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Abstract – A fundamental symmetry of nuclear and particle physics is isospin whose third
component is the Gell-Mann/Nishijima expression IZ =Q− (B+S)/2. The role of isospin
symmetry in relativistic heavy-ion collisions is studied. An isospin IZ , strangeness S correlation
is shown to be a direct and simple measure of flavor correlations, vanishing in a Qg phase of
uncorrelated flavors in both symmetric N =Z and asymmetric N �=Z systems. By contrast, in
a hadron phase, a IZ/S correlation exists as long as the electrostatic charge chemical potential
µQ �= 0 as in N �=Z asymmetric systems. A parallel is drawn with a Zeeman effect which breaks
a spin degeneracy.

Copyright c© EPLA, 2007

Introduction. – A goal of relativistic high-energy
collisions such as those done at CERN or BNL RHIC is
the creation of a new state of matter known as the quark
gluon plasma. This phase is produced in the initial stages
of a collision where a high-density ρ and temperature T
are produced. A heavy-ion collision then proceeds through
a subsequent expansion to lower ρ and T where the colored
quarks and anti-quarks form isolated colorless objects
which are the well-known particles whose properties are
tabulated in ref. [1]. Isospin plays an important role in the
classification of these particles [1,2]. A discussion of its
properties and consequences in relativistic heavy-ion colli-
sions seems useful. Isospin has also been used in the study
of medium energy heavy-ion collisions [3]. Reference [3]
contains a series of reprints illustrating its importance.
In low-energy nuclear physics, the isospin symmetries
have proven to be very useful in the classification of
nuclear levels. Isospin symmetries are broken by Coulomb
interactions. Part of this paper explores a parallel with
this multiplet structure and its breaking by Coulomb
interactions where the Coulomb interaction is now
replaced with the electrostatic µQ. Systems with large
isospin excess will be explored in future RIA experiments
and at FAIR [4]. The extension of isospin symmetry
for strongly interacting particles to the weak sector
involves weak isospin IWZ which is a fundamental
symmetry of the standard model with very important

consequences [2]. IWZ is also given by a Gell-Mann/
Nishijima expression.
For nuclei and particles made of u, d quarks only,

the third component of isospin IZ , charge Q and baryon
number B are related by 2IZ = 2Q−B. For u, d, and s
quarks, strangeness is incorporated into the connection
between isospin and Q, B through the use of hyper-
charge Y =B+S (+ charmC +bottom B̂ + top T̂ ; only
B, S will be considered). The Gell-Mann/Nishijima [2]
equation is 2IZ = 2Q−Y , a generalization of the previous
expression 2IZ = 2Q−B. In the Qg phase 2IZ =U −D=
(Nu−Nū)− (Nd−Nd̄), where Nj (j = u, d, ū, d̄) are the
number of up, down quarks and anti-quarks. In a flavor
unlocked or flavor uncorrelated Qg phase the correlation
of isospin IZ with S =NS̄ −NS , and also charm C, top T̂ ,
bottom B̂, would vanish for any symmetric N =Z or
asymmetric N �=Z system with neutron number N and
proton number Z. This may not be the case in color flavor
locked CFL phases [5] which may occur at high baryon
chemical potential µB and low T . Here the study centers
on the parts of phase space away from this region and in
particular regions explored by experiments such as those
at RHIC/CERN. However, even in these regions, the chro-
moelectric plasma may have a more complicated structure
than an ideal plasma of quarks and gluons [6,7]. A IZ/S
correlation can be used as a measure of flavor correlations
in a non-ideal plasma and in CFL phases.
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As a baseline for comparison the assumption will be
made of uncorrelated flavors in the Qg phase and the
question that is addressed is: how large is this correlation
in a hadron phase? To answer this question a statistical
model in a grand canonical form will be used. A grand
canonical statistical approach has been shown to be a
useful description of the hadron phase [8–10]. Previous
studies [11–14] showed the importance of looking at fluc-
tuations and correlations as a probe of a phase transition.
A parallel can also be drawn with a Zeeman splitting

of different spin JZ levels in a multiplet by an external
magnetic field. Population of these levels in a system at
finite temperature T will differ by the Boltzmann factor
in energy E(JZ)/T . In this paper an “external (N −Z)
field” splits the population of the different members of
the isospin multiplet according to their IZ . This splitting
arises from a Boltzmann factor in µQ/T , where the charge
chemical potential µQ is the systems response to this
“external field”.

Statistical model analysis in a hadron phase

General results. The statistical model [8–10] assumes
that equilibrium in the strongly interacting sector is
established in a volume V and at a temperature T . In
the grand canonical ensemble three chemical potentials
appear in the expression for the particle yields 〈Ni〉 which
comes from the constraints of baryon number, charge and
strangeness. The 〈Ni〉, in the non-degenerate limit, will be
written here in a form which reads

〈Ni〉= aixbiyqiz(−si). (1)

As an example, the particle ∆++ has 〈N∆++〉= a∆++xy2.
The anti-particle of ∆++ has 〈N∆̄++〉= a∆̄++x−1y−2.
The simple quark model restricts bi =±1, 0,
qi =±2,±1, 0, and si =±3,±2,±1, 0. The ai =
gs(i)(V/2π

2)(mi/T )
2(K2(mi/T )) with gs(i) = 2si+1

and mass mi. The x≡ exp[µB/T ], y≡ exp[µQ/T ]
and z ≡ exp[−µS/T ]. The x, y, z are determined
by constraints on net baryon number B, net charge
Q and strangeness S: B =NB −NB̄ =ΣbI〈Ni〉, Q=
NQ+ −NQ− =Σqi〈Ni〉, S =NS+ −NS− =Σsi〈Ni〉.
In a heavy-ion collision the net strangeness is zero, but

correlations associated with S and some other quantity
may not necessarily be zero. As an obvious example,
the correlation of S with itself is not = 0: 〈S2〉− 〈S〉2 =
〈S2〉 �= 0 when strange particles are produced. Because
total B, Q, S are each conserved so are any combinations
of them such as hypercharge Y =B+S =Σ(bi+ si)〈Ni〉
and IZ or 2IZ given by the Gell-Mann/Nishijima result
2IZ = 2Q−Y =Σ(2qi− bi− si)〈Ni〉=Z −N . The Y or
2IZ equation can also replace one of the three previous
constraint equations to determine the chemical potentials.
As will be shown, the 2IZ isospin equation is very useful
for determining the electric chemical potential and the
hypercharge equation is also useful in some specific
situations such as when Ξ,Ω contributions are small.

To proceed, small mass differences between different
charge states of the same particle will be ignored. The
ai is then the same for each IZ state of a given particle.
Differences in 〈Ni〉 between different charge states in an
isospin multiplet will occur when y �= 1. Contributions
of excited states of a given particle can be added to the
lowest mass contribution so that ai→Ai. For instance, the
number of Σ like particles 〈Σ(1267)〉+ 〈Σ∗(1378)〉+ . . .=
AΣxz(y+1+1/y) where the new coefficient
AΣ = a(Σ(1267))+ a(Σ

∗(1378)) . . . . The Aπ will contain
ρ and AN has p, n, N

∗. Particles are grouped accord-
ing to baryon number, strangeness and isospin �I with
J = {N,∆,Λ,Σ,Ξ,Ω, π,K}. Resonance decays following
freeze out are discussed below.

Coupled equations for x, y, z or the chemical poten-
tials µB , µQ, µS. Connection of IZ and µQ.

a) General expressions

The B =NB −NB̄ constraint and S constraint equations
in (x, y, z) variables are

B =
∑
J

bJAJx
bJ z−sJ

∑
qJ

yqJ ,

S =
∑
J

sJAJx
bJ z−sJ

∑
qJ

yqJ .

(2)

For instance, ∆ would make a contribution A∆x(y
2+

y+1+ y−1). The 2IZ will be used as one of the three
equations to determine the three unknowns x, y, z.
Specifically,

2IZ = 2IZ(B)− 2IZ(B̄)
= ANx(y− 1)+A∆x(3y2+ y− 1− 3y−1)
+AΣxz(2y+0y− 2y−1)+AΞxz2(−y−1+1)
+Aπ(2y+0y− 2y−1)
+AK{z(−y−1+1)+ (1/z)(y− 1)}− 2IZ(B̄). (3)

The 2IZ(B̄) is the anti-baryon part of eq. (3) and is
obtained from 2IZ(B) by taking the reciprocal of each
x, y, z. The isosinglets Λ0,Ω− do not contribute, nor do
the IZ = 0 component of the isotriplets such as Σ

0, π0, ρ0.
The coefficients in front of y, when divided by 2, are just
the isospin IZ component of each charged state of each
particle J . The IZ equation explicitly shows that when
IZ = 0 then y= 1. Specifically, every term in round paren-
thesis involving y in eq. (3), such as (3y2+ y− 1− 3y−1),
is zero at y= 1. At y= 1, the µQ = 0. This result is
true only when the mass differences between members
of an isospin multiplet are neglected. Mass splittings
such as in mp−mn ≈−1.3MeV, mΣ+ −mΣ− ≈ 8MeV,
mK+ −mK0 ≈−4MeV give µQ �= 0 even when 2IZ =
Z −N = 0. At low T the rhs of eq. (3) is dominated by
n, p,∆, π±. The π+ and π− have the same mass, and
δm in the ∆ multiplet is not known. Unfortunately, the
mass splitting contribution from the ∆ isospin multiplet
could be the largest —see the factor of 10 in eq. (4)
below which arises from spin and isospin effects. Thus
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µQ

T
=

Z −N
(AN +10A∆)(x+

1
x
)+ 4AΣ(xz+

1
xz
)+AΞ(xz2+

1
xz2
)+ 4Aπ +AK(z+

1
z
)
. (4)

an estimate of δm contributions would be unreliable.
The µQ =mp−mn ≈−1.3MeV for the (n, p) multiplet
at IZ = 0 is small compared to results given below as
in eq. (25) with (N −Z)/B ∼ 0.2 and T ∼ 120MeV. For
S = 0, 2IZ =Z −N and IZ = 0 for symmetric N =Z
systems. When N �=Z, y �= 1 and then the various 2IZ
charge states of a given multiplet have different 〈Ni〉.
Usually µQ� T . As a result a lowest order expansion
around y= 1 will be made and only linear terms in
µQ/T will be kept. This consequence is a statement
of a “weak external field” which leads to a simpli-
fying linear relation µQ ∼Z −N . Namely, expanding
y= exp(µQ/T ) = 1+µQ/T in eq. (3) gives

see eq. (4) above

The numerical coefficients in front of each AJ are given by
Σ(2qi− (bi+ si))qi with ∆++,∆+,∆0,∆− contributing
6,1,0,3, respectively. The large factor of 10 makes ∆
important in µQ/T . In order to obtain µQ, x and z
also have to be determined. The evaluation of x, z
for IZ = 0 is given below. As a first approximation
these values also apply when IZ �= 0 since µQ is small
compared to µS , µB . Typical values for a tempera-
ture range T ∼ 100MeV→ 170MeV have µS ∼ µB/5
and for (N −Z)∼ 0.2B µQ ∼−µB/40. The µB has a
behavior given in ref. [9] as µB = 80.85(T0−T )1/2MeV,
T0 = 167MeV by fitting the statistical model to various
data. This type of behavior of µB vs. T can also arise in a
Hagedorn model [15] with a density of excited states ρ=
Dτm

−τexp(βhm), where Dτ is a constant and βh = 1/T0.
The AJ ∼ V (y/m0)τ−5/2(

∫∞
y
(dxe−x/x(τ−3/2))) with

y= (T0−T )m0/T0T . The m0 is the lowest mass of parti-
cles of type J . For τ < 5/2, AJ →∞ as 1/(T0−T )(5/2−τ).
Moreover, µB→ 0 gives rise to a singular behavior in
the heat capacity at T0 [15]. See refs. [15,16] for further
consequences of a Hagedorn model.

b) Constraint equations at y= 1

When y= 1 the constraint equations are as follows. The
result for B is

B = (2AN +4A∆)

(
x− 1
x

)
+(AΛ+3AΣ)

(
xz− 1

xz

)
+2AΞ

(
xz2− 1

xz2

)
+AΩ

(
xz3− 1

xz3

)
. (5)

The equation for −S is

−S = (AΛ+3AΣ)
(
xz− 1

xz

)
+4AΞ

(
xz2− 1

xz2

)
+3AΩ

(
xz3− 1

xz3

)
+2AK

(
z− 1
z

)
. (6)

The hypercharge Y =B+S equation would read

Y = (2AN +4A∆)

(
x− 1
x

)
− 2AΞ

(
xz2− 1

xz2

)
−2AΩ

(
xz3− 1

xz3

)
− 2AK

(
z− 1
z

)
. (7)

The unknowns x, z can be obtained by solving two of
the three eqs. (5)–(7) or any other combinations of them.
When Ξ, Ω can be neglected (AΞ, AΩ are small compared
to other terms) these equations simplify considerably since
higher-order powers of z (z2, z3, 1/z2, 1/z3) are absent.
Such solutions will be given below.

Isospin correlations in the Qg phase and hadron phase.
In the Qg phase the charge Q, baryon number B,

strangeness S, hypercharge Y , isospin IZ and a quantity
LZ ≡ 2Q−B are given by

Q =
2

3
(Nu−Nū)−

1

3
(Nd−Nd̄)−

1

3
(Ns−Ns̄)≡

2

3
U − 1

3
D+

1

3
S, (8)

B =
1

3
(Nu−Nū)+

1

3
(Nd−Nd̄)+

1

3
(Ns−Ns̄)≡

1

3
U +

1

3
D+

1

3
S, (9)

S =−(Ns−Ns̄), (10)

Y = B+S =
1

3
(Nu−Nū)+

1

3
(Nd−Nd̄)−

2

3
(Ns−Ns̄)≡

1

3
U +

1

3
D+

2

3
S, (11)

2IZ = 2Q−Y = (Nu−Nū)− (Nd−Nd̄)≡U −D, (12)

LZ ≡ 2Q−B = (Nu−Nū)− (Nd−Nd̄)− (Ns−Ns̄)≡
U −D+S. (13)

As already mentioned, if flavors are uncorrelated, the
correlation between isospin and strangeness (and also
charm C, topness T and bottomness B) is zero since
IZ only involves up and down quarks and anti-quarks.
Then 〈2IZX〉− 〈2IZ〉〈X〉= 0 with X = S, C, T or B. The
IZ/S correlation is thus a direct, simple measure of flavor
correlations. Besides an IZ/S correlation discussed here,
IZ correlations with baryon number B, charge Q, hyper-
charge Y differ in the Qg and hadron phase because the
fundamental units of baryon number are ±1/3 and charge
are ±1/3e,±2/3e in the Qg phase. This property was first
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µS

T
= sinh(µB/T )

1(AΛ+(3AΣ))+ {2(2AΞ)+ 3(1AΩ)}
12(2AK)+ cosh(µB/T )[12(AΛ+(3AΣ))+ {22(2AΞ)+ 32(1AΩ)}]

. (17)

µS/T = (µB/T )
1(AΛ+(3AΣ))+ {2(2AΞ)+ 3(1AΩ)}

12(2AK)+ [12(AΛ+(3AΣ))+ {22(2AΞ)+ 32(1AΩ)}]
. (18)

µS/T = exp(µB/T )
1(AΛ+(3AΣ))+ {2(2AΞ)+ 3(1AΩ)}

12(2AK)+ exp(µB/T )[12(AΛ+(3AΣ))+ {22(2AΞ)+ 32(1AΩ)}]
. (19)

recognized for charge fluctuations 〈Q2〉− 〈Q〉2 [11,12].
The isospin/baryon number correlation is deter-
mined by the result 〈2IZB〉= 1/3〈U2〉− 1/3〈D2〉 with
〈B〉= 1/3〈U〉+1/3〈D〉 since 〈S〉= 0, 〈2IZ〉= 〈U〉− 〈D〉
so that 〈2IZ〉〈B〉= (1/3)(〈U〉2−〈D〉2). Thus 〈2IZB〉−
〈2IZ〉〈B〉= 1/3(〈U2〉− 〈U〉2)− 1/3(〈D2〉− 〈D〉2) vanishes
only if N =Z. The 〈2IZY 〉− 〈2IZ〉〈Y 〉= 1/3(〈U2〉−
〈U〉2)− 1/3(〈D2〉− 〈D〉2). The 〈2IZQ〉− 〈2IZ〉〈Q〉=
2/3(〈U2〉− 〈U〉2)+ 1/3(〈D2〉− 〈D〉2) does not vanish
even in N =Z systems. When N =Z, 〈D2〉= 〈U2〉 and
〈D〉= 〈U〉. The study of such correlations may give
some insight into more complicated views of the Qg
system [6,7].
In a hadron phase the IZ/S correlation is given by

isospin splitting yields:

−(〈2IZS〉− 〈2IZ〉〈S〉) =−〈2IZS〉=

2〈(Σ+−Σ−)+ (Σ̄+− Σ̄−)〉+2〈(Ξ0−Ξ−)

+ (Ξ̄0− Ξ̄−)〉+ 〈(K̄0−K−)+ (K0−K+)〉, (14)

where each 〈J〉 can include the lowest mass plus all excited
states J∗ of that J . Particles like Λ(1520)→N +K do not
contribute directly to eq. (14) or indirectly through their
resonance decay products by isospin conservation. Isospin
conservation gives equal numbers of K̄0 andK− in the two
branches p+K− and n+ K̄0 since the Clebsch-Gordon
coefficients are ±1/

√
2:

|Λ(1520), I = 0, IZ = 0〉= (1/
√
2)|p〉|K−〉

−(1/
√
2)|n〉|K̄0〉. (15)

Similar results also apply to decay of the φ-meson. When
IZ = 0, y= 1 and 〈IZS〉= 0. When IZ �= 0, 〈IZS〉 �= 0.
Letting y= 1+µQ/T , then

−〈2IZS〉 ≈ (µQ/T )[4(〈Σ++Σ̄+〉)

+2(〈Ξ−+Ξ̄−〉)+ 〈K−〉− 〈K+〉]. (16)

The µQ is given by eq. (4). The value of −〈2IW,ZS〉
depends on x, z. First the IZ = 0, y= 1 case will be
considered to obtain x, z. The IZ �= 0 can be built on this
solution by successive iterations.

Simplified solutions in symmetric N =Z systems where
isospin IZ = 0, y= 1.

a) Behavior when IZ = 0 and µS/T � 1 or z ≈ 1
When µS/T � 1, then z = exp(−µS/T )≈ 1. Substituting
z = 1−µS/T in eq. (6) gives

see eq. (17) above

When µB/T � 1, cosh(µB/T )→ 1, sinh(µB/T )→ µB/T ,
which can be substituted into eq. (17) to give a simple
linear connection between µS/T and µB/T which is

see eq. (18) above

The numerator in this equation is just the strangeness in
hyperons while the denominator is the strangeness squared
in each hyperon and in K̄0 and K−.
For large µB/T , sinh(µB/T ), cosh(µB/T )→

exp(µB/T )/2. Substituted this result into eq. (7) gives a
non-linear relation between µS/T and µB/T that is

see eq. (19) above

The µB/T can be obtained from

B

2
= sinh

(µB
T

)(
2AN +4A∆

+
2AKFS,0+(FS,0FS,2− (FS,1)2) cosh(µB/T )

2AK +FS,2 cosh(µB/T )

)
, (20)

where FS,j = 1
j(1AΛ)+ 1

j(3AΣ)+ 2
j(2AΞ)+ 3

j(1AΩ).
Since each AJ ∼ V , µB is a function of B/V, T . When
x� 1, and z is small, the main contribution comes from
S =±1 strange particles (K,Λ,Σ). In general, the baryon
constraint equation is quadratic in x and involves only
z for y= 1. This quadratic equation for x can be easily
solved, giving x= x(z) which can be substituted into
S = 0, to find z straightforwardly.

b)Behavior when IZ = 0 and AΞ and AΩ are neglected

When Ξ, Ω are neglected, the relation between µS/T ,
µB/T is now

tanh(µS/T ) = sinh(µB/T )

× 1(AΛ+(3AΣ))

12(2AK)+ cosh(µB/T )[12(AΛ+(3AΣ))]
.

(21)
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B

2
= sinh

(µB
T

)
2AN +4A∆+ 2AK(AΛ+3AΣ)

(2AK +AΛ+3AΣ)

√
1+

8AK(AΛ+3AΣ)

(2AK +AΛ+3AΣ)2
sinh2

(µB
2T

)
 . (22)

Using Y = (2AN +4A∆)2 sinh(µB/T )+ 2AK2 sinh(µS/T )
results in

see eq. (22) above

For large µB/T , cosh(µB/T ) and sinh(µB/T )→
exp(µB/T )/2 and eq. (21) is

exp(2µS/T ) =
1

z2
≈ 1

+ exp(µB/T )
2m
3/2
Λ e

−mΛ/T +6m3/2Σ e
−mΣ/T

2m
3/2
K e

−mK/T
. (23)

When y= 1, K+/K− = exp(2µS/T ). At low T where the
Σ term is small compared to the Λ contribution and where
the 1 term is small also, theK+/K− ratio is determined by

K+/K− = exp(µB/T )
2m
3/2
Λ e

−mΛ/T

2m
3/2
K e

−mK/T
=

m
3/2
Λ

m
3/2
K

exp((µB −mΛ+mK)/T ). (24)

The K+/K− ratio can also be used to discuss the role
of dropping masses [17] which leads to an enhancement
of this ratio. The ratio involves the exponential factor in
((µB −mΛ+mK)/T ) which is sensitive to mass shifts.
Estimates of−〈2IZS〉 from an “external field”.

Typical collisions at RHIC are Pb+Pb which lead to
large neutron excesses amongst the participants with
(N −Z)/B ∼ 0.2. To a good approximation (∼ 1% error
at T = 120MeV):

µQ/T ≈ [(Z −N)/B][2+ 4A∆/AN ]
/[1+ 10A∆/AN +4Aπ/(AN (x+1/x))]

∼ [(Z −N)/B]. (25)

In this approximation the hyperon and strange meson
contributions (AΣ, AΞ, AK) are small compared to
AN , A∆, Aπ in eq. (4) and corresponding, the hyperons
are neglected in the baryon constraint equation. Under
these conditions µQ has the simple form just given.
At T = 120MeV, µB ∼ 600MeV —see, for example,

the experimental analysis of ref. [9] and the theoretical
discussion in ref. [15] based on a Hagedorn spectrum of
states. The associated µS = 118MeV and z = 0.3735 from
eq. (21). Including Ξ, Ω gives z = 0.355 and µS = 124MeV.
The Ξ, Ω lower z and slightly enhance µS . At higher
temperatures the enhancement from Ξ, Ω is larger since
the population of Ξ, Ω increases with temperature due to
the Boltzmann factors exp(−m/T ). The µQ =−14.5MeV

for (N −Z)/B = 0.2. At a higher temperatue µB , µS
and the magnitude of µQ decrease. For example at
T = 150MeV, µB ≈ 300MeV, z ≈ 0.682 and µS ≈ 57MeV,
µQ ≈−8.5MeV. The value of µQ is closely connected to
µB and (N −Z)/B through a scaling relation that reads

µQ ≈−
N −Z
B

µB

8
. (26)

The µS , µB scaling relation is µS ≈ µB/5 over a wide
range of temperatures that run from T ≈ 100MeV→ T0 ≈
167MeV. The slope 1/5 in this linear scaling relation
is determined by the strangeness in hyperons to the
strangeness fluctuation in strange mesons and hyperons
as given by eq. (18) for temperatures T ≈ T0.
Once the chemical potentials are determined the 〈2IZS〉

correlation follows from results given in the subsection
“Isospin correlations in the Qg phase and hadron phase”.
The 〈2IZS〉 ≈ 0.018(N −Z) at T = 120MeV and 〈2IZS〉=
0.021(N −Z) for T = 150MeV. The numerical prefactors,
0.018 for T = 120MeV and 0.021 for T = 150MeV show a
slightly increasing temperature dependence. While these
coefficients, 0.018 and 0.021, are small, the 〈2IZS〉 is
obtained by multiplying them by (N −Z) = 0.2B for the
example considered here. By contrast, in a flavor uncor-
related Qg phase 〈2IZS〉 is identically = 0. A heavy-ion
collision evolves through an expansion from a high-density,
high-temperature Qg phase to a lower density and lower
temperatures hadron phase where the colored quarks and
anti-quarks form isolated colorless particles following the
QCD phase transition back to the observable hadrons.
Flavors become correlated since 〈2IZS〉 �= 0 in the hadron
phase for N �=Z systems. The isospin strangeness correla-
tion in the hadron phase is determined by the electrosta-
tic chemical potential which splits the population of the
isospin carrying hyperons Σ, Ξ and anti-hyperons Σ̄, Ξ̄,
and strange mesons K0, K+ and K̄0,K−. This electro-
static chemical potential breaks the isospin symmetry of
the system and produces the correlation 〈2IZS〉.
Susceptibilities and lattice calculations.

Correlations and fluctuations can also be related to
susceptibilities. Specifically, the B/S correlation defined
in [14] as ĈBS =−3(〈BS〉− 〈B〉〈S〉)/(〈S2〉− 〈S〉2) was
also shown to be ĈBS =−3χBS/χSS . The off diagonal
baryon/strangeness susceptibility χBS and diagonal
strangeness susceptibility χSS are just derivatives of
the grand potential Ω and in general the relation reads
χJK = (−1/V )∂2Ω(V, T, �µ)/(∂µj∂µk). In turn, the ĈBS
can be related to basic quark flavor susceptibilities
of u, d, s [13]. Specifically, using the fact that mean
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flavor densities vanish at zero chemical potential, the
ĈBS = 1+ (χus+χds)/χss. Lattice calculations such as
those in ref. [18] and ref. [19] give some preliminary
results on quark susceptibilitie and flavor correlations.
In particular, (χus+χds)/χss = 0.00(3)/0.53(1) from the
results of refs. [13,19] showing that flavors are uncorre-
lated. This result of uncorrelated flavors was assumed
in this present work on isospin/strangeness correlations.
The analysis of ref. [13] gives a lattice justification for
such an assumption. In particular, the analog of ĈBS is
Ĉ2IzS ≡ 〈2IZS〉/〈S2〉= (χus−χud)/χss.

Summary and conclusions. – This paper
explored the role of isospin in relativistic heavy ion
collisions using the Gell-Mann/Nishijima formula

2IZ = 2Q− (B+S+C + B̂+ T̂ ). In particular an isospin-
strangeness correlation is discussed. In a quark model of
u, d, s, c, b, t quarks, the 2IZ = (Nu−Nū)− (Nd−Nd̄)
and involves only the u, d quarks. The s, c, b, t each
has isospin 0. For a heavy-ion collision net S = 0 and
net 2IZ = (Z −N). In a flavor uncorrelated phase, a
correlation between IZ and either S, C, B̂ or T̂ would
vanish. Thus, a non-vanishing 〈IZS〉 is a simple, direct
measure of flavor correlations. With ever improving lattice
calculations, the degree of flavor correlations above the
QCD transition can be determined. Detailed calculations
of some of the consequences of isospin symmetry in the
hadron phase were presented using a statistical model.
Properties of IZ , µQ and 〈IZS〉 in this phase were
developed. As an example, in a hadron phase an IZ/S
correlation exists when µQ �= 0, even when S = 0. An
analogy was drawn with a Zeeman splitting of a spin
multiplet (JZ =−J, . . . , J) in a magnetic field. In this
analogy the “external field” is the neutron (or proton)
excess (N −Z) and the Boltzmann factor exp[−E(JZ)/T ]
is replaced with exp(µQ/T ). Expressions are developed,
such eqs. (14), (16) which can be used to obtain this
correlation directly from experimentally determined yields
of strange particles. The dependence of µQ on (N −Z)
can be determined experimentally by varying Z and N .
The IZ/S correlation is a useful method of distinguishing
the two phases if a fast expansion of the Qg freezes
in the correlations. This fast expansion assumption
was the basis for the usefulness of charge fluctuations.
Experiments looking for charge fluctuations can be found
in refs. [20–23]. This scenario should be contrasted with
a situation in which the hadrons form an equilibrated
system at the end of the fireball expansion. In this
latter situation the equilibrated system will have no
memory of any prior path. Then information about
the Qg phase is lost.
The behavior of µB , µS , µQ is also important for under-

standing the complete phase diagram of charged, strange,
baryon rich hadronic matter. The Gell-Mann/Nishijima
formula was shown to be very useful in such a study.
Simple analytic expressions or a simple procedure for
obtaining these three chemical potentials were given.

The µQ/T behavior of eq. (4) gave a linear relation
µQ ∼ (Z −N) arising from a response to a “weak exter-
nal field”. The constant between µQ and (Z −N) deter-
mines the degree of flavor mixing. This constant involves
the isospin doublets like n, p, the isospin triplets such as
Σ+, Σ0, Σ− or π+, π0, π− and the isospin quartets ∆++,
∆+, ∆0, ∆−.
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