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Scaling and Universality in the Integer Quantum Hall Effect. 
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PACS. 71.50 - Localized single-particle electronic states (exc. impurities). 
PACS. 71.30 - Metal-insulator transitions. 
PACS. 71.555 - Localization in disordered structures. 

Abstract. - For a model of noninteracting electrons in a disorder potential under quantum Hall 
conditions the critical behavior near the centers of the two lowest Landau levels and ita 
dependence on the correlation length of the disorder potential are studied. The localization length 
is calculated numerically for qwi-one-dimensional systems. Finite-size scaling is used to obtain 
the critical exponent. For the lowest Landau level universal one-parameter scaling independent 
of the correlation length is found. Universality in the higher Landau levels is established by an 
argument based on the shape of the potential matrix elements in the limit of large correlation 
length. In the second lowest Landau-level universality is explicitly demonstrated by comparison 
of numerical data obtained for a correlation length equal to the magnetic length with those 
obtained for the lowest Landau level. However, no scaling behavior could be found for short 
correlation lengths in the first Landau level. 

The question of the nature of the critical behavior at the metal-insulator transition in the 
center of disorder broadened Landau levels in a strong magnetic field has received 
widespread attention due to the discovery of the quantized Hall effect. Experimentally, it 
was observed that the width of the peaks in the longitudinal resistance in the integer 
quantum Hall effect as well as the slope of the Hall resistance between consecutive quantized 
plateaus show power law scaling as a function of temperature[l]. The corresponding 
exponent IC was found in first experiments to have a universal value of 0.42 k 0.04 even for 
the transition between fractional Hall plateaus[2]. It is related to the exponents v of the 
localization length and p/2 of the phase coherence length by IC = p/(2v). However, in other 
experiments using different samples it was found that the measured exponents IC depended 
both on the Landau-level index as well as on the particular doping of the sample [3,41. 

In a recent experiment Koch et al. were able to study the scaling of the peak width of pm as 
a function of system size directly, thus achieving an independent determination of v and IC [6] .  
The measured value of v = 2.3 k 0.1 agrees well with the results of theoretical calculations 
for the lowest Landau level [6-81, while the values for p are not universal and range from 
2.7 k 0.3 to 3.4 r 0.4. 

Previously we have shown that in the lowest Landau level the normalized localization 
length of finite systems exhibits a single-parameter scaling relation both in the case of a 
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&-correlated disorder potential and for a Gaussian correlated potential of range I , ,  where I ,  is 
the magnetic length fi/eB [6,9]. The random Landau matrix model employed in these papers 
as well as in the present work assumes that the effects of Landau-level mixing can be 
neglected and that the scaling behavior is independent of higher-order correlation functions 
of the disorder potential. It was also shown that the network model of Chalker and 
Coddington that is related to the case of very long correlation length belongs to the same 
universality class [ 101. However, preliminary results for &-correlated disorder potentials 
projected onto the second lowest Landau level showed no sign of scaling behavior[ll]. 

In this paper the question of universality of the scaling behavior in higher Landau levels 
will be discussed. More extensive numerical calculations for the second lowest Landau level 
n = 1 both for zero and f i t e  correlation lengths will be presented. The main results are that 
there exists a correlation length above which the scaling behavior is universal for every 
Landau level. For n = 1 this length is numerically found to be 4 1,. For correlation lengths 
small compared to the magnetic length no scaling behavior is observed. Possible explanations 
for this behavior are discussed. 

In order to study the scaling behavior in higher Landau levels the random Landau matrix 
model as described in ref. [6,12] is generalized for higher Landau levels. Given a Gaussian 
correlation function of the disorder potential 

the correlation function of the Hamiltonian projected onto the N-th Landau level 
becomes 

where L, is the width of periodic strip, the p ~ ,  k (E) = #N ((5 - kZ:)/Z,) are harmonic-oscillator 
functions and the Landau gauge A = (0, Bx) was used [12]. Matrix elements with this 
correlation function are generated from uncorrelated, complex random variables uo (E, k) by 

and 
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with p2 = (2 + Z:)/Z:, AK = (k, - &) Zcp/2 and K = (k, + &) Zcp/2. HN (x) are the Hermite 
polynomials. (Nk, I VIA'&) is in general a N-dependent function of kl - & and kl + & . In the 
limit U + a, however, the matrix elements become independent of the Landau-level index, 
since eq. (5)  reduces to 

If we assume that higher correlation functions are irrelevant for scaling, this implies that in 
this limit the scaling behavior is indeed independent of the Landau-level index. 
Correspondingly, the critical exponent obtained in the semi-classical limit [13] coincides with 
the numerical value for short-ranged potentials in the lowest Landau level and the network 
model of Chalker and Coddington shows the same scaling behavior as the random Landau 
matrix model in the lowest Landau level [6,101. 

In order to get more detailed insight into the scaling behavior in higher Landau levels for 
shorter correlation lengths, we performed numerical calculations of the exponential decay 
length AM ( E )  of the modulus of the single-particle Green's function for very long cylinders of 
circumference M in the second lowest n = 1 Landau band. In fig. 1 and 2 the ratio A M / M  is 
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plotted a8 a function of M for different energies. In fig. 1 the correlation length is one 
magnetic length, while in fig. 2 the disorder potential is a-correlated. The difference between 
these two cases are striking. The results in fig. 1 look very similar to those obtained for the 
lowest Landau band [9]. In fact, the data from the dotted region of fig. 1 scale to the same 
scaling function. Figure 3 shows all the data, those in fig. 1 and those obtained 
previously [6,9,10], fitted by a single curve and the insert shows the power law divergence of 
the localization length 5(E) for n = 0, Q = 0, Z,, and n = 1, Q = I,. The common slope of the 
curves in the insert is given by the critical exponent v = 2.35 * 0.03. For small values of M/5  
the scaling function can be well approximated by h M / M  = (hM/M), + a(M/&)'/', with the 
fixed-point value (AM/M), = 1.19 k 0.04. It should be emphasized here that the decision 
whether or not data scale is made using a quantitative procedure taking into account the 
statistical uncertainties of the data [14]. This procedure allows for the decision that the data 
in the tails of the band and for smaller system sizes-utside the dotted region in fig. 1 4 0  
not scale. 

Universal scaling is completely missing from the data shown in fig. 2. This was insured by 
the same quantitative procedure as that used to prove the scaling of the data in the dotted 
region of fig. 1. Scaling behavior with a different scaling function and critical exponent cannot 
completely be ruled out. The data for energies between 0.3 and 0.8 and system sizes between 
32 and 128 can be fitted by a scaling function with an exponent of about 6.4. Due to the small 
number of data that can be fitted, the statistical significance of the fit is very poor. Since, 
furthermore, the energy range of the data that can be fitted is very narrow and far away 
from the center of the band, it seems unlikely that this fit reflects the actual critical behavior 
as was suggested by Ando and Aoki [8] and Mieck [15]. Still the localization length seems to 
diverge in the center of the band for infinite system size and becomes constant in the tails of 
the bands. However, due to the absence of any observable scaling a reasonable extrapolation 
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Fig. 3. - The normalized exponential decay length &/M as a function of the scaling variable M/€(E).  
The data plotted are taken from the dotted area of fig. 1 and ref. [6,9,10]. The corresponding 
parameters and symbols are: n = 0, U = 0 (v), n = 0, U = I, (A) ,  n = 1, U = I, (01, and the network 
model ( * ). The solid curve approximates the scaling function. The insert shows the localization length 
€(E). 
Fig. 4. - The normalized exponential decay length AM/M for energy E = 0.01 as a function of p2 for 
system sizes M = 16 (o), M = 32 (0) and M = 64 (0). The horizontal line is the fixed-point value of the 
scaling function in fig. 3. Error bars are 2 2 standard deviations. 
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to infinite system size is not possible. For energies close to the band center within about 30% 
of the bandwidth the data show very little energy and system size dependence. A further 
remarkable feature of fig. 2 is that AM/M in the band center does not significantly decrease 
with system size, and is even for the largest system sizes about a factor of two larger than the 
fixed-point value in fig. 3. If the absence of scaling were just a finite-size effect, then this 
value would have to reach its fixed-point value for sufficiently large system sizes above which 
scaling would be observed. The data suggest that, without any abrupt change in the system 
size dependence, this critical length scale would have to be exponentially large compared to 
that in the lowest Landau level and for finite correlation length in the first Landau 
level. 

Figure 4 shows the dependence of the value of AM/M close to the center of the band as a 
function of the correlation length for three different system sizes. Changing the system width 
by a factor of 4 does not significantly change AM /M. While for p2 B 1.6 the data are consistent 
with the fixed-point value, the larger value for smaller correlation lengths shows the absence 
of scaling behavior in this regime. The lack of system size dependence in this plot again does 
not suggest that going to moderately larger system sizes would restore universal 
scaling. 

The numerical data of fig. 2 are compatible with the existence of a band of critical states in 
the center of the first Landau level with a width of the order of one third of the bandwidth. 
With .critical states. we denote states for which AM cc M. There is certainly no indication for 
any extended states since the exponential decay length AM grows at most as fast as M. 
Another explanation for the absence of scaling for the presented system sizes would be the 
existence of a critical length scale several orders of magnitudes larger than the magnetic 
length for the &correlated potential in the first Landau level. For p2 = 1 this length scale is 
about 64 (in units of *Zc). From fig. 4 one would expect this length scale to be of that order 
for p2 down to about 1.5. Below this value the length scale would have to rise very rapidly, 
since even near p2 = 1.5 no size dependence is observed. However, there is no obvious reason 
for such a behavior of the critical length. 

In conclusion, we have presented evidence for the universality of the scaling behavior of 
the localization length in the quantum Hall regime for sufficiently large correlation length of 
the disorder potential. Universal scaling is absent in numerical calculations for &correlated 
potentials projected onto the first Landau level. 
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