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Abstract. - In the framework of spin glass models with symmetric interactions a local dynamical 
learning process is studied, by which the energy landscape is modified in such a way that even 
strongly correlated noisy patterns can be recognized. Additionally the basins of attraction of the 
patterns can be systematically enlarged. After completion of the learning process the system 
can recognize as many patterns as there are neurons ( p  = N ) ,  and for small systems even more 
( p  > N). The dependence of the learning time R on the parameters of the system (e.g., the 
average correlation, the noise level, and the number p of patterns) is studied and it is found that 
R increases as p', with x = 3.5, as long as p < N ,  whereas for p > N the increase is more drastic. 

1. Introduction. 

Pattern recognition of spin glass models is by now already a rather well-established 
field [l]; however, the standard Hebb model (see below) has certain weaknesses, since i) 
only orthogonal or uncorrelated random patterns can be recognized, and ii) the ratio a 
between the number p of patterns and the number N of neurons must be smaller than 
= 0.14 [2,3]. 

In the present letter we show that these shortcomings can be remedied by an iterative 
error-correcting learning process, through which the Hebb interaction matrix is modified. 
Our learning process is dynamic, i.e. in contrast to an established <<static>> prescription [4,5], 
by which a suitable interaction matrix for the recognition of correlated patterns is calculated 
algebraically and in a nonlocal way from the totality of all patterns, our learning process is 
based on the repeated application of a natural and rather simple local error correction 
scheme involving one pattern at  a time. Notably, our interaction matrix is always 
symmetric, both in the course of the learning process and after its completion. This means 
that the energy is always well defined and that the relaxation process (which is based on the 
usual single spin flip Monte Carlo dynamics [6]) leads at  T = 0 to a nearby local minimum or 
to a stationary thermodynamic equilibrium at T # 0. 

In fact, the basic ingredient of our learning process is a natural modelling of the energy 
landscape (see below), through which the pattern states become local minima of the system, 
whereas unwanted minima (i.e. aspurious patterns.) are energetically enhanced. Of course, 
within the realization of this concept there is a certain amount of arbitraryness, e.g., 
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concerning the depth of the minima and the height of the barriers between them. However, 
what is perhaps more important, even the basins of attraction of the different patterns can 
be systematically enlarged by our learning process, simply by teaching the system to 
recognize the original patterns even <<in disguise,,, e.g., if they are perturbed by a finite 
amount of randomness (<<noisy patterns.). I t  should be stressed that in our model neither 
the correlations of the patterns, nor the amount of noise nor the above-mentioned ratio 
x = p/AT must be small. 

2. The learning algorithm. 

We consider the usual k ing  spin glass Hamiltonian 

where the indices j ,  k = 1, ..., denumerate the N-neurons. The two states of these 
neurons (&ring>, or .not firing,,) are represented by the k ing  variables S, = k 1, and the 
coupling constants Jl,k, which vanish for j = k ,  describe the mutual interactions of the 
neurons through synaptic links. Then there are p different <<patterns. 5" out of the 2v 
possible spin configurations; these patterns may be correlated, i.e. the overlap function 
qu,:= (l/N)(r, <'), where (<", 5') denotes the usual scalar product of real hi-component 
vectors, can be different from zero. After the learning process, by which the JJ,k are changed 
(see below), these patterns should be recognized by the system (1) through the usual 
sequential relaxation process [l]. 

To be specific, our relaxation procedure proceeds as follows: of three consecutive cycles, 
during the first and third cycle N-times a position j is selected randomly and the spin S, is 
flipped if this leads to a lower energy, while during the second cycle the spins are visited 
sequentially. Thus we t ry  to avoid that, on the one hand, some spins are incidentally 
overlooked, as might be the case by a completely random selection of the spins, while, on the 
other hand, we avoid any systematic bias, which might be produced, e . g . ,  in the learning 
process if the spins were always visited in the same order. 

The learning process proceeds as follows: we start with the Hebb-Hamiltonian, i.e. with 

Then, a random permutation v I ,  ..., -+, of the p patterns is selected; starting with vl, 
certain i npu t  vectors f 1  are submitted, one after the other, i . e .  for i = 1 to i = p ,  to the 
relaxation process described above. These input vectors can be taken either as the original 
patterns or as  some <inoisy)> modifications of them. For  every i, as many relaxation cycles 
are  performed as are  necessary to get the system definitely trapped in a local minimum. This 
minimum state is the output  vector x',. If it is different from the original pattern &"l, the 
Hamiltonian (1) is modified as follows: Jj,k-+ J l ,k  + AJ,,,,  for all pairs ( j ,  k ) ,  with 

and the relaxation of the next input vector proceeds with the new Hamiltonian. In (3), E, is a 
positive number determining the strength of the correction, and implicitly the speed of the 
learning process (see below). 
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The teaching process is stopped, if for all members of the permutation considered the 
output vectors x” are identical with the patterns 5” t o  be learned; otherwise it is repeated 
with a new permutation and with new noisy modifications of the corresponding patterns. Of 
course, one always uses the latest version of the corrected Hamiltonian. 

In general, a very large number of iterations is necessary, particularly if p is comparable 
to N (see below), however, in practice we have always found that after a sufficient number 
of iterations the learning process stopped, although we do not yet have a proof for this fact. 
(For a different learning process with an asymmetric Jj ,k matrix, a convergence proof has 
been given in[?].) 

In any case, one can easily interprete the physics behind our procedure by considering 
the energy change: 

induced by the correction (3) for a given spin configuration S. 

to pattern g”, (e.g., a noisy modification), AH is positive, namely 
For S = x”’, i .e. for the <<unwanted. output resulting from the input vector corresponding 

while for S = { ” l ,  AH is negative, namely AH(gW1) = - AH(x”‘). 
Thus, the essential point of our learning process consists in 

(5) 

a systematic increase 
(decrease) of the energy of unwanted (wanted) states, i.e. the energy landscape in the 
vicinity of the patterns 4’’ is modelled in such a way that these patterns become local 
minima. Moreover, by performing the learning process not with the original patterns, but 
with noisy modifications of them, one can systematically enlarge the basins of attraction of 
the patterns. At the same time, the probability to have unwanted (i.e. epurious.) minima 
should be strongly reduced. 

3. Results. 

In fig. 1 results are presented, which characterize the improvement of the recognition 
process through the learning procedure for a system with N = 100 neurons and p = 10 
patterns with an averaged correlation of z= 0,118 f 0.087: the retrieval quality, i.e. the 
overlap q(<l, x’) of the original pattern g1 and the stationary output x1 of the relaxation is 
plotted over the noise level p ,  (fraction of randomly flipped spins). Every point on the curves 
of fig. 1 represents an average over 100 different noisy modifications of pattern with 
identical noise level, and the error bars represent the standard deviation from the average. 
(Actually the distribution of the 100 results for a given by pn is strongly non-Gaussian, with 
a sharp peak at the maximum value of q(G1, xl) in each curve, i.e. at 0.55 in fig. l a ) ,  and at  1 
in fig. l b ) ,  and a broader distribution centred around a smaller value, appearing for noise 
levels 30 .3 . )  In any case, from a comparison of fig. la) with fig. l b )  it is obvious that the 
retrieval quality has been drastically improved through the learning process (fig. lb)), i.e. 
after a learning process which has been performed with noisy patterns, with a noise level 
cr = 0.3. 

If the learning process would be performed with pure patterns (cr = O), the retrieval 
quality would still be much better than in fig. l a ) ,  but not as good as in fig. lb). The reason is 
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Fig. 1. - The retrieval quality, i . e .  the averaged overlap q ( g l ,  x') of the original pattern g1 and the 
output x1 of the relaxation process, is presented for 100 relaxation processes starting with different 
noisy modifications of the original pattern, as a function of the noise level p,, i . e .  the relative number 
of randomly flipped spins of the modifications, for a system with N = 100 neurons and p = 10 patterns, 
which have an averaged correlation of G= 0.118 -C 0.087. Figure la) is for the Hebb system, eq. (21, 
i . e .  without learning, fig. l b )  for the system as obtained after a learning process where additionally the 
basins of attraction have been enlarged by using noisy input patterns with a noise level of 0 = 0.35. The 
learning strength was J. = 0.0005, and the total number R of learning steps was 5222 in case b). 

that for z = 0.3, in contrast to 5 = 0, there is an additional enlargement of the basins of 
attraction by the learning process. 

Furthermore, using a sufficiently long teaching time, we have found that for small 
systems 100% retrieval can be obtained even for more than N patterns, i .e. for p = 60 
uncorrelated patterns in case of N = 50, see below. 

Of course, the necessary number R of teaching steps (i .e.  corrections of the Hamiltonian) 
increases strongly with p ,  z, C a n d  lh. 

We have found that R is proportional to  l l A  and proportional to Q, at least for 
0.01 s A d 0.08 and 0.10 d z <  0.20, with R = 400 for g,,= 0.1 and A = 0.01 (with N = 100, 

The dependence on the number of patterns can be seen from fig. Sa). For systems with 
N = 50, 100 or 200 neurons the number R of learning steps for correct recognition of p 
uncorrelated patterns increases strongly with p :  however, for p < N the increase seems to 
be nonexponential, e .g . ,  for NI2 < p < N ,  R is found to behave as -px, with x = 3.2 for 
N = 100 and = 3.6 for N = 50. Only for p 2 N ,  R increases more drastically; however, from 
our data we cannot make a definite statement whether, e.g., for N = 50 and 50 < p  < 60 the 
increase is - pY with y == 9, or whether the increase is even exponentially. In fact, for a 
generic spin glass, i.e. with a Gaussian exchange, one has exponentially many local 
minima [81 and would of course expect an exponentially large teaching time. Thus one may 
speculate that the models prepared by our teaching process may somehow interpolate 
between the separable Hebb model and the generic case, and that the cross-over happens 
around a 2: 1. 

is 

p = 20). 

Finally, in fig. 2b), the dependence of the learning time on the averaged correlation 
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Fig. 2. - The number of learning steps R is studied as a function of various system parameters, namely 
in fig. Za) as a function of p up to very large values of p ,  for A = 0.04 and G= 0 (circles: N = 200, 
crosses: N = 100, squares: N = 50); in fig. 2b) as a function of -up to very large correlations, again 
with A = 0.04 (circles: N = 200, p = 40; crosses: N = 100, p = 20; squares: N = 50, p = 10). 

studied. Again, the increase is not very drastic, except around extremely large values, i . e .  
for x > O . 6 .  

As already mentioned, for the enlargement of the basins of attraction it is necessary to 
perform the learning process with noisy modifications of the original patterns. In fig. 3 we 
study the question, whether the corresponding noise level U prolongs the learning time. As 
can be seen from fig. 3, for U < 0.2 this is practically not the case, and also for the very large 
value 0 = 0.3, the increase of R compared with 5 < 0.2 amounts only to a factor 2. 

To make the retrieve1 quality and the possible applications obvious, we present in the 
final fig. 4 a recognition process, where in a system with N = 256 neurons p = 6 extremely 
correlated patterns, namely the letters A,  B,  C, D, E ,  F ,  which have an averaged 
correlation of 0.78, are recognized after just three relaxation cycles, although these patterns 
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Fig.’4. - Pattern recognition of the letters A ,  B, C, D, E ,  F ,  as explained in the text. The first column 
represents the pure patterns, the second column the noisy modifications, which are taken as the input 
vectors of the recognition process, and the third column the output of the recognition, which took three 
relaxation cycles. (Learning parameters: i. = 0.05, 3 = 0.3, R = 333.) 

are presented to the system (<in strong disguise. (see the second column), corresponding to a 
noise level of p ,  = 0.3, so that the human eye would no longer recognize them. The number 
of learning steps, which were performed with h = 0.05 and 3 = 0.3, was R = 333. Of course, 
still stronger <<disguise>> of the patterns would hardly make sense in the present example. In 
any case a t  this place we would like to stress that it is not primarily the Hamming distance, 
but rather the sculpturing of the energy landscape, i .e .  our learning process, which 
determines whether, e . g . ,  the first noisy pattern is recognized as an <<A,> and not as a -Bv.  

4. Conclusions. 

We have introduced an energy-preserving learning process, by which a system of N 
mutually interconnected neurons can be prepared in such a way that up to = N strongly 
correlated and rather noisy patterns can be successfully recognized in extremely short time. 
The dependence of the learning time on various parameters has been studied in detail and it 
has been found that reasonable results can be obtained with reasonable ( i . e .  non- 
exponentially large) effort. The concept of our learning process can of course also be applied 
to relaxation a t  finite T ,  to  different recognition criteria, and with different Hamiltonians. 

After the completion of the present work, we received a preprint [9] by which we learned 
that similar learning algorithms for symmetrical couplings JL,, although with a correction 
prescription differing from our eq. (3), are being studied within the Edinburgh group [9,10]. 
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