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Abstract. - Random walks on tree structures are as useful tools in physics as they are 
interesting themselves. Here we show that for a certain class of models they can undergo a 
transition from being recurrent to being transient depending on the temperature. At the 
transition the relaxation is logarithmic. The significance of the pole in the relaxation exponent is 
also discussed. 

Random walks on tree structures are useful modelling tools in physics, because they both 
possess a rich variety of behaviours, sometimes radically differing from those of Euclidean 
diffusion, and they are simple enough to be mathematically tractable. 

Several solutions of related models have already appeared [l-91. Since, however, the 
applicability of the models rests on their generality and robustness, we feel it is worthwhile 
reading the calculations in a new way which clarifies these issues. We also present some 
novel results, i.e.: 

1) The walk can change from recurrent to transient as a function of the temperature 
for a certain class of models. 

2) Close to the transition temperature the relaxation exponent is close to zero, and at  
the transition the relaxation is logarithmic rather than algebraic. 

3) Finally, we discuss the significance of the pole [2, 31 in the relaxation exponent as a 
function of the temperature. We show that the pole cannot be observed in the frequency 
domain, which is appropriate for some applications involving generalized su- 
sceptibilities [lo]. 

General theory. - We consider the tree displayed in fig. 1: a walker randomly moves on 
the nodes, jumping upwards from a level j node at rate kj" and down to any daughter site at 
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Fig. 1. - The hierarchical structure for the random walk. 

rate k,". The total rate down is thus xkf ,  where x ,  the branching ratio, is assumed level 
independent for notational convenience. The rates k," and ky are arbitrary functions of j .  

Let G ( f ,  s ' i )  be the Laplace transform of the probability of being at  node f ,  with start 
point a t  i. As shown by Hoffmann, Grossmann and Wegner [2,31, the basic relation 

holds true. In the above formula, the Ql's are analogous quantities to 6, except that they 
refer to the random walk on the levels obtained by projecting the original motion on the 
vertical axis. The arguments . f .  and ,i)) of Q' must thus be interpreted as the heights of the 
initial and final level. Finally. the superscript 1 indicates that we impose an absorbing 
boundary condition at  level 1 + 1, and ko is the level of the closest common ancestor of nodesf 
and i. The equation can be understood by observing that Q'(f,sli)-Q'-'(f,sli) is the 
Laplace transform of the probability of being somewhere in the tree at levelf, starting at  a 
level-i node, and having reached but not exceeded level 1. Since all the nodes with the same 
level index are equivalent, the probability of being at one particular level-fnode is obtained 
by dividing Q ' ( f ,  s i) - Q'- l ( f ,  sli) by &f, which is the number of level f descendant of a 
level-1 node. In summary, each term in the sum of eq. (1) counts the contribution to G from 
the walks which reach but do not exceed level 1. 

Each Q' is the solution of a random walk problem on a finite set of nodes, having a discrete 
set of eigenvalues, it:, i = 0,1 ,2 ,  ... , I ,  in order of increasing magnitude. The small silarge 
time asymptotics is determined by the behaviour of the lowest eigenvalue Ai (which appears 
as a pole in Q'). In order to discuss its dependence on I ,  it is expedient to introduce a (free) 
energy function by the formula 

which is just detailed balance <<the other way round.. Given F(0) and the rates, any F(j) can 
be calculated by iteration, F a c t s  as an aeffective), potential well, in which the motion up and 
down the levels takes place. 

In general the eigenvalues depend on the rates ky and kf, however, if we exclude cases 
where the time scale on energy levelj is resealed with a factor as in [2,3], then we can derive 
the dependence of Ab on I for any F by exact arguments, and we can also show that, if the 
energy F increases a t  least linearly with 1, the spectrum remains discrete, i.e. &-+O for 
1 -+ 3~ and i.:> i > 0, Vi  > 0. This will be shown in detail in a forthcoming paper. Here we 
assume the discreteness of the spectrum and find the form of Q'(f, sli) for small s by a time- 
honoured qualitative argument, in essence due to Kramers [111, which avoids technicalities 
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and appeals to the intuition. The result is 

from which Ab = exp [- F(Z)/T]. The parameter 2 is the partition function for the infinite 

system: 2 = exp [- F( j ) IT]  . We assume that the series is convergent, which imposes 

obvious restrictions on F.  The justification of eq. (3) can be phrased as follows: on time scales 
such that 1 >> s >> exp [- F(Z)IT], the system .does not notice. the boundary condition, and 
relaxes to  the equilibrium distribution exp [ - F( f ) /T] /Z .  As a consequence of the flow of 
probability through the boundary, the total mass of the distribution decreases steadily, but 
the form (i.e. the spatial dependence) remains unchanged. Equation (3) is the one-pole 
approximation to Qz which fit this picture. Of course, the Arrhenius factor exp [ - F(Z)/Tl 
could be modified by some temperature-dependent prefactor, which, however, is not 
important at the present level of description. 

j = 1  

Equation (1) can be reshuffled into 

where we have neglected the term Qk0-', which is unimportant for small s ,  and used eq. 
(3). It follows easily from eq. (4) that, if limF(Z)/l< 03, then limG(f, 3-0 s 1 i) < 00, while if 

lim F(Z)/l= a, then lim G(f, s I i) = W. It is well known that the random walk is transient in 

the former case and recurrent in the latter [E]. The case in which F is asymptotically linear 
is at the borderline, and is discussed below in more detail. 

1-= 

1- = 8-10 

Linear case. - We now think about the random motion as created by thermally activated 
hopping, and introduce a constant-energy difference A between nodes lying on contiguous 
levels. We then take the rates as 

k; = k exp [- A/Tl  , 
kjd=1,  

where the parameter k is a positive number which describes the possibility of k parallel 
channels from a node to its parent (k - 1) of which can be transversed in one direction only. 

(7) 

BY eq. (2) 

F ( j )  = ( A  - T In ( k l z ) ) j  . 

A = exp [ - (AiT + In ( z ik) ) ]  < 1 . 
The Boltzmann factor exp [- F ( j ) / T ]  is conveniently rewritten as AJ, where 

(8) 

By eq. (3) we then get 
(1 - A)Af 

s + A 1  * 
Q Y f ,  s I i) = 
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In order to do the sum in eq. (4), we divide it into two parts: 

x-'  z-' = x-'  c -- -c---+c-- 
i = k g  S + A '  i = k g  S +A'  !=,w S + A '  ' 

where M is the least integer larger than 1nsAnA. This means that 

where c(s)  is a periodic function of In (s) which has unit amplitude [13]. For  1 d M - 1 we have 
s <A1, while for 1 2 M ,  s >A1. Therefore, l/(s + A') can be expanded in powers of SA-' and 
A'ls in the two regions. Interchanging the order of summation in the resulting sum, one 
finally obtains 

where we have introduced a parameter 

which is, in general, a noninteger quantity. Accordingly, the Kroneker 6's which appear in 
eq. (11) are zero, except for special values of the temperature, a t  which logarithmic terms 
appear. 

Let T I  = JAn ( k )  and T2 = 3An (klx). Then n(Tl) = 1 and n(T2) = 2. Furthermore, T I  < T2 
when both quantities are positive, i .e .  k > x > 1. The behaviour of G is qualitatively different 
in the regions 0 < T < T I ,  T1  < T < T2 and T > T2,  which we denote regions I ,  TI and 111, 
respectively. 

We now disregard the s-dependence of E ( S )  in eq. (ll), and denote the singular part of the 
propagator by S - ~ .  This defines the exponent 

In region I, 9 is positive, G-+ 35 for s- 0, and the walk is recurrent. In region 11, 9 is 
negative, 6 -+ constant < 00 for s -+ 0 and the walk is transient. This applies also to region 
111. Furthermore, in this region the leading term of G is linear in s, since - 3  > 1. Hence the 
exponent seen in the Fourier-Laplace domain is effectively one, and the pole of eq. (13) 
cannot be seen. In the time domain we have G - t-(T lna)'('+T ln(z'k)) (and exponentially 
decaying terms from the regular part of 6). If the algebraic decay exponent is numerically 
large, the decay will be exponential over a long period, before the .true,> asymptotic regime 
sets in. Hence, as the pole is approached from the left, the algebraic part of the decay 
becomes increasingly difficult to observe. 

Finally, we look at  the points T =  T I  and T =  T2. At T =  T I ,  n= 1, ,3=0 and 
G - lns/lnA + x: for s -+ 0. The walk is recurrent and the relaxation logarithmic. At  
T = T2 , n = 2, 3 = - 1, the logarithmic term is s Ins, which goes to zero for s -+ 0. I t  is still 
larger than the linear term, and is therefore the leading term of 6. The points at which 
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n = 3 ,4 ,  ... etc., do not affect the leading term, which is - s. Figure 2 shows a comparison 
between the analytic results presented above and a numerical calculation for the exponent ,B. 
The deviations are due to the nature of the numerical method used. 

Fig. 2. - A comparison between a numerical calculation (circles) of the exponent /3 and the analytic 
results of the considered approximation (solid line). The analytic exponent is - 1 for all T >  T2, for 
which it reaches this value. 1) z = 4, k = 1; 2) z = 4, k = 2; 3) z = 4, k = 4; 4) z = 4, k = 6. 

Conclusion. - We have shown that the relaxation behaviour of a random walk on the tree 
is only determined by the least eigenvalue of a diffusion problem on the levels of the tree, 
with a potential energy F(j ) .  If F ( j )  is asymptotically linear in j, there is the possibility of a 
transition from recurrent to transient behaviour when the temperature is varied. 

While it has previously [14] been suggested that logarithmic relaxation and small 
exponents only would occur for T+ 0 or x + 1 (the last limit means that the tree branches in 
an inhomogeneous fashion, and that most of the off-spring of a node only has a finite number 
of descendants), we show that they also occur at the transition and close to the transition, 
respectively, by a different mechanism, which involves a parameter k, entering the 
definition of the rates. The condition for having a transition is k > 1. When k # 1, some paths 
are effectively one-way roads, which is at  variance with the principle of detailed balance. 
However, if the nodes of the tree represent complex states of some physical systems, with 
an .inner. dynamics, rather than simple pointlike entities, the condition k # 1 means that 
the .exits. of a node in the upwards direction (with respect to the tree structure) are more 
easily found than those in the downward direction. Thus both energy and entropy 
considerations determine the form of the rates out of a node. 
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