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Abstract – General relativity can be written as topological BF theory plus a set of second-class
constraints. Classically the constraints provide the geometric interpretation of the B variables
and reduce BF to general relativity. In the quantum theory these constraints do not commute
and thus cannot be imposed strongly. We use SU(2) coherent states to develop a notion of
semiclassical states for the quantum geometry which allows to implement them weakly, i.e. on
average with minimal uncertainty. Using the spinfoam formalism, this leads to a background
independent regularized path integral for quantum gravity whose variables have a transparent
geometric interpretation.
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Spinfoams are the latest development in background-
independent quantum gravity, based on techniques from
both Regge calculus and Loop Quantum Gravity. They
provide a regularized path integral where the gravitational
field is encoded in a relational way in terms of purely alge-
braic variables. Yet precisely the use of these variables
partially hides the geometric content of the theory, making
the low-energy dynamics harder to understand. In partic-
ular, it is still an open question whether the latter has the
right semiclassical limit. Recent advances [1–4] pointed out
the necessity of improving the existing models to achieve
a positive answer. In this letter we address this issue: we
use variables with a clear geometric meaning to construct
a new model and argue why we expect the semiclassical
behavior to be improved.
Spinfoam models are formulated as state sums which

define transition amplitudes for almost-topological quan-
tum field theories. General relativity (GR) in its first-order
formalism can be recasted as a constrained BF theory with
the action

SGR[B,ω, λ] =

∫
M

BIJ ∧FIJ [ω] +λα Cα[B]. (1)

M is the space-time manifold, I, J are Lorentz indices, ω
is a so(3, 1)-valued 1-form and F is its strength tensor,
B is a so(3, 1)-valued 2-form. The first term

∫
BF

defines a topological field theory with no-local degrees
of freedom and no geometric interpretation. It admits a

(a)E-mail: etera.livine@ens-lyon.fr
(b)E-mail: sspeziale@perimeterinstitute.ca

straightforward exact spinfoam quantization. The second
term consists of quadratic constraints Cα[B] (often called
the simplicity constraints) enforced by the multipliers λα.
It reduces the number of independent components of the
bivector field B so to express it in terms of 1-forms eI
as BIJ = εIJKL(eK ∧ eL). Through these constraints, the
theory is equivalent to GR with e and ω interpreted as
the tetrad field and the spin connection.
The key issue of the spinfoam program is to implement

the simplicity constraints at the quantum level in the
regularized path integral. The most studied spinfoam
model up to now is the Barrett-Crane (BC) model [5].
It is the only model which has been developed enough to
allow for practical calculations and numerical simulations.
Despite these advances, it has been criticized from many
perspectives and it is widely believed that it has to be
substantially modified to yield a proper spinfoam theory
for quantum gravity, e.g. [2–4,6–8]. In particular, it does
not lead to the right spin-2 tensorial structure for the
graviton propagator in the semiclassical limit [2,8]. The
key problem of the model is the following. Although the
quantum constraints do not commute with each other,
i.e. [Ĉα, Ĉβ ] �= 0 (reflecting they correspond to second-
class constraints in a canonical analysis [9]), they are
implemented strongly, and the boundary states satisfy
Ĉα |ψ〉= 0, ∀α. This leads to an over-constrained Hilbert
space, with too few degrees of freedom to describe a
3-geometry. The problem with this procedure is analog
to looking for single-particle states satisfying x̂ |ψ〉=
p̂ |ψ〉= 0: there is no such state and we instead use
coherent states satisfying these conditions on average with
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minimal spread. Using this idea to deal with the simplicity
constraints leads to a larger Hilbert space with arguably
a better-behaved semiclassical sector.
In this letter, we use the coherent state techniques

we introduced earlier [3] to construct a new spinfoam
model that addresses this issue. The main improvements
with respect to the existing literature are i) the use of
variables with a transparent geometric interpretation, and
ii) the consistent implementation of the constraints, i.e.
on average with minimal uncertainty and not strongly.
These developments are crucial to pursue the study of
the semiclassical limit and the extraction of physical
predictions from the theory, following the program begun
in [2]. The model we obtain is related by a change of basis
to the one recently derived by different means in [4].
We first review the structure of the discretized C[B]

constraints in the spinfoam framework and show how
they implement the second-class constraints derived in the
canonical analysis. We then show how to impose them
weakly at the quantum level and derive the new Hilbert
space of boundary states. Finally, we implement this idea
using the coherent intertwiner states introduced in [3] and
derive the new spinfoam model.
We work with 4d Riemannian gravity with gauge group

SO(4). We expect the key ideas will extend directly
to Lorentzian signature which we postpone for later
work.

The simplicity constraints. – Our starting point is
a discretization of (1) on a simplicial manifold represent-
ing spacetime. This is made of 4-simplices glued along
common tetrahedra. Each 4-simplex has five tetrahedra
and ten triangles. The fields B and ω are then discretized
and quantized, e.g. [10,11]. We will focus on the B-field,
since our purpose is to show how to deal with the
constraints C[B]. At the quantum level, a representation of
SO(4) is associated to each triangle ∆ and the variables
BIJ∆ are represented as the so(4)-generator JIJ in that
representation. Then gauge invariance allows us to asso-
ciate a quantum state to each tetrahedron, given by the
intertwiner between the four representations attached to
its four boundary triangles, i.e. a SO(4)-invariant state in
the tensor product of these four representations. Notice
that in this procedure a tetrahedron state is uniquely
defined by the tetrahedron irrespective to the 4-simplex
to which it belongs. Finally, a quantum 4-simplex consists
in the ten representations labeling its triangles and the
five quantum states associated to its tetrahedra. Tensor-
ing these tetrahedron states and tracing out over the repre-
sentations, we get a scalar amplitude for each 4-simplex.
The spinfoam amplitude is defined as the product of these
4-simplex amplitudes.
The topological BF theory is obtained by allowing all

irreducible (unitary) representations for triangles and all
intertwiner states for tetrahedra. A constrained BF theory
such as gravity restrains both the representations and
the intertwiner spaces. For instance, the Barrett-Crane

A B

C

D

E

Fig. 1: Labels for the dual 4-simplex.

model uses the simple representations of Spin(4) and the
unique Barrett-Crane intertwiner. So there are no degrees
of freedom in the intertwiner space. Here we will relax
the way of imposing the simplicity constraints in order to
enlarge the intertwiner space.
The C[B] constraints usually read for all space-time

indices (greek letters):

εIJKLB
IJ
µνB

KL
ρσ = εµνρσ

b

4!
, (2)

with b= εIJKLεµνρσB
µν
IJB

ρσ
KL. They ensure that B comes

from a tetrad field e [12]. At the canonical level, (2)
translates into second-class constraints: a set of primary
constraints ensuring that the relation between B and
e holds on the canonical hypersurface, plus a set of
secondary constraints ensuring that it also holds under
time evolution. Both sets of constraints are essential to
compute the Dirac bracket on the phase space [13]. A
criticism of the spinfoam quantization is that it seems to
take into account only the primary constraints [9,13–15].
We address this issue below, and identify the secondary
constraints. Notice also that in the Lorentzian case the
secondary constraints correspond to the reality constraints
of self-dual loop gravity, so it would be enlightening to
understand how spinfoams deal with them.
Since the building elements of spinfoams are the

4-simplices, we now look in details at the simplicity
constraints within each 4-simplex. We call A,B,C,D,E
the five tetrahedra of the 4-simplex. Figure 1 shows the
dual 4-simplex. Each of the ten triangles is labeled by
a pair of tetrahedra sharing it, e.g. (AB). Consider the
discrete variables BIJ∆ ≡BIJAB within the 4-simplex. First,
they are constrained to satisfy a closure condition for
each tetrahedron, namely BAB +BAC +BAD +BAE = 0
for the tetrahedron A, and so on. This is the discrete
equivalent of the Gauss law ensuring the SO(4) gauge
invariance. Then the constraints C[B] impose further
conditions on these B variables. These equations are
labeled by couples of triangles (∆,∆′) and we distinguish
three different cases [11,12]:

– C(1): when ∆=∆′, the associated bivector B∆ must
be simple, εIJKLB

IJ
∆ BKL∆ = 0.
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– C(2): when ∆ and ∆′ belong to the same tetrahedron,
i.e. when they share a common edge, we also have
εB∆B∆′ = 0. This means that the sum B∆+B∆′ of
the two bivectors is once again simple.

– C(3): when ∆ and ∆′ only share a common vertex,
they do not belong to the same tetrahedron. The
constraints impose that the quantity εB∆B∆′ is, up
to a sign, independent of the choice of such couple of
triangles. It is actually equal to the 4-volume of the
4-simplex (up to a factor 16/25) and the sign relates
to the relative orientation of the triangles.

The case C(1) is straightforward to deal with. The two
remaining cases are the problematic ones. We naturally
would like to interpret C(2) as the primary constraints
and C(3) as the secondary constraints. Assuming that C(2)
holds on the initial hypersurface (e.g. one tetrahedron of
the 4-simplex) and that C(3) are satisfied, then C(2) is
also true on the final hypersurface (e.g. all four remaining
tetrahedra). This is easily proved using the closure condi-
tion to relate C(2) and C(3). For instance,

εBABBBC + εBACBBC =−εBADBBC − εBAEBBC , (3)

where the subscripts I, J,K,L are implicit. The left-hand
side corresponds to C(2) on the tetrahedra B and C while
the right-hand side relates to C(3). We then repeat this
procedure on all tetrahedra. This answers the question
raised above: C(3) are the secondary constraints searched
for: they involve the whole 4-simplex structure and ensure
that the spatial constraints C(2) are satisfied under time
evolution.
Furthermore, using the same relations, we show that

assuming C(2) holds for all tetrahedra of the 4-simplex
implies that C(3) is true. This means that we only need
to solve the constraints C(2) as suggested in [15]. This is
also the reason why the case C(3) is not discussed in the
geometric characterization of 4-simplices in the original
Barrett-Crane papers [5].
At the quantum level, we replace all the variables

BIJ∆ by the so(4) generators JIJ∆ . This does not change
anything to the previous statements. The issue is that,
although the constraints C(1) commute with each other,
the constraints C(2) (and C(3)) do not. Therefore looking
for states that solve exactly all the constraints C(2) might
lead to a very small Hilbert space. Indeed it gives the
unique Barrett-Crane intertwiner. However, this situation
comes from the fact that these constraints are second class
already at the classical level. This suggests a different
approach: to weaken the constraints and look for coherent
states that would only solve them in average with a
minimal uncertainty [3]. This should likely lead to states
with a more straightforward geometrical interpretation
and provide us with a larger Hilbert space.

Enlarging the Hilbert space. – In this section we
construct a larger Hilbert space, where the simplicity

constraints hold in the expectation values. Consider C(1)
first. In terms of generators, the constraint on a single
triangle εJ∆J∆ = 0 is a condition on the so(4) representa-
tion associated to ∆. To understand this condition, notice
that εJJ is the second Casimir operator of the so(4) Lie
algebra; using the decomposition of so(4) in self-dual and
anti–self-dual sectors, so(4) = su+(2)⊕ su−(2), it is the
difference of the Casimirs of the two su(2) sub-algebras:

εIJKLJ
IJ
∆ JKL∆ = ( �J+∆)

2− ( �J−∆)2 = 0. (4)

This means that the so(4) representation (j+, j−) associ-
ated to the triangle ∆ must carry the same spin on its
self-dual and anti–self-dual part, j+ = j−. Such a repre-
sentation is called simple [5,16].
Next, consider C(2), and notice that it involves two

triangles on the same tetrahedron. We have four simple
representations (ja, ja) for the four triangles ∆a=1..4 on
the tetrahedron boundary. The closure condition

∑
a Ja =

0 means that we are restricted to so(4)-invariant states in
the tensor product H≡ ⊗aH(ja,ja), i.e. intertwiner states
between these four representations. We use the standard
recoupling basis of intertwiners,

=
j+1

j+2

j+4

j+3

�
� �

�

j+12
� �

⊗
j−1

j−2

j−4

j−3

�
� �

�

j−12
� �

(j+1 , j
−
1 )

(j+2 , j
−
2 )

(j+4 , j
−
4 )

(j+3 , j
−
3 )

�
� �

�
� �

and we label |ja, (j+12, j−12)〉 the states in H, where ja
denotes the simple representation (ja, ja), and (j

+
12, j

−
12)

is the label for the representation (J1+J2). In H we
have three new independent simplicity conditions, Ca,b ≡
εJaJb = 0 for all couples of triangles (∆a,∆b). These
constraints mean that the sum (Ja+Jb) is required to
remain simple. Strongly imposing the simplicity conditions
C1,2 forces the recoupled representation to be simple,
j+12 = j

−
12. Further imposing C1,3 and C1,4 then leads to

a single intertwiner [17]. The key point is that these
constraints do not commute with each other. For instance
[C1,2, C1,3] is still cubic in the J ’s [17,18]. Thus, imposing
these constraints strongly at the quantum level amounts to
imposing a whole tower of constraints of higher and higher
order in the J ’s. It looks as if we are actually enforcing
too many conditions, and we are indeed left with a one-
dimensional intertwiner space (once the ji’s are given).
We propose to weaken the constraints and look for

intertwiner states ψ that satisfy the simplicity conditions
only in the expectation values, 〈ψ|Ca,b|ψ〉 = 0 for all
couples (a, b). For this purpose, we introduce the Hilbert
space of symmetric intertwiners, Hsym0 . These are defined
as invariant under the exchange of j+12 and j

−
12:

|ψ〉 =
∑

(j+12,j
−
12)

ψj+12,j
−
12
|ja, (j+12, j−12)〉, (5)

with ψj+,j− =ψj−,j+ . It is straightforward to check that
this defines a Hilbert space and that it is invariant
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under the choice of recoupling basis —in (5) we could
have chosen the pairing 1-3 or 1-4 instead of 1-2. It
is also obvious that any state ψ ∈Hsym0 satisfies all the
constraints Ca,b in expectation value. We even have the
stronger statement that Hsym0 is the largest Hilbert space
such that all the matrix elements of the constraints vanish:

∀φ, ψ ∈Hsym0 , 〈φ|Ca,b|ψ〉 = 0. (6)

From this perspective, the operators Ca,b can take us
out of the Hilbert space Hsym0 , but they actually vanish
weakly if we restrict ourself to work only with states within
Hsym0 . Although j+12 and j

−
12 are not necessarily equal, the

simplicity condition is guaranteed by the symmetry of the
coefficients.
At the end of the day, we have shown that it is possible

to consistently impose the intertwiner simplicity condition
in a weaker sense. This leads a larger intertwiner space,
thus a larger space of (boundary) spin networks for the
spinfoam model. On this larger space the simplicity condi-
tion holds in average. In the next section, we show how to
impose the constraints with (almost) minimal uncertainty
using the coherent intertwiners introduced in [15]. This
allows to recover the geometrical interpretation of inter-
twiners as quantum tetrahedra.

Coherent simple intertwiners. – Let us start by
considering a bivector B∆ associated to a single triangle. It
is simple if and only if its self-dual and anti-self-dual parts
have equal norms, |�b+|= |�b−|, with b±i ≡ (Bi±B0i)/2 and
Bi ≡ 1

2εijkB
jk is the spatial part of the bivector.

The simpler case when �b+ =�b− means that the “time-
like” part of B vanishes, B0i = 0, i.e. the “time-like” vector
N (0) = (1, 0, 0, 0) is orthogonal to B 1. Then the spatial

part �B can always be expressed as the vector product of
two 3-vectors �e and �f ,Bi = εijkejfk. Defining the 4-vectors

e= (0, �e ) and f = (0, �f ), it is straightforward to check that
BIJ = e[IfJ], that is the bivector can be expressed as the
wedge product of two vectors which are interpreted as a
discretized tetrad field.
In the generic case, if �b+ and �b− have the same

norm, there exists a SO(3) rotation g which maps one

on the other, �b− = g�b+. Introducing the SO(4) rotation
G= (g, Id) (where the left side acts as SU(2)+ and the

right on SU(2)−), we define the rotated bivector B̃ ≡
G−1BG. Then B̃ has equal self-dual and anti–self-dual
components and we can repeat the same analysis as above.
In particular, we obtain that the 4-vector N ≡ GN (0) is
the “time-like” vector orthogonal to B.
We now discuss the implementation of this idea at the

quantum level. Following [15], we introduce a coherent
state which is peaked on the classical value BIJ . Such state

1The notion of “time-like” is not properly defined in the Euclidean
space, and furthermore there are actually two 4-vectors orthogonal
to any given simple bivector. The vector N(0) can nevertheless
naturally be seen as the “time-like” normal vector. This issue would
be clearer in a Lorentzian framework which we postponed for future
investigation.

is the tensor product of two SU(2) coherent states for the
self-dual and anti–self-dual components, |j+, n̂+, j−, n̂−〉,
where �b± = j±n̂± and the n̂± ∈ S2 are unit 3-vector.
Satisfying the simplicity condition C(1) means choosing the
same representation for both components, j+ = j−, which
we denote simply as j. The SO(3) rotation g between n̂+

and n̂− defines the time-like normal to B as discussed
above.
A tetrahedron is characterized by four bivectors Ba,

a= 1 . . . 4, each of which has associated a coherent state
|ja, n̂+a , n̂−a 〉, satisfying the closure condition

∑
aBa = 0.

A quantum state for the tetrahedron is then constructed
by averaging over Spin(4) the tensor product of the four
coherent states for each bivector:∫

Spin(4)

dG ⊗4a=1 G |ja, n̂+a , n̂−a 〉.

The Spin(4)-averaging ensures the state is an intertwiner,
so as to satisfy the closure constraint at the quantum level.
We still have to solve the simplicity constraint. Following
an idea of [4,14], we implement them by requiring that all
four bivectors B lay in the same hypersurface: they must
be normal to the same “time-like” vector. This means that
all four self-dual components n̂−a must come from the same
rotation of the four anti–self-dual components n̂+a . Thus,
there must exist a single rotation g ∈ SO(3) independent
from a such that

∀a, n̂−a = g n̂
+
a . (7)

This condition that there exists a single 4-vector N
orthogonal to all four bivectors B∆ associated to the
triangles ∆ of the tetrahedron is actually stronger than
the original crossed simplicity constraint C(2). Unlike C(2),
it is not invariant under the simultaneous change BIJ∆ →
εIJKLB

KL
∆ on the four triangles (see next section); on the

other hand, it allows a more straightforward geometric
interpretation. Implementing (7) on the intertwiner state,
we are left with the quantum tetrahedron state:

ψ=

∫
dG ⊗a G |ja, n̂+a , gn̂+a 〉. (8)

Since the Haar measure on Spin(4) is the product of the
independent integrations over SU(2)+ and SU(2)−, the
rotation g is irrelevant and ψ is simply a tensor product
state:

ψ= I+⊗I+, I+ ≡
∫
SU(2)

dg+⊗a g+|ja, n̂+a 〉, (9)

where I+ is an SU(2)-intertwiner state. Expressed as such,
it is manifest that the state ψ belongs to the Hilbert
space Hsym0 constructed above, and therefore solves the
simplicity constraints weakly.
Using the tensoring properties of the SU(2) coherent

states, we have |j, n̂〉⊗2 = |2j, n̂〉, and thus we can simplify
the formula above by doubling the spins ja:

ψ=

∫
dG ⊗a G |2ja, n̂+a 〉. (10)
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This shows that our states are the same ones as defined
by Engle, Pereira and Rovelli for their new spinfoam
model [4,19]. The states (10) span a Hilbert space
of intertwiners which i) is a subspace of Hsym0 and
therefore weakly solves the simplicity constraints, and
ii) matches the Engle-Pereira-Rovelli proposal. We have
only expressed their intertwiner space in a different
(overcomplete) basis using coherent states.
Since we use the same simple representations and same

intertwiner spaces, we end up with the same spinfoam
model as in [4,19], which has the same boundary Hilbert
space as Loop Quantum Gravity. Our 4-simplex amplitude
is obtained by gluing five tetrahedron states together along
ten triangles:

Aσ ≡
[∫
SU(2)

[dg]⊗5
10∏
∆=1

〈j∆n̂s(∆)|g−1s(∆)gt(∆)|j∆n̂t(∆)〉
]2
,

where s(∆) and t(∆) label the two tetrahedra to which
the triangle ∆ belongs. Notice that, since we use a
different intertwiner basis, our 4-simplex amplitude is not
expressed in term of {15j}’s as in [4,19], although the
whole spinfoam amplitude should ultimately be the same.
The difference lays in the boundary data: our coherent
spin network states carry more information and have a
simpler semiclassical behavior for large spins. This is to
be compared to coherent states for the harmonic oscillator
which are labeled by two real numbers instead of a single
integer but that admit a straightforward semiclassical
interpretation. We expect this choice of basis to improve
the geometrical interpretation of the model and the study
of its semiclassical limit.

A sign ambiguity. – In this final section, we comment
on an alternative model that can be constructed, using a
sign ambiguity present in our procedure. This is related to
the existence of two sectors of the constrained BF theory,
e.g. [12,18,20]. Indeed, BIJ = εIJKL(eK ∧ eL) is not the
only classical solution of the simplicity constraints (2),
but also BIJ = e[I ∧ eJ] solves them. The first solution
gives a sector that reproduces general relativity, while
the second solution leads to a non-geometrical theory
(the tetrad e is still required to be compatible with the
connection, dωe= 0, but does not necessarily satisfy the
Einstein equations). Of course, the goal is to build a
spinfoam model representing the gravitational sector and
not the non-physical one.
This ambiguity is present in our framework, where it

translates into a sign ambiguity. Considering a single
bivectorB satisfying the simplicity condition |�b+|2 = |�b−|2,
there exists a rotation g ∈ SO(3) such that �b− = g�b+

as we considered, but we can also flip the sign and
consider the other branch defined by �b− = −g�b+. The first
branch corresponds to bivectors which read BIJ = e[IfJ],
while the second branch gives BIJ = εIJKLe

KfL, where e
and f are two 4-vectors. This flipping possibility clearly
corresponds to the previous ambiguity.

The point is that this sign ambiguity is due to the
invariance of the quadratic simplicity constraints under
the change BIJ → εIJKLBKL. However, our way to imple-
ment the simplicity constraints on intertwiners is not
invariant under the Hodge operator εIJKL and should
in principle distinguish the two sectors. This should be
a great improvement on previous spinfoam models.
At the quantum level, this means considering coherent

states |j, n̂+〉⊗ |j,−gn̂+〉 instead of |j, n̂+〉⊗ |j, gn̂+〉. For
a single triangle this does not make a difference, since
−gn̂+ is as good a unit vector as gn̂+ in our Riemannian
setting (in the Lorentzian setting, the two branches can be
distinguished, one vector belonging to the upper time-like
unit hyperboloid and the other to the lower hyperboloid).
However, for a tetrahedron it means requiring that its
four bivectors B∆ share a common orthogonal 4-vector
N satisfying εIJKLN

JBKL∆ = 0, instead of the previous
condition NIB

IJ
∆ = 0. Then using this choice to form

tetrahedron states, we end up with a different class of
intertwiners:

ψ =

∫
dG ⊗a G |ja, n̂+a ,−n̂+a 〉

=

∫
dg+ ⊗a g+|ja, n̂+a 〉⊗

∫
dg− ⊗a g−|ja,−n̂+a 〉. (11)

Instead of tensoring the SU(2) intertwiner with itself, we
tensor it with its complex conjugate. It then leads to a
slightly different 4-simplex amplitude where the coherent
intertwiners labeling the anti-self-dual part are the dual of
the self-dual part instead of being identical.
The first proposal with matching self-dual and anti-

self-dual intertwiners reproduces the model proposed
by Engle-Pereira-Rovelli [4,19] while this second flipped
model looks more like a coherent state version of the
Barrett-Crane model (which uses vanishing spin states
of the |j,m〉⊗ |j,−m〉 type with conjugate self-dual and
anti–self-dual components). The natural question is which
of the two models correspond to the proper spinfoam
quantization of general relativity, if any.
Now that all the foundations have been set and the

simplicity constraints consistently implemented, the next
step is to study the asymptotics of the new proposed
spinfoam vertex and check that the graviton propagator
(e.g. [2]) is better behaved than for the Barrett-Crane
model. Notice that a calculation of the graviton tensorial
structure will allow to discriminate between the two
proposed models, with identical or conjugate intertwiners,
and check which one has the right degrees of freedom.
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