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Abstract – In 1900, Otto Lehmann observed that the texture of a cholesteric droplet heated
from below can rotate continuously (Ann. Phys. (Leipzig), 2 (1900) 649). This observation (which
has never been reproduced, to our knowledge) was explained in 1968 by Leslie (Proc. R. Soc.
London, Ser. A, 307 (1968) 359) from symmetry arguments accounting for the chirality of the
material. In 1982, Éber and Jánossy showed experimentally that a similar thermomechanical effect
also exists in a compensated cholesteric (in which the helix is completely unwound). This result
was immediately questioned by Pleiner and Brand who claimed that only the symmetry of the
phase (and not that of the molecule) determines the structure of the macroscopic constitutive
equations (Mol. Cryst. Liq. Cryst. Lett., 5 (1987) 61). According to them, the Lehmann effect
should necessarily vanish at the compensation temperature. In order to understand the correct
interpretation, we conducted very carefully the experiment in two complementary geometries.
Our results agree with those of Éber and Jánossy, confirming the predominance of microscopic
symmetries over macroscopic ones.

Copyright c© EPLA, 2007

Introduction. – In 1900, Otto Lehmann observed that
particular droplets of a cholesteric liquid crystal spread
out between two glass plates could be put into motion
when heated from below [1]. This work was completed
in a book published in 1921 [2], in which Lehmann
clearly showed that it was not the droplet itself, but
its optical texture, that was rotating under the influence
of the temperature gradient. Surprisingly, the Lehmann
experiment has never been reproduced, to our knowledge.
The Lehmann rotation was explained qualitatively 68
years later by Leslie [3], who showed that the chirality
allows the existence of an internal torque driven by a
temperature gradient. More precisely, the Lehmann torque
acting on the director �n reads [4,5]

�ΓLehmann =−ν �G⊥, (1)

where �G⊥ = (�n× �G)×�n is the component of the temper-
ature gradient �G= �∇T perpendicular to �n. This equation
predicts that the helix of a cholesteric liquid crystal must
rotate at a constant angular velocity Ω when submitted to
a temperature gradient parallel to its axis:

Ω=−νG/γ1, (2)

where γ1 is the rotational viscosity. Nevertheless, one
condition must be satisfied to observe a continuous rota-
tion, which is that the director can freely rotate at the two
surfaces limiting the sample. This condition is very diffi-
cult to achieve experimentally, which certainly explains
why the Lehmann effect is so difficult to reproduce.
To overcome this difficulty and measure the Lehmann
coefficient ν, Éber and Jánossy performed an ingenious
experiment with a cholesteric mixture possessing a
compensation temperature, i.e. a temperature at which
the equilibrium twist q= 2π/p (with p the cholesteric
pitch) vanishes and changes sign. Their experiment
consisted of measuring the birefringence of a homeotropic
sample placed in a temperature gradient perpendicular
to the director �n [6,7]. Éber and Jánossy found that, in
spite of the fact that the phase has a nematic structure
at the compensation point, the director still experiences a
Lehmann torque. In other words, they found that ν �= 0 at
the compensation temperature at which q= 0, concluding
that the torque is from microscopic origin and due to the
chirality of the molecules. This experiment was immedi-
ately criticized by Pleiner and Brand who claimed that
the Lehmann coefficient must vanish at the compensation
point [8,9]. Their argument was the following: “since
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it is the symmetry of the phase which determines the
structure of the macroscopic equations, it is clear that
the thermomechanical coupling constant has to vanish
at the compensation point, since there the symmetry
is exactly that of the nematic phase” [9]. They thus
concluded that the result of Éber and Jánossy (ν �= 0) was
wrong and due to some experimental artifact. This affir-
mation led to a polemic between theorists and experimen-
talists, the latter claiming that their results were reliable
and not forbidden theoretically because of the chirality of
the molecules [10]. In view of this controversial situation,
we redid the experiment in order to know which of the
two types of symmetries, macroscopic or microscopic, was
pertinent in the problem. In this letter, we shall only give
the results of our measurements, reporting the details of
our experiments in a forthcoming longer article.
The plan of the article is the following. In the second

section, we recall the principle of the Éber and Jánossy
experiment in homeotropic anchoring and we show that
it can be extended to the planar geometry. We then
calculate for each geometry the director distortions in the
temperature gradient and the expression for the phase
shift between the ordinary and extraordinary components
of a laser beam crossing the sample at the compensation
temperature. We show that this shift depends on the
optical indices, on the elastic constants and on an effective
Lehmann coefficient of expression νeff = ν+K2dq/dT ,
where K2 is the twist Frank constant. In the third section,
we describe the experiment and we deduce from the
measurement of the optical phase shifts two different
combinations of the effective Lehmann coefficient with
the optical indices and the two other Frank constants
K1 and K3. In the fourth section, we briefly explain how
we measured dq/dT as well as the elastic constants Ki

(i= 1, 2, 3) and the optical indices. Finally, we give in the
last section the value of the Lehmann coefficient ν and we
draw conclusions about the role of the molecular chirality.

The Éber and Jánossy experiment: theory. –
In the original experiment of Éber and Jánossy, the
cholesteric liquid crystal is introduced between two paral-
lel glass plates treated for strong homeotropic anchoring.
The sample is then placed inside a temperature gradient
parallel to the glass plates. In this geometry, the cholesteric
helix unwinds when its pitch is typically larger than the
sample thickness. As a consequence a band of homeotropic
nematic phase, centered on the compensation tempera-
ture, forms in the sample. This region is bordered by
cholesteric fingers which are well visible under the micro-
scope (for a review about the helix unwinding, see [5,11]).
In practice, the nematic phase is a little distorted because
of the presence of the temperature gradient. The director
field distortions are obtained by solving the torque equi-
librium equations. To first order in temperature gradient
G, they read

2K2q
∂ny(x, z)

∂z
+K3

∂2nx(x, z)

∂z2
= 0, (3)

Gνeff +K3
∂2ny(x, z)

∂z2
− 2qK2 ∂nx(x, z)

∂z
= 0, (4)

with νeff = ν+
dK2q
dT . The x-axis is chosen parallel to the

temperature gradient and the z-axis perpendicular to the
glass plates. The system is invariant along the y-direction.
Second derivatives with respect to x have been neglected,
which can be justified a posteriori (the sample thickness
d is always much smaller than the width of the nematic
band). Solving the previous equations give:

nx =
Gνeff

2K2q
d


z
d
− 1
2
+
1

2

sin
(
q(d− 2z)K2

K3

)
sin
(
qdK2

K3

)

 , (5)

ny =
Gνeff

2K2q
d
sin
(
qzK2

K3

)
sin
(
q(d− z)K2

K3

)
sin
(
qdK2

K3

) . (6)

These equations generalize the solution given by Éber
and Jánossy [6] since they are still valid out of the
compensation point Tc. In particular, they give back
the spinodal limit for the nematic phase as nx and ny
diverge when qd= π(K3/K2) or d/p=K3/(2K2).
The solution can be linearized in q in the vicinity of the

compensation temperature (at which q= 0), which gives

nx =
GνeffK2

3K23
qz

(
z− d

2

)
(z− d), ny = Gνeff

2K3
z(d− z).

(7)

This distortion of the director field can be detected
optically by measuring the phase shift ΦH between the
ordinary and the extraordinary components of a laser
beam crossing the sample. In practice, the beam is never
strictly perpendicular to the sample, which may be a
source of error. For this reason, we calculated the phase
shift at the compensation temperature by taking into
account a small misalignment of the laser beam. Let θ
be the angle (assumed to be small) between the beam
and the normal to the sample and ϕ the azimuthal angle
of the beam with respect to the temperature gradient. A
straightforward calculation yields

ΦH = −
(
Gνeff

K3
d2
)2

n2e −n2o
240n2e

knod

+
Gνeff

K3
d2
n2e −n2o
12n2e

θ(sinϕ)kd (8)

where no and ne are the ordinary and extraordinary
indices, respectively, k= 2π/λ the angular wave number
of the laser, while νeff = ν+K2

dq
dT at Tc as q= 0. This

equation shows that, at normal incidence (θ= 0), ΦH
is proportional to G2 and d5, a result already given by
Éber and Jánossy in ref. [6]. On the other hand, an
additional term linear in G appears when the laser
beam is slightly misaligned, but the term in G2 remains
unchanged.
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This experiment can be also performed in planar
anchoring, provided that the molecular alignment direc-
tion be perpendicular to the temperature gradient. In
this geometry, a nematic band forms which is centered
on the inversion temperature. At equilibrium, this band
is bordered by two χ-disclination lines behind which
regions twisted by 2π form. As in the homeotropic case,
the nematic is distorted by the temperature gradient.
These distortions can be detected by measuring the
phase shift ΦP between the ordinary and extraordinary
components of a laser beam crossing the sample. A
straightforward calculation gives in this case at the
compensation temperature:

ΦP =−ψ+
(
Gνeff

K1

)2
n2e −n2o
240n2o

kned
5− Gνeff

K1
θ

×
[
n2e −n2o
12n2o

kd3 sinϕ+

(
d cos2 ψ2
kn2o

− sinψ

k2n2o(ne−no)

)
cosϕ

]

(9)

with ψ= kd(ne−no). As in the homeotropic case, the
phase shift contains (in addition to the constant term −ψ)
a linear term in G which vanishes when θ= 0 and a
quadratic term in G proportional to d5 and independent
of angles θ and ϕ.
From these calculations, we see that measuring ΦH

and ΦP on the one hand, and no, ne, Ki (i= 1, 2, 3)
and dq/dT on the other hand, allow us to determine the
Lehmann coefficient ν. In the next section, we present our
experiment and recall how to measure ΦH and ΦP.

Experiment. – Our liquid crystal is a mixture of
4-n-octyloxy-4′ cyanobiphenyl (8OCB from Synthon
Chemicals GmbH & Co) and of cholesteryl chloride (CC
from Aldrich) in proportion 1:1 in weight with a compen-
sation point at 59 ◦C and a clearing point at 67 ◦C. The
8OCB was purified by A. Zywocinsky and the CC was used
without further purification. The glass plates were treated
either for homeotropic anchoring with DMOAP (accord-
ing to the Kahn procedure [12]) or for planar anchoring
with a rubbed polyimide layer baked at 300 ◦C during
2 hours (ZLI 2650 from Merck). Nickel wires of calibrated
diameters were used as a spacer to fix the sample thick-
ness. The temperature gradient was imposed by placing
the sample in a directional solidification cell (for its
description, see ref. [13]), itself mounted on the stage of a
polarizing microscope. A semi-reflecting plate was placed
under the condensor of the microscope to illuminate the
sample with a He-Ne laser (λ = 633 nm). The laser beam
was focused inside the sample with the condensor. Its
diameter at the beam waist was of the order of 5µm and
did not change significantly over the sample thickness
(ranging between 50 and 110µm). An x-y translation stage
allowed manual positioning of he cell in order that the
laser spot lies exactly in the middle of the nematic band, at
the compensation temperature. The phase shift between
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Fig. 1: Phase shift as a function of the temperature gradient
(d= 100µm, homeotropic anchoring).
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Fig. 2: Fit parameter b as a function of the sample thickness
d. The d5-dependence is well satisfied.

the ordinary and extraordinary components of the laser
beam crossing the sample was measured using a rotating
analyzer, a quarter-wave plate, a photodiode and a lock-in
amplifier following the method of Lim and Ho [14].
An example of curve obtained with a homeotropic

100µm thick sample is shown in fig. 1. The solid line
represents the best fit of the data to a parabola ΦH =

aG− bG2. According to eq. (8), a= νeff
K3

n2e−n2o
12n2e

θ sinϕkd3

and b=
(
νeff
K3

)2
n2e−n2o
240n2e

knod
5. In fig. 2, we plotted

the fit parameter b as a function of the sample
thickness d. Within experimental errors, b is propor-
tional to d5 as predicted by the theory. Fitting b

with a linear law in d5 leads to
(
νeff
K3

)2
n2e−n2o
240n2e

kno =

(9.3± 0.8)× 1013 radK−2m−3. As for values of a obtained
from the fits, they give expected typical angles θ≈ 1–3◦.
The same procedure in planar geometry led to(
νeff
K1

)2
n2e−n2o
240n2o

kne = (25± 6)× 1013 radK−2m−3.
The next step was to measure the constant materials

no, ne, K1, K2, K3 and dq/dT at the compensation
temperature. Our results are given in the next section.
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Fig. 3: Broken line separating an unwound zone (nematic
phase, black) from a half-pitch twisted zone (grey). The line is
pinned on the balls used to fix the sample thickness (d= 20µm,
T = 59.6 ◦C).

Material constants. – Great care was taken to
measure these coefficients (for the details, see the forth-
coming longer article). The birefringence ∆n= ne−no
was obtained by measuring the transmitted intensity
between crossed polarizers as a function of the local
thickness in a wedge planar sample. The indices were then
deduced separately by measuring in addition the phase
shift between the ordinary and extraordinary compo-
nents of a laser beam crossing homeotropic samples of
different thicknesses at an incidence angle θ= 15◦.
These two measurements gave no = 1.55± 0.01 and
ne = 1.64± 0.01.
The pitch was measured as a function of temperature

by using commercial cells (from Instec, Inc) treated for
planar anchoring. The cells contain silica balls which allow
to fix their thickness accurately (5, 6.8, 9 or 20 ± 0.2µm).
After filling, the cells were placed in a precision oven
regulated within 0.01 ◦C. The absolute value of the pitch
was measured by looking for the particular temperatures
at which two zones with two different values of the
twist coexist. Let n and n′ be the numbers of half
pitches in two adjacent zones. It can be easily checked
that the two zones have exactly the same elastic energy

at temperature T such that q(T ) = (n+n
′)π

2d . In general,
|n−n′|= 1 (sometimes 2). Figure 3 shows an example of
a 20µm thick sample in which an unwound zone (nematic
phase, black between crossed polarizers) is in equilibrium
with a half-pitch twisted zone. In this example, the
temperature is adjusted in order that the χ-line separating
the two zones form a broken line joining the silica balls. By
contrast, the line segments bend visibly in the direction of
the zone of lower energy when the temperature is changed
by typically ±0.02 ◦C. This method allowed us to measure
q(T ) (fig. 4). The best fit of the experimental data to a
polynomial of degree 2: q= a(T −Tc)+ b(T −Tc)2 led to
a= dq

dT (T = Tc) = 0.1365± 0.001µm−1K−1. The sign of q
was determined using a cell with a strong planar anchoring
at the bottom plate and a gliding planar anchoring at the
top plate.

−0.5

0.0

0.5

q 
(µ

m
−1

)

64626058565452

T (°C)

Fig. 4: Equilibrium twist as a function of temperature. The
different symbols correspond to samples of different thicknesses
(5, 6.8, 9 and 20µm).

In order to measure the elastic constants, we used
three different methods. First, we measured the Fréedériks
transition in planar samples using a capacitive method.
From this experiment (and capacity measurements of
homeotropic samples) we deduced the dielectric constants
(ε‖ = 9.4± 0.5 and ε⊥ = 4.5± 0.2) and the ratios K1

ε0εa
=

0.076± 0.006V2 (with εa = ε‖− ε⊥) and K3
K1
= 1.7± 0.1.

The latter was deduced from the fit of the whole capac-
ity vs. voltage curve according to the procedure given
in [15] by neglecting flexoelectric effects [16] (this point
will be justified in a forthcoming article). Second, we
measured the Fréedériks transition in a π/2-twisted planar
cell (thickness 6.8µm, from Instec, Inc) close to the
compensation point. Measuring the critical voltage as a
function of the temperature (or, equivalently, as a func-
tion of q) gave us K2

ε0εa
= 0.068± 0.002V2 [17]. Finally,

we measured the spinodal voltage of the nematic phase
in homeotropic samples of various thicknesses as a func-
tion of the temperature (or q). These measurements led to
K3
ε0εa
= 0.15± 0.02V2 and K22

K3ε0εa
= 0.0312± 0.0006V2.

Lehmann coefficient. – From the measurements
described in the two previous sections, we can calculate
all the materials constants, including the Lehmann
coefficient ν. All the measurements being coupled, the
error estimation is not simple and was determined by
using the maximum-likelihood method described in
ref. [18]. Finally, we found for the elastic constants:
K1 = (3.4± 0.4)× 10−12N, K2 = (2.8± 0.2)× 10−12N
and K3 = (5.9± 0.6)× 10−12N, and for the Lehmann
coefficient:

ν = (2.8± 0.6)× 10−7 kgK−1 s−2.

In conclusion, we have found, in agreement with the
pioneer work of Éber and Jánossy, that the Lehmann coef-
ficient does not vanish at the compensation temperature
in a cholesteric liquid crystal. This result is in favor of
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Fig. 5: Banded texture formed after a sample treated for gliding
planar anchoring on both plates was submitted during a few
hours to a vertical temperature gradient (d= 10µm).

a microscopic origin of the Lehmann effect, instead of a
structural one, as proposed by Pleiner and Brand. This
result is also coherent with a recent experiment on the
chemical Lehmann effect in a Langmuir monolayer [19].
Indeed, the rotation of the director is here due to a flux
of water molecules across a single layer of chiral molecules
and does not involve a macroscopic helix.
We emphasize that we determined this coefficient in

two different geometries (homeotropic, but also planar,
which is new) and that our measurements of the material
constants were often redundant, but always compatible
with one another. In addition, the two experiments yielded
similar results as the one in homeotropic anchoring gives
alone ν/ε0εa = (7± 1.3)× 103V2K−1m−1, while the other
one in planar anchoring (less accurate) gives ν/ε0εa =
(4.9± 2.6)× 103V2K−1m−1.
A well-informed reader could also object that our results

contradict those of Madhusudana et al. [20,21] about
the electric Lehmann effect at the compensation point.
For this reason, we redid their experiment with our
mixture. Although our observations were essentially the
same as theirs, we showed that they could not result
from an electric Lehmann effect, but more simply from
flexoelectricity. These results will be published in a future
article [22].
Finally, we would like to mention that we recently

observed a continuous Lehmann rotation of the director at
the compensation temperature in a sample treated on both
sides for planar gliding anchoring. In this experiment, the
sample was placed in a temperature gradient perpendicu-
lar to the glass plates. After a few hours in the temperature
gradient, the sample, initially homogeneous, developed a
banded texture between crossed polarizers (fig. 5) analo-
gous to that calculated numerically by theorists [23,24],
revealing a rotation of several turns of the director. This
preliminary experiment thus confirms the results given in
the article.
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