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Abstract – We applied symbolic transfer entropy (STE) for the detection of directed couplings be-
tween pulmonary variables registered during repeated progressive and maximal cardiopulmonary
exercise tests (CPET). We verified the hypothesis whether effort accumulation has an impact on
the decrease of the level of coupling between ventilation (VEbtps), fraction of expired oxygen
(FeO2) and carbon dioxide (FeCO2). A group of 10 volunteers performed two consecutive CPET
(T1 and T2) on a cycle ergometer. STE values obtained for T1 are higher than for T2, which
indicates that the interaction of these variables is sensitive to effort accumulation. The difference
of the STE between signals corresponds to the dominating direction of the coupling and indicates
that FeO2 and FeCO2 drives the VEbtps.
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Introduction. – Cardiopulmonary exercise test
(CPET) is commonly used as a noninvasive tool, which
allows the measurement of the physiological responses
during physical effort [1,2]. Usually, time series recorded
in CPET are used to estimate common physiological
indicators such as: maximal oxygen uptake (VO2max),
peak oxygen uptake (VO2peak) and ventilatory thresh-
olds [3,4]. They are determined from respiratory gas
exchange recordings [5–7]. However, these indicators
offer limited information regarding the complex nature
of the dynamic interactions between respiratory and
cardiovascular systems, which can be especially crucial

in exercise physiology [8–10] and specific adaptations to
training [11,12]. Using quantitative methods for deter-
mining the coupling or coordination between recorded
variables during CPET, it is possible to identify the
structure of interactions in the human body in response
to exercise-induced fatigue. Multivariate studies allow
to obtain information about the direction of coupling,
strength and time delays between variables [13].

Identification of interactions between components can
be supported, among others, by Granger causality [14–16],
entropy-based approaches [17,18], nonlinear prediction
tools [19], symbolic dynamics [20,21], the time delay
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stability measure [22,23], coordination [24,25] or transient
interactions [26,27]. The Granger causality approach is
based on the estimation of AR-models for the original time
series. The causality assessment focuses on the analysis of
errors obtained in the AR-model, when the second variable
is introduced to the model [28]. If the time series can be
better predicted, when the second variable is added to the
model, then interactions between datasets are detected.
Information theory provides the core of the entropy-based
measures [29]. This methodology makes it possible to as-
sess the amount of information needed to properly char-
acterize data or information shared between variables. To
quantify the information flow between bivariate system
symmetric mutual information and asymmetric transfer
entropy (TE) are commonly used. Especially the TE
measure allows to estimate the directionality of the cou-
plings between components in dynamical systems [30].
Another class of methods are especially used in causality of
multivariate recordings: mutual information from mixed
embedding (MIME) [31] and partial MIME [32]. Sym-
bolic approaches require the transformation of the original
data into symbolic form using a properly selected symbol
language.

Several methods dedicated for coupling and causality
detection offer various modifications depending on the
data type and the potential application of the results. We
refer to [13] for more detailed information and literature
review.

In response to the reported growing interest of mul-
tivariate assessment of respiratory and cardiorespiratory
changes as a consequence of effort accumulation and train-
ing interventions [11,14], we applied the symbolic transfer
entropy (STE) [33] for the estimation of directed couplings
in CPET experiments. The main goal of the analysis is to
verify the occurrence of changes of couplings between sig-
nals recorded during two repeated maximal CPET. Since
repeated bouts of maximal exercise increase the level of fa-
tigue, but do not seem to affect significantly the reliability
of maximal physiological variables (e.g., VO2max; [34]),
consecutive CPET seem an appropriate procedure to test
if effort accumulation impairs the respiratory couplings.
We hypothesize that effort accumulation should have in-
fluence on the coupling detection and should cause the
decrease of its magnitude in the second trial.

First, we described the experimental protocol and data
used in the coupling estimation. In the next part of the
study, we presented a detailed procedure, which supports
the application of the STE method for the signals recorded
during CPET. We proposed the directionality index and
statistical comparison between trails in the section “Re-
sults”. Finally, the discussion and summary is provided.

Data and protocol. –

Participants. Ten healthy and young adults (22.1 ±
2.9 y) participated in the study. There were four males and
six females with mean body mass index 22.8±1.7 kg · m−2.
Subjects had no sport specialization, however they were

involved in aerobic activities at least three times per week.
The study was approved by the Clinical Research Ethics
Committee of the Sports Administration of Catalonia and
it was carried out according to the Helsinki Declaration.

Protocol. Participants performed two consecutive pro-
gressive and maximal CPET (test 1, T1, and test 2, T2)
on a cycle ergometer. Both tests were separated by an un-
completed rest of 6min duration. The session started at
least 3 h after a light meal and participants were requested
to avoid any vigorous physical activity 72 h before. Due
to the short resting period between tests, T2 started with
altered initial physiological conditions. In order to quan-
tify such conditions, the VO2change parameter, defined as
follows, was used:

VO2change (%) =
VO2meanT2 − VO2meanT1

VO2meanT1
· 100%,

(1)
where VO2meanT2/T1 is an average oxygen consumption
from the initial baseline phase (20 samples averaged) in
T2 or T1 test.

At the beginning of the T2 phase, VO2mean values
are higher than in the T1 phase in the range of 6.12%
to 42.53% (mean: 21.93%; standard deviation (SD) =
10.68%). A greater percentage difference was associated
with a greater accumulated effort.

During the resting period participants kept sitting on
the cycle ergometer. The CPET started at 0W and
the workload was increased by 25W/min in males and
20W/min in females. The test stopped when participants
were not able to maintain the prescribed cycling frequency
of 70 rpm for more than 5 consecutive seconds.

Participants breathed through a valve (Hans Rudolph,
2700, Kansas City, MO, USA) and respiratory gas ex-
change (oxygen and CO2 content and air flow rate) was
measured by an automated open-circuit system (Meta-
sys, Brainware, La Valette, France). These signals were
recorded breath by breath and the system was calibrated
before each test.

Individual performances of participants resulted in dif-
ferent length of registered data. The average number of
samples in the group from two trials is equal 423.95 (SD:
83.38). The average signal length measured in seconds is
equal to 1119.7 s (SD: 119.08 s)

Data preprocessing. – The signals recorded during
CPET are nonstationary, which is shown by the occur-
rence of trends that can affect the final results of entropy
estimators [35]. Considering the specificity of the data
analyzed, we proposed the linear function in a moving
window to remove trends. The method was adopted from
detrended fluctuation analysis approach [36,37].

The algorithm is based on the following steps: i) selec-
tion of the sliding window width, ii) adjustment of the lin-
ear function in the analyzed window, iii) subtraction of the
fitted value from the original one in the analyzed window,
iv) sliding of the window by one sample forward. In the
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Fig. 1: The comparison of original CPET signals with data
after linear trends reduction (details are described in the text).

study, the trends removal has been performed for ven-
tilation (VEbtps, body temperature pressure saturated),
fraction of expired oxygen (FeO2) and fraction of expired
carbon dioxide (FeCO2) signals. As a result, after trends
reduction, the data oscillates around zero (fig. 1). Analy-
sis of the study group showed that the average number of
breaths per minute (fR) was 23. At the beginning of the
recording, when the load was low, the number of breaths
per minute fluctuated in the range of 14–17 fR. Therefore,
we decided to use a window width, which equals to 15
samples.

Symbolic transfer entropy. – Symbolic transfer en-
tropy has been proposed as a method of detection of the
dominant direction of information flow between time se-
ries in coupled systems [33]. It is an estimator of the TE
measure [18], based on permutation entropy and refers
to the symbolization of the data. STE indicates the
interactions between two systems X and Y . The cou-
pling is identified from datasets x = {x1, x2, x3, . . . , xN}
and y = {y1, y2, y3, . . . , yN}, which are simultaneously
recorded. The time series contain the same number N of
data points. The values of original series are transformed
to a new one by an appropriate symbolization.

Symbolization of time series. Symbolization involves
the transformation of original time series into discrete
symbol sequences. Obtained symbolized data retains
much of the important temporal information [21]. The
most common approach used in the symbolization pro-
cess refers to the variability of the observations x, y. The
segments are obtained from data range and then each seg-
ment is associated with a specified symbol. Two factors
play a key role in this symbolization method: i) the num-
ber of symbols k; ii) the algorithm of determination of the
segmentation points P .

A set of k symbols can be expressed as S =
{0, 1, 2, . . . , k − 1}. Each symbol is mapped on the
data points using segmentation points P = {P0, P1,

P2, . . . , Pk−1}, which are thresholds in the rules:

Si =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if xi ∈ [P0, P1),

1, if xi ∈ [P1, P2),

. . . . . .

k − 1, if xi ∈ [Pk−1, Pk),

(2)

where i ∈ N ; [P0, P1), [P1, P2), . . . are ranges of x values,
P0 is a minimal and Pk is a maximal value in the origi-
nal signal. The same symbolization procedure is applied
to the y time series. In this study, the selection of seg-
mentation points P is based on the probability density
function [38]. For this purpose, the empirical cumulative
distribution function (ECDF) is determined separately for
original signals. If 5 symbols are used, there are 6 segmen-
tation points on the ECDF curve (fig. 2(a)). For k = 5, the
signal is transformed into set of symbol S = {0, 1, 2, 3, 4}
(fig. 2(b)). Note that usually the segments do not have
the same width.

In the symbolization algorithm, the selection of the
number of symbols is crucial. If the number of symbols k
is too small, the original structure of information in the
time series may be lost. A too large set of symbols k
is associated with increased noise sensitivity [38]. In the
case of the same number of symbols and measured values
of the observation, the transformed signals and the orig-
inals are equal in the sense of the information that they
contain [21].

Optimization of symbolization parameters selection.
In order to minimize the risk of incorrect symbolization
parameters, the optimization algorithm was implemented.
The optimization relies on the estimation of the specified
entropy determined from the original time series and sig-
nal after symbolization.

The optimization is constructed from the observation of
the entropy changes: if not enough symbols are proposed,
the entropy will increase significantly after adding a new
symbol (and a segmentation point) [39]. In such situa-
tion, it can be stated that the set of k symbols and as-
sociated segmentation points provides a faithful symbolic
representation (alphabet) of the original signal and is op-
timal. Similar approaches have been proposed in several
studies [38–40].

In our study, the selection of the optimal symbol set S
was provided by determination of Shannon entropy val-
ues H as a function of k symbols [38]. The optimal kopt

is found, when the entropy from the symbolized signal
will be at least half of the entropy from the original ob-
servations Horig (fig. 3) [38]. The Shannon entropy H is
defined as [29]

H = −
N∑

i=1

p(xi) log p(xi), (3)

where p(xi) is the probability of x = xi.
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Fig. 2: The example of the symbolization of VEbtps signal.
(A) Empirical cumulative distribution curve for k = 5 symbols.
Segmentation points determined by probability values: 0, 0.2,
0.4, 0.6, 0.8, 1. (B) Symbol representation of VEbtps signal
resulting from the division presented in (A).

Typically, the entropy of the transformed signal is in-
creasing with the number of k symbols (fig. 3). Time
series decoded using the individually determined parame-
ter m (word width) are characterized by higher Shannon
entropy values in comparison with the original signal.

Based on the Shannon entropy condition, the optimal
number of symbols for the analyzed VEbtps, FeO2, and
FeCO2 signals was k = 10.

Symbol sequence: embedding dimension. The next
step of the symbolization process is the determination of
the m-length symbol sequences (words). This sequence
reflects temporal patterns given in original data. The de-
fined m-length word is usually moved along the symbolized
time series by a specific step (here is equal to 1), causing
a construction of a new sequence (word).

Fig. 3: Shannon entropy as a function of the number of symbols
used for transformation for original, symbolized and decoded
VEbtps signal.

The choice of the appropriate m also refers to embed-
ding dimension. We suggested the Cao method [41] for
m estimation and applied the R package nonlinearTseries
v0.2.7 (function: estimateEmbeddingDim.r) [42] for its de-
termination. The dimension m was found for each par-
ticipant and signal separately. The values m vary from
m = 7 to m = 10. According to the results from [38], the
parameter m should be the same for both signals in STE
estimation. Hence, a smaller dimension obtained for the
pair of detrended signals is selected for the analysis.

Determination of directed information flow. The in-
terrelations between the components of the system can
be obtained from estimation of the exchange information
(information flow) within its elements. TE is a nonlin-
ear method, which was proposed for quantification of the
couplings in multivariate systems. TE is constructed to
effectively detect the asymmetries of information flow be-
tween driving components and targets [33]. In the paper,
we focused on the bivariate transfer entropy (BTE).

The BTE is constructed from Shannon entropy (eq. (3)),
which is adapted to bivariate recordings. The coupling
estimation uses Shannon entropy but also the Kullback-
Leibler distance, which describes the divergence between
distributions p and q :

DKL =
∑

n

p(xn) log
q(xn)
p(xn)

. (4)

The definition given by eq. (4) has similarity to eq. (3),
however is represented in conditional form. Equation (4)
can be rewritten as follows:

DKL =
∑

n

p(xn) log[q(xn)] −
∑

n

p(xn) log[p(xn)]. (5)
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Fig. 4: STE ((A), (B)) and directionality index (C) values determined for respiratory variables in trial T1 and T2 of CPET
experiment. Results are presented for each subject separately for the following trigger → target pairs: (A) FeO2 → VEbtps,
FeCO2 → VEbtps, FeCO2 → FeO2 and for opposite directions in (B) VEbtps → FeO2, VEbtps → FeCO2, FeO2 → FeCO2.
In panel (C) the horizontal zero line is plotted for better visualization of the sign of the directionality index obtained for:
FeO2 → VEbtps, FeCO2 → VEbtps, FeCO2 → FeO2.

It can be seen that the DKL marker shows the similar-
ity between distributions p and q, when it is close to
zero. The BTE uses such comparison between two dis-
tributions. The first distribution is constructed basing
on the assumption that the current event xt in the pro-
cess X depends on its past and additionally on the past
events of the driving process Y : p(xt|xt−1, yt−1). The sec-
ond distribution is obtained (and constructed) from the
opposite assumption: independence between X and Y pro-
cesses: q(xt|xt−1). It means, that x events are defined
only by their past and do NOT have a driver in the Y
process [43]. Note that the presented comparison should
be also interpreted as the deviation from the Markov prop-
erty: p(xi|xi−1, yi−1) = p(xi|xi−1), in which the process
is without memory [43]. As a result, the DKL marker
(eq. (4)) can be used for the TE estimation as

TEY →X =
N∑

i=1

p(xi, xi−1, yi−1) log
p(xi|xi−1, yi−1)

q(xi|xi−1)
, (6)

where p(xi, xi−1, yi−1) is a joint probability density func-
tion, and p(xi|xi−1, yj−1) is a conditional probability den-
sity function.

STE is an extension of TE, where instead of origi-
nal data, the signals after symbolic transformation are
used [14]:

STEY →X =
N∑

i=1

p(xS
i , xS

i−1, y
S
i−1) log

p(xS
i |xS

i−1, y
S
i−1)

p(xS
i |xS

i−1)
,

(7)
where xS

i represents the symbol sequence with m length.
While the STE can be determined for both directions
Y → X and X → Y , a directionality index DS

Y →X

was introduced, which measures asymmetry of informa-
tion transfer between Y and X:

DS
Y →X = STEY →X − STEX→Y . (8)

A positive value of the DS
Y →X indicates that Y dominates

in the information flow over X and can be treated as a
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Table 1: Wilcoxon test results obtained from comparison of T1
and T2 group for trigger → target signal pairs.

Trigger signal Target signal p-value

VEbtps FeO2 0.053

FeO2 VEbtps 0.019

VEbtps FeCO2 0.014

FeCO2 VEbtps 0.003

FeCO2 FeO2 0.032

FeO2 FeCO2 0.116

driver. A negative directionality index value refers to cou-
pling with X as a driver. A symmetric bidirectional cou-
pling is detected, when DS

Y →X = 0.

Results. – The results of STE are presented in fig. 4
in form of separate values of BTE and directionality in-
dex DS

Y →X taking into account the trial number (T1
and T2). Directed interactions were analyzed between
VEbtps, FeO2 and FeCO2 signals in both trials. The
STE method detects the information transfer between the
VEbtps, FeO2 and FeCO2 signals in all participants in
both tests. For all causality relations the STE values have
similar magnitudes. They vary between 0.87 and 1.66. As
a result, it is possible to perform the comparison between
attempts and assess the direction of information flow. The
magnitudes of STE decrease between trials, especially in
cases presented in fig. 4(A). We detected a decrease in
information flow in the T2 phase in comparison to T1.
This is clearly observed especially for FeCO2 → VEbtps
(and vice versa), FeO2 → VEbtps, FeCO2 → FeO2 pairs
(fig. 4(A)) and confirmed by nonparametric Wilcoxon sta-
tistical test, p < 0.05 (table 1). A clear difference in STE
values is not observed between the T1 and T2 for signal
pairs: VEbtps → FeO2 and FeO2 → FeCO2 (fig. 4(B)).

In the case of multiple testing approach (considering
Bonferroni correction) the significant result is obtained
only for one pair: FeCO2 → VEbtps (table 1). Sepa-
rate comparisons in table 1 are proposed due to bivariate
coupling analysis. These results suggest the occurrence
of not equal magnitudes of interactions between respira-
tory pairs of variables and indicate a possible dominating
direction of coupling.

The directionality index DS
Y →X (fig. 4(C)), which mea-

sures asymmetry of information transfer, indicates that
FeO2 and FeCO2 drive the VEbtps. This is confirmed by
the number of positive DS

FeO2→VEbtps and DS
FeCO2→VEbtps

values in both T1 and T2 phases (table 2). In the case
of FeO2 → VEbtps all directionality indexes in T1 and
9 (of 10) in T2 results are positive. The similar relation
is observed in the FeCO2 → VEbtps pair. The dominant
number of negative DS

FeCO2→FeO2
values (only 3 of them

Table 2: Positive directionality index DS
Y →X values between

signal pairs in T1 and T2 phases. The columns contain number
of positive index values.

Positive directionality indexTrigger Target
signal signal T1 [–] T2 [–]

FeO2 VEbtps 10 9

FeCO2 VEbtps 9 10

FeCO2 FeO2 3 3

are positive) indicates information transfer from FeO2 to
FeCO2.

We performed simplified assessment of the STE magni-
tudes to support the significance of the first application of
STE to respiratory variables. For this purpose, we used
the procedure proposed by Hamman et al. [44], which com-
bines the data from one subject with signals from other
subjects. One signal for a particular subject was combined
with nine respiratory variables from other persons. As a
result, maximal STE in such approach for T1 was 0.008
and for T2 was 0.023. These values are much smaller than
those obtained in direct coupling assessment of respiratory
variables for the same person (note that they exceed 0.8 in
all cases shown in fig. 4(A), (B)) and confirm non-random
interrelations between the studied variables.

Conclusions. – The assessment of the body’s efficiency
and adaptation processes in response to a given load is a
challenge for which CPET are commonly used [2]. An
increasing number of researchers report the need for new
methods to undertake a comprehensive analysis of time
series recorded during CPET [8,10]. As an alternative
to the commonly recorded physiological markers, such as
VO2max or ventilatory thresholds, we utilized STE for the
assessment of directed coupling and dynamical behavior
of the respiratory system during CPET [33]. As proposed
previously, these techniques may surpass the prognostic
limitations [45,46], and limited sensitivity to training and
other types of interventions [12,47–49] of the currently
measured variables. The reduction of the information flow
in the second test, reflecting the inefficacy of the feedfor-
ward and feedback mechanisms mediated by chemorecep-
tors to adjust ventilation [50], is not captured by mean
VO2max values, which were similar in T1 and T2. In addi-
tion, the STE shows that the information transfer between
the studied variables is asymmetric but bidirectional. This
means that there is a circular causality, and not just a
cause-effect relationship between FeCO2 and FeO2 with
VEbts, as usually assumed. This circular causality, and
not a specific physiological value (e.g., VEmax, VO2max)
may be responsible for the increased impairment of the
control and regulation of the cardiorespiratory function
that brings to exhaustion in CPET.
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The methodology that allows the analysis of the signals
recorded during maximal exercise has many challenges.
The main one is the non-stationarity reduction. The non-
stationarity manifests by the presence of trends that have
a direct impact on the nonlinear entropy measures [8,35].
Due to the above, the method of matching the linear func-
tion in a moving window was used to remove the trend [37].
The determination of couplings occurrence was addition-
ally preceded by a comprehensive analysis of the selection
of appropriate symbolization parameters, i.e., the number
of symbols (using Shannon entropy) and the embedding
dimension [38,41] for STE analysis.

The analysis of the obtained STE results shows that
bivariate symbolic approach corresponds to the relevance
assumptions in the CPET data analysis. It allows the de-
tection of couplings between VEbtps, FeO2 and FeCO2

signals which provide information about response of the
respiratory system to exercise-induced fatigue. STE with
adapted symbolization methods can be used for short
physiological signals, characteristic for CPET protocols.
The developed technique indicates the dominant direction
of information flow. Symbolization with the number of
symbols smaller than the number of samples introduces
a reduced resolution of the data, which is large enough
to satisfactorily reproduce the characteristics of the orig-
inal one based on its variability. STE results can be a
tool to verify whether the effort accumulation has an im-
pact on the decrease of the level of coupling. The method
is sensitive to the effects of changed physiological condi-
tions resulting from insufficient recovery after T1. The
effect is observed in the reduced STE magnitudes de-
termined for T2. We can conclude about the potential
application of the STE method for the coupling estima-
tion between respiratory variables during graded maximal
CPET.
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