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Abstract. - Contact angle hysteresis on weakly heterogeneous surfaces is studied using an 
extension of Imry and Ma’s analysis of the random field problem. Deformations of the liquid- 
vapor interface in response to the heterogeneity are characterized by a length L d  which 
increases as the magnitude of the heterogeneity decreases. The characteristic energy associated 
with these deformations is used to find the scale of contact angle hysteresis. In the absence of 
gravity, contact angle hysteresis occurs for arbitrarily weak heterogeneity. Hysteresis 
disappears when Ld exceeds the gravitational capillary length, while systems with char- 
acteristic size less than Ld show increased hysteresis. 

Wetting of solid surfaces has been studied for at least two centuries and is currently a 
topic of renewed interest [l]. An important parameter which characterizes wetting [21 is the 
contact angle &the angle at which the liquid-vapor interface intersects the solid substrate 
(fig. 1). This angle is determined by the competition between interfacial energies for liquid- 
vapor (yLv), liquid-solid (yLs) and solid-vapor ( ysv) interfaces. If the spreading power 

is positive, the fluid totally wets the solid and 8 = 0. For S < 0 the solid is partially wet and 
the contact angle satisfies the Young-Dupre equation 

Experimental measurements of 8 reveal substantial hysteresis. Different values are 
obtained for the advancing contact angle 8, (obtained after increasing the solid-liquid 
interface) and receding contact angle 8, (obtained after decreasing the solid-liquid interface). 
The origin of this hysteresis has been the focus of much experimental [3] and theoretical [4- 
81 research. Two major sources have been addressed: hysteresis in surface character and 
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Fig. 1. - The contact angle 8 between the liquid-vapor interface and the solid substrate. 

heterogeneity of the surface. Hysteresis in surface character may result from deposition of a 
film of solute on the solid as the liquid recedes. The contact angle hysteresis then results 
from the difference in S for clean and solute-covered surfaces. 

In this paper we consider the second case where hysteresis is caused by surface 
heterogeneity. The heterogeneity may result from chemical contamination or surface 
roughness. Chemical contamination causes spatial variations in the interfacial energies 
determining S. Surface roughness may also be expressed in terms of fluctuations in S .  
Fluctuations in surface orientation are equivalent to fluctuations in contact angle relative to 
a fixed orientation[5] and in turn to fluctuations in S (eq. (2)). 

Early theoretical treatments [4-61 of contact angle hysteresis considered simple periodic 
modulations of S such as parallel grooves. The degree of contact angle hysteresis could be 
calculated from the strength and period of the modulation. However, these results are only 
valid when the grooves are parallel to the three-phase line-the line where the liquid-vapor 
interface intersects the solid. More recently, several authors [7,8] have considered the less 
artificial case of surfaces with random impurities (localized variations in S).  JOANNY and DE 
GENNES [7] considered hysteresis due to pinning of the three-phase line by individual 
impurities. Their major conclusions were: 1) smooth defects only produce hysteresis if they 
are sufficiently strong and concentrated, 2) mesa-type defects with sharp discontinuous 
changes in S always produce hysteresis which scales linearly with impurity strength and 
concentration. POMEAU and VANNIMENUS [8] considered hysteresis on weakly hetero- 
geneous surfaces. They first constructed a nonlinear self-consistent equation for locally 
stable configurations of the liquid-vapor interface given the spatial variation of S .  From this 
they argued that in the limit of weak heterogeneity contact angle hysteresis is present but 
small, scaling as the square of the magnitude of heterogeneity. However, their argument 
was based on a discontinuous <<checkerboard. model for the variation of S. The work of 
JOANNY and DE GENNES shows that results for such discontinuous models may be 
qualitatively different from results for a continuously varying S .  

In the following, we re-examine the case of weak heterogeneity using an extension of 
IMRY and MA’S approach for the random field problem [9]. We find a characteristic length 
scale, Ld, for deformations of the three-phase line in response to the heterogeneity. For 
weak heterogeneity, Ld is much larger than the scale of variations in S ,  and Ld increases as 
the magnitude of heterogeneity decreases. As in other examples of interfaces pinned by 
random fields, the three-phase line has many metastable equilibrium positions. It is the 
energy barrier between these metastable states which is the source of contact angle 
hysteresis. There is no threshold for contact angle hysteresis in the case of smooth defects 
(continuous variations in S) .  Even when individual impurities are too weak to pin the 
interface, contact angle hysteresis results from pinning by many impurities over Ld. The 
magnitude of the hysteresis scales as the square of the heterogeneity as found by POMEAU 
and VANNIMENUS. Modifications in the results occur when other macroscopic lengths such as 
system size and gravitational capillary length become comparable t o  Ld. 
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There are several important assumptions and limitations to our results that should be 
noted at  the outset. As in previous work, we assume that the characteristic length scale foy 
variations in S is macroscopic. At length scales less than (100 t 1000) 8, van der Waals 
forces, deformability of the solid surface and other factors modify the form of the 
interface [l]. The Young-Dupre equation (2) no longer applies. We also assume that thermal 
fluctuations are negligible because of the large length scales involved. Finally, the Imry-Ma 
argument is essentially qualitative, giving the approximate scale of important quantities 
rather than precise numerical values. Indeed, there are many metastable configurations of 
the three-phase line and there may be substantial variations in the energy and other 
quantities from one configuration to the next. If thermal fluctuations are small, only one 
configuration will be accessed on experimental time scales. The particular configuration will 
depend on the previous history of the line. Our emphasis is on the overall functional 
dependence of typical results on experimentally controllable parameters recognizing that 
there may be substantial fluctuations in individual cases. 

We consider a horizontal solid surface in the xy-plane with the unperturbed three-phase 
line at y = 0 for a uniform surface, S(x,  y) = S (fig. 2). Surface heterogeneity produces 
random fluctuation in S about its mean value S 

S(x,  y) = s + h(x, y) . (3) 

and is correlated over a length d ( i . e .  no The random component, h, has r.m.s. magnitude 
mesa-type defects) 

(h(r)h(r ' ) )  - E 2  exp[- I r - ~ ' / ~ / d ~ ]  . (4) 

The three-phase line will tend to distort to a new position, defined by y = q(x) ,  to conform 
to h. The energy change due to h is 

d X )  

U, = 1d.j dy h(x, y) . (5 )  
0 

However, the deformation also increases the liquid-vapor interface costing surface energy. 
JOANNY and DE G E N N E S [ ~ ]  have considered this energy cost for small 0 and small 
displacements, qij(q) << 1, where * ( q )  is the Fourier transform of ~ ( x ) .  Generalizing their 

Fig. 2. - Deformation of the liquid-vapor interface to conform t o  h(x) with characteristic magnitude q 
over length L. The deformation heals away from the substrate over a length proportional to L. 
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result to arbitrary 8, we find 

The unusual q-dependence arises because the elastic energy comes from the entire liquid- 
vapor interface, while r, describes the distortion at  the three phase line. Deformations of the 
interface decay exponentially away from the three-phase line with decay length 1qI-l. Thus 
the usual quadratic q-dependence of the elastic energy only applies to a region of size q-l 
giving eq. (6 ) .  

Following IMRY and  MA[^] and GRINSTEIN and M~[10] ,  we consider the competi- 
tion between u h  and Ucap for trial distortions of the three-phase line to determine which are 
most stable. For a distortion ~ ( x )  of typical magnitude 9 over length L (fig. 21, 
U,, = a yLv )j2 sin2 8. The average value of u h  is zero because ( h )  = 0. However, for any 
particular distortion the fluctuations in h do not average to zero. The typical magnitude of 
Uh is proportional to the square root of the number of independent regions of size d that the 
interface crosses as it deforms to ~ ( x )  and to the typical contribution to Uh of the integral 
(eq. (5)) over each region. The functional form [ l l ]  of both factors depends on the relative 
magnitudes of L,  5 and d. 

Equation (6) is only valid of L>> q. As shown below this condition is automatically 
satisfied for weak impurities. Joanny and de Gennes's calculation [7] of hysteresis due to 
individual impurities applies when L is of the order of the spacing x between impurities. This 
corresponds to the case of strong pinning in random field theory [9,10]. We are interested in 
the case of weak pinning where the interface is distorted by many impurities acting 
collectively i . e .  L > x > d .  There still remain two distinct cases: T > d and T < d. 

For q >> d the area crossed as the three-phase line distorts is many correlation lengths d in 
each direction. The total number of independent regions is - Lr;/d2 and the magnitude of the 
typical contribution of each region is of order Ed2. Assuming the random field favours the 
distortion, the total energy is(l) 

U(T,  L )  = r;2 yLv sin2 0 - Ed m. (7) 

The optimal amplitude qo for a given L is found(2) by minimizing eq. (7) 

The corresponding total energy is 

Uo(L) = - (L2 d 4  E4/yLv sin2 8)1'3. (9) 

The value of lJo decreases monotonically, suggesting that the longest length scale 
deformations are most stable. However, shorter deformations can be fit into the same 
region of the three-phase line. The correct quantity to consider is the energy per unit length, 
(1IL) Uo(L), which becomes less negative as L increases. Thus the most stable deformations 
are those at  the shortest length scale. This corresponds to Ld - d(yLV/E)'  sin4 8, since for 
L < Ld ,  r, < d and the assumption used in deriving eq. (9) breaks down. Note that the 

(l) In all of the following we will only be interested in scaling laws. We thus systematically drop 

('1 This result has already been proposed by D. HUSE (unpublished), see ref. [l], p. 836. 
numerical factors. 
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assumption that L is larger than the mean impurity spacing x requires x<Ld or 
(z/yLv sin2 8) < dlx. For larger values of (L/yLv sin2 8) or x/d the strong pinning analysis of 
JOANNY and DE GENNES [7] should be used. 

For q < d, the three-phase line does not move across independent regions in the y- 
direction. The number of independent regions crossed is just Lld and the typical 
contribution of each region is of order hdv. Following the above analysis we find 

The assumption v < d breaks down as L increases to the characteristic length Ld cal- 
culated above. The energy gained per unit length, Eo, is independent of L, 
Eo ( l /L)  U&) = - (dz2/yLv sin2 8) and scales with the result obtained for q > d in the limit 

Since all deformations with d < L < Ld produce the same energy gain per unit length, all 
will be found on the three-phase line. The direction of successive deformations will not be 
correlated since the surface is random. From eq. (11)) q(L) 0~ d ma. Thus any sequence of 
deformations with L<La will produce a net displacement of the interface by d when the 
total length of the sequence is of order Ld. The interface will have the form of a random walk 
in the y direction with steps at regular intervals along the x-direction. The length Ld,  is a 
coherence length or jog length. It measures the length of the three-phase line needed for the 
interface to distort by d and sample new values of h. 

The statistics of the three-phase line at length scales greater than Ld depend on the 
history of the three-phase line. Since the heterogeneity is random, there are many 
metastable configurations of the three-phase line, each of which has an energy of order Eo 
per unit length and coherence length Ld. Transitions between metastable configurations 
involve motion of the three-phase line through unfavorable regions of h. As in other 
treatments of pinning by random fields [9-111 we assume that these barriers scale with Uo(L> 
for each L: that is that the interface must cross regions which raise the surface energy by 
about the same amount that it is lowered in the metastable configurations. To find a new 
metastable configuration, the three-phase line must move far enough to sample a new 
distribution of h. This distance is of the order of the larger of vo and d.  

An external force per unit line length, F, acts to displace the three-phase line from its 
local equilibrium. The interface will move until the derivative of the energy with respect to 
the displacement of the line, E ,  cancels the force F = - L-’(aU/aE). If the force is larger than 
the maximum value of IL-’(i3U/as)lf the contact line will be depinned, moving from one local 
minimum to the next. Since we know the typical scale of energy variations and the typical 
length scale for these variations, we can estimate the force per unit length required to depin 
a distortion of a given size L: 

(13) 

F(L)  Eo/d z ( z 2 / y ~ v  sin2 8) , L S Ld . (14) 

The maximum of F gives the threshold force for depinning the entire three-phase line, 
FT = ( E 2 / y ~ v  sin2 0) = (d/Ld) yLv sin2 8. The precise value of FT will vary from this estimate, 
but should scale in the same way with experimental parameters. Analogy to the case of 
charge-density wave pinning suggests that there may be a well-defined depinning force for 

L+Ld. 

F(L) = L-’ Uo(L)/qo(L) = (z2 yLv sin2 8d2/L2)l”, L 3 Ld , 
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the entire line even though each segment interacts with a different distribution of 
impurities [121. 

Experiments measure a macroscopic contact angle OM averaged over some length of the 
three-phase line. For example, in capillary rise experiments the mean height of the three- 
phase line is measured [5]. According to Young's arguments, there is a macroscopic force 
associated with the deviation of OM from the bare contact angle Bo for the uniform surface: 

F~ = rLv(cos eM - cos 0,) . (15) 

In  a receding experiment, the macroscopic contact angle starts a t  a value less than Oo and 
increases in response to F M .  Our analysis shows that when F M  - FT the three-phase line will 
be pinned by heterogeneity of the solid surface. The value of 0 will saturate a t  Or < 00, where 

cos or - cos o0 - (E2/.j2Lv sin2 eo> - (d&) sin2 e . (16) 

Similarly in an advancing experiment 0 will saturate a t  the value 0, > Oo given by 

cos eo - cos 6, - (d/Ld) sin' o0 . (17) 

Note that contact angle hysteresis is present for arbitrarily weak heterogeneity K. 
So far our analysis has neglected gravity and finite-size effects. Both produce interesting 

modifications of our results when Ld becomes larger than the relevant macroscopic length 
scale. 

Gravitational energies dominate surface tension on length scales larger than the capillary 
length L, v s ,  where p is the density difference between fluid and vapor and g is the 
acceleration due to gravity. For L>L, the energy cost of a distortion of the interface 
becomes U = yLv ';2LIL,. This increases faster than Uh with increasing L and leads to a 
decreasing value of q0(L). When the heterogeneity is so weak that Ld > L,, the deformation 
qo never exceeds d. The interface is still rough, but there are no metastable states and thus 
no contact angle hysteresis. 

For  systems where the length of the contact line, D ,  is smaller than Ld,  some similar 
results apply. The three-phase line is rough, but l ~ l <  d. Only one metastable configuration 
exists for a given mean position of the contact line. However, there is still contact angle 
hysteresis, because the energy of the contact line varies strongly with mean position. The 
contact line samples comparatively few uncorrelated values of h and the magnitude of 
fluctuations in the energy per unit length is thus large 

Since moving the mean contact line position by d changes the distribution of h, the force per 
unit length needed to depin the contact line is 

Note that this diverges as D goes to zero. This strong dependence of FT on D should be 
observable in experiments on small drops. 

In conclusion we summarize the main results obtained. For weak random heterogeneity, 
distortions of the contact line exist at all length scales. At length scales less than Ld the 
interface has the form of a random walk. Many metastable configurations of the contact line 
exist a t  longer length scales. The ratio Ld/d may be a more easily measured quantity 
than E'. As the strength of the heterogeneity decreases, Ld increases, and the interface 
becomes smoother. 
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Fig, 3. - Schematic dependence of interface velocity, v, on applied force, F ,  for uniform (dashed line) 
and dirty (solid line) substrates. 

A force greater than FT - (z2/yLv sin2 0) - yLv sin2 O(d/Ld) is needed to depin the 
distorted interface in the absence of gravity. This leads to contact angle hysteresis: 
cos 0, - cos ea - (d/Ld) sin2 0. In the presence of gravity, the depinning force and hysteresis 
go to zero when Ld is longer than the capillary length L,. In contrast the pinning force is 
larger for drops whose size D is less than Ld: FT = yLv sin2 O(d/Ld) v m  Experimental 
tests of the divergence of FT as D goes to 0 would provide a strong test of our model. 

Pinning of the three-phase line has important consequences for the dynamic response of 
the interface. The velocity must be zero for IF1 < FT and should be depressed for IF1 slightly 
larger than FT, since the interface will move slowly enough to  distort in response to  the 
heterogeneity. A rough sketch of the response is given in fig. 3. The physics should be 
similar to the motion of charge density waves in a random impurity potential [U ,  121. We 
plan to study this motion in a future work. 
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