perturbative
formulation.
In the perturbative framework, the couplings in

the contact potential would get renormalized and
“run”. At lowest order, a similar notion is feasible in
the 1S0 channel [11]: 1/T = J0+ iMp/(4π)+ 1/C0 =
iMp/(4π)+Mµ/(4π)+ 1/C0;R(µ), where J0+1/C0 =
Mµ/(4π)+ 1/C0;R(µ) is RG invariant as N0 is a constant
here, actually N0 = 1. But at higher orders (e.g.,
∆� 4), it is easy to see that the rational dependence of
1The rigorous proof of this point for 1S0 channel has been given

in ref. [6], which could be generalized to higher channels, we will give
the detailed proof in a forthcoming report.

51003-p2



A nonperturbative parametrization and scenario for EFT renormalization

T -matrices upon p precludes the conventional wisdoms
from being feasible, i.e., it is no longer possible to let the
variations in the prescription parameters [J···] be readily
absorbed into the couplings and let the couplings “run”.
This point could be seen from the requirement that
the appropriate combinations of the coefficients of p in
[N···,D···] should be RG invariant, which in turn imposes
strong constraints upon the variations in the couplings
[C···] and [J2m+1,m> 0]. (J0 is already excluded from the
set of prescription parameters as it is an RG invariant
scale now.) In fact, for 1S0 at ∆= 4, the coefficients
of the highest-power term in N0, D0 are, respectively,
N0;2 =C

2
4J
2
3 , D0,3 =−C24J3, which could not make the

ratios N0;2/N0;0 and D0;3/N0;0 RG invariant at the same
time, see ref. [6].
The second feature noted above engenders a novel

notion of “finiteness”: Only a finite number of nonpertur-
bative divergences are to be removed in a manner preserv-
ing the functional dependence upon [C···] and p, which
underlies the feasibility of renormalization with a few
nonperturbative counterterms in refs. [12,13]. This “finite-
ness” is a measure of nonperturbative renormalizability
and not directly linked to EFT power counting. Hence
nonperturbative counterterms (termed as “endogenous”
in ref. [6]) are not proportionate to perturbative ones that
obey EFT power counting. This is in sheer contrast with
perturbative renormalization programs, where consis-
tency requires that the counterterms be introduced or
constructed at exactly the same perturbation order as the
divergent vertex in consideration. This is another place
where the conventional wisdoms fail, usually interpreted
as the “inconsistency” of Weinberg’s power counting. We
will return to this point later. This “finiteness” also under-
lies the feasibility of the finite cutoff approaches [14–18].
In fact the nonperturbative form of T -matrices and

their RG invariance lead to an entanglement between
the couplings and the prescription: They must be defined
coherently in order to match physical boundaries. Then,
the prescription must be appropriately defined after the
couplings are given first. Below, to obtain unnaturally
large scattering lengths and naturally sized effective range,
etc., we suggest a simple and natural strategy: The original
EFT(χPT) power counting for potential construction are
kept intact, i.e., no modification of the power counting
rules of the couplings [C∆]. In the meantime, J0 and
[J2m+1,m> 0] are so determined that physical boundary
conditions are fulfilled. Then, to yield large (unnatural)
S-wave scattering lengths, the most “natural” or simplest
scenario would be as follows [6]:

C∆ ∼ 4π/(MΛ∆+1); J0 ∼MΛ/(4π)∼ |1/C0|;

J2m+1 ∼Mµ2m+1/(4π), m> 0,
(8)

with C0 being an S-wave contact coupling at lowest order
and µ of ordermπ or ∼ 100MeV. In a generic EFT, µ�Λ.
Thus, the only difference is with J0. This is a “natural”
scenario or choice as J0 is actually a fundamental and

physical constant in the nonperturbative regime, no longer
an ordinary renormalization scale. We will discuss other
schemes in future works [9].
With the foregoing preparations, we could examine

some important theoretical issues in NN low-energy scat-
tering. First, let us consider some theoretical predictions.
To this end, we calculate effective range expansions (ERE)
of 1/T in various channels. We should remind that the
following discussions are valid for contact potentials only,
not directly applicable to the cases containing long-range
potentials such as the pion-exchange potentials for NN
systems. Later we will consider some speculations about
such cases.
Let us start with the uncoupled cases, where the general

form of ERE of 1/T reads

Re

{
−4π
M

p2L

TL

} ∣∣∣∣∣
p→0
= p2L+1 cot(δL(p))|p→0 =

−1
a
+
1

2
rep
2+

∞∑
k=2

vkp
2k, (9)

with a, re and [vk, k� 2] being functions of the couplings in
corresponding channels and [J0, J2m+1,m> 0]. However,
unlike the rest of [J···], J0 contributes in each channel
to only one of the ERE parameters {a, re, vk, k� 2}
that is the coefficient of p2L! This is obviously due
to the special status of the fundamental parameter I0.
Employing the scenario (8) we could qualitatively deduce
that, all but one ERE parameters are naturally sized! The
exceptional one might be unnaturally sized just because
of the contribution of J0. The mechanism is simply that

J0+
dL
(
NL
DL

)
L!(dp2)L

∣∣∣∣∣
p=0

∼ M
4π
O(µ),

provided that the sign of d
L(NL/DL)
L!(dp2)L

|p=0 is opposite to that
of J0 as closer analysis shows that

dL(NL/DL)
L!(dp2)L

|p=0 is of
the same magnitude as J0. These general conclusions are
summarized in table 1. It is known that in 1S0 channel
the scattering length is unnaturally large with the rest of
ERE parameters being natural. Now, within the context
of contact potentials, higher ERE parameters might also
be unnaturally sized in an appropriate channel. These are
new predictions.
While in the coupled channels, one could find from

eq. (6) that the diagonal entries of T take the following
form:

1

TL
= I0+ NL;0+ I0NL;1DL;0+ I0DL;1 p

−2L, (10)

where J0 enters into the rational terms, and hence
precluding a clear naturalness picture of the ERE para-
meters. However, using the scenario of (8) and the detailed
contents of [N···,D···], one could still arrive at modestly
good judgements, the status of naturalness in the coupled
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Table 1: Naturalness/unnaturalness of ERE parameters in
uncoupled channels.

Channels Natural (might be)
Unnatural

1S0 {re, vk, k� 2} a
1P1,

3 P0,
3 P1 {a, vk, k� 2} re

1D2,
3D2 {a, re, vk, k� 3} v2

· · ·(L� 3) {a, re, vk, k� 2, k �=L} vL

channels is basically similar to that given in table 1.
There might be some deviations as J0 now enters the
rational terms, which would affect the status of some ERE
parameters. But such influence would not be universal for
all the ERE parameters. For example, through concrete
calculations, one could find that in the 3S1 channel, re is
totally independent of J0, a is most strongly influenced
by J0, while the rest of ERE parameters are only weakly
affected due to the suppression just mentioned. More
detailed analysis will be given in a forthcoming report [9].
In earlier EFT treatments, the distinctive aspects of

nonperturbative renormalization demonstrated above
were not fully appreciated, leading to quite some
debates [1] (for recent debates, see [2–4]). A number of
different schemes were proposed in order to remove the
“inconsistency” of Weinberg’s power counting [2,11,19],
with some “perturbative-like” expansion schemes being
advanced [11,19]. As is pointed out above, the incon-
sistency is in fact a misinterpretation of the failure of
conventional wisdom of renormalization. Specifically,
nonperturbative counterterms do not need to follow EFT
power counting. Therefore, it is both difficult and unnec-
essary to maneuver a unified power counting [2,4]. The
entanglement property means that the problems could
well be resolved with appropriate choice of nonpertur-
bative prescriptions constrained by physical boundaries
or conditions. After all, the ultimate goal of any sensible
scheme or prescription should be to approach the physical
dependence of T -matrices upon p as far as possible.
Thus, a (new) formally consistent power counting is not
the full story: The nonperturbative prescription must be
appropriately defined to match physical boundaries. For
example, for a “perturbative-like” expansion scheme to
work, the following two criteria must be satisfied: 1) the
expansion converges; 2) physical boundaries are fulfilled.
Both criteria are dependent upon prescription choice. To
illustrate this, we expand 1/TL in eq. (5) as follows:

1

TL
= I0+ 1+ δNL

D0L+ δDL
p−2L �

1

T 0L
+O
(
δNL

D0L
,
δDL

D0L

)
p−2L,

with T 0L ≡ (I0+(1/D0L+∆L)p−2L)−1 being the starting
nonperturbative amplitude. Then, convergence requires

that |T 0LO(δNL/D0L, δDL/D0L)p−2L| � 1, which in turn
demands a sophisticated renormalization prescription
after the couplings are given. Next, prescription must
also be chosen so that TL fulfills physical boundaries.
Therefore, it is a challenging task to find a prescription
to fulfill the above two criteria.
Evidently, the informative form of the T -matrices

will inspire new investigations in the future. It would
be interesting to explore the relations between the
nonperturbative parametrization elaborated here and
those in the literature, for example, the subtractive
approaches [12,13,20,21], and the lattice approaches [22].
Now we conclude with the following remarks. In

general, the ultimate goal of a field-theoretical calculation
in a nonperturbative regime is to identify and parametrize
all the elements that govern the physical behaviors of the
corresponding objects, especially the elements hidden in
divergences. To this end, we have achieved the following:
First, a fundamental parameter masked by a divergent
integral was identified and shown to be RG invariant
and inherent in all channels; second, universal forms of
nonperturbative T -matrices with respect to prescription
dependence were obtained in all channels in the case of
contact potentials; third, within the realm of contact
potentials, a simple scenario led us to predict that all
the scattering lengths except those in the S-channels are
natural, while higher ERE parameters like re, vk, k� 2
might also be unnatural in appropriate higher channels;
fourth, some distinctive notions about nonperturbative
renormalization were revealed along with the failures of
the conventional wisdoms, providing a different resolu-
tion of the intriguing problem with Weinberg’s power
counting in the EFT approach of NN scattering. These
conceptual gainings are significant from a purely theo-
retical standpoint as nonperturbative renormalization
is a challenging issue. Finally, we stress again that the
notions and conclusions presented here are fairly general
and hence illuminating for nonperturbative treatments of
any systems dominated by short-distance interactions.
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