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Abstract – Evolutionary Prisoner’s Dilemma games with quenched inhomogeneities in the spatial
dynamical rules are considered. The players following one of the two pure strategies (cooperation
or defection) are distributed on a two-dimensional lattice. The rate of strategy adoption from
randomly chosen neighbors is controlled by the payoff difference and a two-value pre-factor w
characterizing the players whom the strategy learned from. The reduced teaching activity of players
is distributed randomly with concentrations ν at the beginning and fixed further on. Numerical
and analytical calculations are performed to study the concentration of cooperators as a function
of w and ν for different noise levels and connectivity structures. Significant increase of cooperation
is found within a wide range of parameters for this dynamics. The results highlight the importance
of asymmetry characterizing the exchange of master-follower role during the strategy adoptions.

Copyright c© EPLA, 2007

Different versions of evolutionary Prisoner’s Dilemma
(PD) games are studied extensively to explore the possi-
bilities enhancing the cooperative (altruistic) behavior
among selfish individuals. Originally the Prisoner’s
Dilemma represents those classes of two-player symmetric
matrix games where the equivalent players have two
choices (called cooperation (C) or defection (D)) with a
specific rank of order in the four payoffs (dependent on
their choices) enforcing both selfish (rational) individuals
to choose defection instead of mutual cooperation yielding
significantly higher individual incomes for them [1–3].
This type of social dilemma cannot be resolved within
the framework of the traditional (two-player, one-shot)
game theory. During the last decades different mecha-
nisms, e.g., kin selection [4], direct [5] and indirect [6]
reciprocity, voluntary participation [7], chaotic variations
to the payoffs [8], and spatial extensions [9], are found
to support the emergence of cooperative behavior in
biological and ecological systems as well as within human
societies [10].
In a wide class of the spatial models [9,11,12], the

players distributed on the sites x of a lattice can follow
one of the pure strategies (sx =C or D), their payoffs Ux
come from PD games with their neighbors, and sometimes
the players are allowed to modify their strategy according
to an evolutionary rule dependent on the local payoff

distribution. The analogy between these spatial evolution-
ary games and the non-equilibrium kinetic Ising models
has motivated a progressive interest to utilize the tools of
non-equilibrium statistical physics in the investigation of
evolutionary games (for a review see [13]). In these models
the connectivity structure of the interacting players is
described by a graph represented by sites (players) and
edges between the neighbors. Numerical investigations on
realistic connectivity structures (e.g., diluted [14,15] and
hierarchical lattice [16], random graphs [17,18], small-
world structures [19–21], and real empirical networks [22])
have also been performed for some time. The early investi-
gations have indicated some increase in the concentration
of cooperators when the topological inhomogeneities are
increased. Similar phenomena can also be observed if the
players are allowed to move on a lattice or graph (for
a recent survey see [23]). The systematic investigations,
however, are delayed by the large number of parameters
characterizing the payoffs, the connectivity structures, and
the evolutionary rules that can involve synchron-
ization and/or noise and be affected by the connectivity
structure too.
In the last year Santos et al. [24,25] observed dramatic

improvement in the maintenance of cooperation when
considering an evolutionary PD game on scale-free
structures at a low noise level. In these systems the
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competition between the cooperative and defective hubs
(players with large number of neighbors) provides a
mechanism [25] enforcing cooperation so much that defec-
tors can die out. The given evolutionary rule involves
intrinsically an inhomogeneous strategy adoption proba-
bility due to the varying number of neighbors. Remarkable
increase of cooperation is also observed for those systems
where the inhomogeneous imitation activity is introduced
artificially to characterize the asymmetric and different
influence of players to each other [26]. In the models
suggested by Wu et al. [20,27], the influence of player y to
her neighbor x is quantified by a random parameter wxy
(0<wxy �=wyx < 1) affecting the preferential selection of
a neighbor whom the strategy can be adopted from.
Now we study the effect of payoffs and noise on the

maintenance of cooperative behavior for some evolution-
ary PD games where the inhomogeneities are involved in
the dynamical rules on regular connectivity structures.
Our motivation was to explore the consequence of vary-
ing activity in the strategy imitation process. For this
purpose, a simplified version of the model introduced by
Wu et al. [20,27] will be considered by assuming only two
possible values for wxy. First, our investigation is focused
on a system where wxy depends only on y and character-
izes the teaching (helping) activity of player y during the
strategy imitations.
In the first model two types of players (A and B) are

distributed randomly on a two-dimensional lattice before
the start of simulation and their distribution (nx =A or
B) is fixed later on. The concentration of players B and
A are denoted by ν and (1− ν). Both types of players
can follow the C or D strategies and their total payoff
comes from a PD game with the neighbors as formulated
in previous papers (see, e.g., [28]). For a given two-player
game both players receive reward R (or punishment P )
for mutual cooperation (or defection). If the players follow
different strategies then the defector receives the highest
payoff T (temptation to choose defection) meanwhile the
cooperator gets the lowest (sucker’s) payoff S. Henceforth
our analysis will be restricted to the parametrization
suggested by Nowak and May [9], i.e., R= 1; P = 0; T = b
(1< b< 2); and S = 0.
For the evolutionary PD games the players try to maxi-

mize their individual payoff by imitating (learning) one
of the more successful neighboring strategies. Following
our previous studies [13,28], the evolution of the present
system is governed by subsequent strategy adoptions
between randomly chosen neighbors x and y. Namely,
player x will adopt the neighbor’s strategy sy with a prob-
ability depending on the payoff difference (Ux−Uy) as

W (sx→ sy) =wxy 1

1+ exp[(Ux−Uy)/K] , (1)

where K denotes the amplitude of noise. The pre-factor
wxy is given as

wxy =

{
1, if ny =A,
w, if ny =B,

(2)
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Fig. 1: The concentration of cooperators (ρ) as a function
of ν for different rates of blocking (from bottom to top,
w= 1, 0.2, 0.1, and 0.05) on the Kagomé lattice if b= 1.03 and
K = 0.5. Due to the large system size (3 · 105 <N < 3 · 106)
and long sampling times the statistical errors of MC data are
comparable to the line thickness.

where the value of w (0<w< 1) characterizes the strength
of reduced teaching activity if the site y is occupied by a
player of type B. One can think of a system consisting of
attractive and repulsive players (just like old and young
individuals in some communities).
This system is studied by Monte Carlo (MC) simula-

tions started from a random initial distribution of C and
D strategies. The stationary state is characterized by the
average concentration ρ of cooperators when the values of
K, b, and ν are varied systematically. First, we discuss the
MC results on the Kagomé lattice. The striking increase
of ρ as a result of this type of dynamical inhomogeneities
is illustrated in fig. 1.
Evidently, this model is equivalent to a homogeneous

system (discussed in [28]) if w= 1. Furthermore, the aver-
age concentration of C strategies for ν = 0 is equivalent to
those for ν = 1 because the dynamics is homogeneous in
both cases (the relaxation, however, is slower for ν = 1
if w< 1). The value of ρ increases monotonously until
reaching the maximum value at ν ≈ 0.5. For sufficiently
small values of w the concentration of cooperators reaches
its saturation value. Figure 1 shows clearly the existence
of a parameter range within which the defectors become
extinct in the stationary states (even for b > 1). The
rigorous numerical analysis of the transition from the two-
strategy (C +D) state to the homogeneous (absorbing)
state is made difficult by the slow relaxation processes
characterizing those systems where “directed percolation”
type extinction process [29] is disturbed by quenched
disorder in the background [30,31].
Now the systematic study is addressed to explore the

variations in the b-K phase diagram caused by the inhomo-
geneous dynamics. For this purpose we have determined
the critical values (bc1 and bc2) where the extinction of
D and C strategies occur when varying b for different
noise levels (K). Figure 2 compares two phase diagrams
obtained for ν = 0 and ν = 0.5 (at w= 0.1).
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Fig. 2: The complete b-K phase diagrams for the Prisoner’s
Dilemma game on the Kagomé lattice for ν = 0 (left) and 0.5
(right). Dashed lines indicate the common limit value of bc1
and bc2 when K→∞ in the homogeneous system.
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Fig. 3: Phase boundaries for the evolutionary PD game on the
Kagomé lattice for ν = 0.5 and w= 0.1. Solid lines show the
predictions of the three-site approximation and the symbols
indicate the MC results.

Figure 2 illustrates clearly the remarkable difference
appearing in the high noise limit (K→∞) while the effect
of quenched inhomogeneities vanishes ifK→ 0. The mean-
field calculation [13] predicts a step-like change between
the homogeneous C and D states at b= 1. The simulations
reproduce this prediction for only the homogeneous system
in the limit K→∞. According to the simulations the
phase boundaries (bc1 and bc2) tend towards the same
limit b∞ (if K→∞); however, the corresponding limit
value is larger than 1. The increase of b∞ (dependent
on w and ν) cannot be described by the mean-field
approach. To overcome this shortage we have determined
the probability of all possible configurations on a triangle
of sites allowing the uncorrelated distribution of players A
and B (survey of this technique is given in the appendix
of [13]). Evaluating 43 configuration probabilities this
approach is capable to reproduce qualitatively the relevant
features as demonstrated in fig. 3.
In the low noise limit the maintenance of cooperation

on the Kagomé lattice (for b > 1) is due to a mechanism
supporting the spreading of cooperators throughout over-
lapping triangles of the connectivity structure [28,32]. In
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Fig. 4: Phase diagram of the evolutionary PD game on the
square lattice. Closed (open) squares indicate MC results for
ν = 0 (ν = 0.5).

the absence of this topological feature bc2 goes to 1 linearly
if K→ 0. For example, on the square lattice the cooper-
ation disappear in these types of evolutionary PG games
if K→ 0. When increasing the noise level one can observe
a peak in the concentration of cooperators analogously to
the so-called coherence resonance [33,34]. The significant
differences in the low noise behavior allows us to check the
robustness of the observed phenomenon. For this purpose
the above analysis is repeated on the square lattice.
The MC results on the square lattice (see fig. 4)

illustrates the same trend in the variation of bc1 and bc2
when the quenched inhomogeneity of dynamics is applied
(w= 0.1 and ν = 0.5).
The plotted results confirm the above-mentioned

conclusions. Namely, the effect of inhomogeneous dyna-
mics vanishes in the zero noise limit and increases the
values of bc1 and bc2. It is worth mentioning that the pair
approximation fails for the homogeneous system in the
low noise limit, while its prediction is qualitatively correct
for large K values [28]. In agreement with the expectation,
the extended version of the (homogeneous) pair approxi-
mation gives account of the simultaneous shift of both
phase boundaries in a way that (bc2− bc1)→ 0 if K→∞.
The extended method takes explicitly into account the
different concentrations of cooperators on the sites of type
A and B as well as distinct correlations on pair of sites
AA, BB, and AB. The results of MC simulations and
extended pair approximation have indicated clearly that
the concentration of cooperators on the sites of type B is
smaller than those we found on sites of type A (shortly
ρB < ρA) for the coexistence of C and D strategies. This
latter success of pair approximation has inspired us to
investigate the changes in the probabilities of one- and
two-site configurations as well as in the transition rates
between these configurations. Unfortunately, we were not
able to reveal a simple and concise explanation on the
mechanism supporting cooperation.
Besides the above-discussed inhomogeneous dynamics,

there exist many other ways in which inhomogeneous
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Fig. 5: Concentration of cooperators vs. b on the square lattice
for different systems: homogeneous (closed squares); reduced
teaching (open squares) and learning (open circles) activity at
players B distributed randomly, checkerboard-like distribution
of players A and B (triangles); and randomly distributed
wxy =wyx = 0, w (closed circles) if ν = 0.5, w= 0.1, and K = 1.

(and asymmetric) activity can be taken into consideration
in the strategy adoption process. For example, we have
studied what happens if the learning activity is reduced
for the players of type B. In our notation it means
that the strategy adoption probability (1) is modified
by substituting nx for ny in the expression (2). Such a
model can be used to study the effect of quenched spatial
disorder on cooperation if the system consist of quick-
(A) slow-witted (B) players. Surprisingly, MC simulations
demonstrates that cooperation is not modified relevantly
by the application of inhomogeneous learning activities
on both lattice structures for w= 0.1 and ν = 0.5. The
weak effect of this type of inhomogeneous learning activity
is justified by the analytical techniques too. Namely, the
extended pair approximation on square lattice (three-site
approximation on the Kagomé lattice) reproduces the
result of homogeneous system.
We have also studied a third type of models for which

the quenched values of wxy =wyx are chosen randomly to
be w or 1 with probabilities ν and (1− ν). In this case the
master-follower role is symmetric between the connected
players and the dynamical inhomogeneity is represented
by the randomly distributed reduced links. Similarly to the
second case, the simulations indicate no relevant changes
in the strategy concentrations.
To have some further information about the role of

the spatial inhomogeneities and the asymmetry in the
imitation process we have studied a fourth case where
players A and B are located periodically in checkerboard-
like manner. In this case the role of reduced teaching
from the sites of type B is equivalent to the reduced
learning activity at the sites of type A. Furthermore,
the interactions are constrained to the A-B pairs. The
effect of this type of dynamical inhomogeneity on the
strategy concentrations depends on the parameter values.
An increase occurs in ρ for low values of b. For sufficiently

large b values the concentration of cooperators (and also
bc2) decreases with w.
In fig. 5 we illustrate the results of ρ deduced from MC

data on the square lattice for the mentioned distributions
of wxy. The variations can be measured from the results
obtained on the homogeneous system. It is clearly shown
that the most relevant enhancement of cooperation is
found when the teaching activity is reduced (or enhanced)
from half of the players distributed randomly. According
to preliminary results, this is the only model among
the investigated systems that is capable to maintain
cooperation if b > 1 for the high noise limit.
In summary, we have studied two-strategy evolution-

ary PD games on two-dimensional lattices in which the
master-follower asymmetry between two neighboring play-
ers is taken explicitly into account during the strategy
adoption mechanism. Our analysis is focused on several
cases of the quenched inhomogeneous dynamics. The most
important increase of cooperativity is found for those
systems where the enhanced teaching activity is concen-
trated on a portion of local players (masters or leaders)
distributed randomly in the whole system. It is conjec-
tured that the spontaneous appearance of local leaders
can be recognized for those human and animal societies
where imitation (learning) plays a crucial role in the main-
tenance of cooperation.
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