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Abstract – Landauer’s principle states that information erasure requires heat dissipation. While
Landauer’s original result focused on equilibrium memories, we here investigate the reset of infor-
mation stored in a nonequilibrium state of a symmetric two-state memory. We derive a nonequi-
librium generalization of the erasure principle and demonstrate that the corresponding bounds on
heat and work may be reduced to zero. We further introduce reset protocols that harness energy
and entropy of the initial preparation and so allow to reach these nonequilibrium bounds. We fi-
nally provide numerical simulations with realistic parameters of an optically levitated nanosphere
memory that support these findings. Our results indicate that local dissipation-free information
reset is possible away from equilibrium.

editor’s  choice Copyright c© 2020 EPLA

Introduction. – According to the standard (equilib-
rium) formulation of Landauer’s principle, the erasure of
one bit of information generates at least kT ln 2 of heat
and consumes the same amount of work [1]. Here T is
the temperature of the environment to which the mem-
ory device is coupled, k the Boltzmann constant and ln 2
the information content of one bit. Information erasure is
thus unavoidably dissipative [2,3]. Landauer’s principle is
a central result of the thermodynamics of information that
applies to all logically irreversible transformations [4,5]. It
additionally imposes a fundamental physical limit to the
downsizing of binary switches, such as field effect transis-
tors [6–8]. The existence of the Landauer bound has been
established in a number of experiments in which two-state
memories have been realized with an optical tweezer [9],
an electrical circuit [10], a feedback trap [11] and nano-
magnets [12,13]. Meanwhile, growing energy consumption
and dissipation in modern integrated electronics has be-
come a major technological challenge that threatens future
progress [6–8]. It has recently been shown that the work
required for erasure may be reduced to zero in nonequi-
librium asymmetric memories in the overdamped regime,
thus allowing to reduce energy consumption [14–16]. How-
ever, these findings do not address the more pressing issue
of control and suppression of heat dissipation.

The study of nonequilibrium memories is not purely aca-
demic. Two different types of electronic storage devices

are usually distinguished [17]. Read-only memories
(ROM) (and their variants EPROM and EEPROM1) are
non-volatile memories that retain the information stored
in them in the absence of a power source. Information
is here encoded in an equilibrium state, as considered in
Landauer’s original principle [1]. By contrast, random-
access memories (RAM), the most common memories in
modern computers, are volatile and the stored data is lost
when power is switched off. Information is in this case
encoded in a nonequilibrium state, whose preparation re-
quires a given amount of energy and entropy. At the
same time, novel switching devices, beyond the standard
FET technology, are currently being explored in order to
decrease power dissipation [18]. Promising examples in-
clude tunable nanomechanical oscillators that operate in
the weakly damped regime [19–22].

Motivated by these observations, we here perform a de-
tailed investigation of nonequilibrium information erasure.
We first derive a generalization of Landauer’s principle
that holds for information initially stored in a nonequilib-
rium state. We show that both heat and work associated
with the reset process may be theoretically reduced below
the equilibrium Landauer bounds of kT ln 2, provided the
preparation energy and entropy are properly harnessed.

1EPROM is an erasable programmable read-only memory and
an EEPROM is an electrically erasable programmable read-only
memory [17].
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Both quantities may even change sign, indicating that
work may be produced and heat absorbed with the help
of the prepared initial state. We stress that these findings
do not violate the second law, but directly follow from it
when applied to the considered nonequilibrium situation.
We further introduce novel erasure protocols that allow us
to reach these nonequilibrium bounds in a generic, sym-
metric double-well potential. We finally discuss a possi-
ble experimental verification of the nonequilibrium erasure
principle in the underdamped regime using an optically
levitated nanosphere [23] and provide extensive numerical
simulations of the process with realistic parameters.

Nonequilibrium erasure principle. – We begin by
analyzing an erasure cycle that consists of a preparation
and a reset phase. To that end, we consider a general
memory device weakly coupled to a heat bath at temper-
ature T . The total entropy change for system and bath
during the reset phase is ΔSres = ΔSmem+ΔSbat ≥ 0 [24].
Owing to its large size, the bath always remains in equi-
librium and thus ΔSbat = Q/T , where Q is the heat dissi-
pated into the environment. The system is assumed to be
initially in a nonequilibrium state with phase-space dis-
tribution ρ(x, p, 0) where x denotes the position and p
the momentum. After reset of duration τ , the memory
is in state ρ(x, p, τ). The work done on the system dur-
ing reset is W = ΔFeq + TΔI + TΔSres [25–27], where
ΔFeq is the equilibrium free energy difference and I(t) =
S(ρ(t)||ρeq(t)) = k

∫
dxdp ρ(t) ln[ρ(t)/ρeq(t)] the relative

entropy between the nonequilibrium state ρ(t) and the cor-
responding equilibrium state ρeq(t). The entropic distance
I may be interpreted as the amount of information needed
to prepare ρ(t) from ρeq(t) [28]. When the potential of the
memory device is the same before and after reset, initial
and final equilibrium states are equal, ρeq(0) = ρeq(τ).
The free energy difference therefore vanishes, ΔFeq = 0.
Using the first law, the dissipated heat may next be writ-
ten as Q = W − ΔUres = TΔI + TΔSres − ΔUres, where
ΔUres is the variation of internal energy during reset. For
a complete erasure cycle consisting of preparation and re-
set, we have ΔU = ΔUpre + ΔUres = 0. According to the
second law, the total entropy production is nonnegative,
ΔSres ≥ 0 [24]. As a result, we obtain the following two
inequalities for heat and work:

Q ≥ QL = T [I(τ) − I(0)] − ΔUres, (1)

W ≥ WL = T [I(τ) − I(0)]. (2)

Equations (1), (2) are nonequilibrium generalizations of
Landauer’s erasure principle to which they reduce for
initial and final equilibrium states that correspond to
I(τ) − I(0) = k ln 2 and U(0) = U(τ). They may be
compactly written as Q ≥ ΔF − ΔUres and W ≥ ΔF ,
where F = F + TI is the information free energy [5].
We observe that the nonequilibrium Landauer bounds for
heat and work, QL and WL, can in principle be controlled
through the initial entropic distance to equilibrium I(0)
and the preparation energy, ΔUpre = −ΔUres. This opens
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Fig. 1: Two-state memory. Double-well potential (4) used as a
generic symmetric two-state memory. (a) Initially, 1 bit of in-
formation is stored in a configuration where the two potential
wells are occupied with equal probability 1/2. Blue (yellow)
dashed lines represent equilibrium (nonequilibrium) distribu-
tions used for storage. (b)–(d) Information is reset by bringing
the particle with probability 1 to the right well in a metastable
state by cyclically lowering the barrier and applying a tilt.

the fascinating possibility to reduce both the amounts of
heat and work required for reset below the equilibrium
value of kT ln 2. The two essential questions that we
here address are a) whether the nonequilibrium Landauer
bounds (1), (2) can be actually reached in practice and
b) if yes, how?

To answer these questions, we investigate a Brownian
particle in a symmetric double-well potential. Such a two-
state system may be regarded as a generic model for an
elementary memory and has been employed in the experi-
ments [9,11–13]. We describe the dynamics of the particle
with the underdamped Langevin equation [29],

mẍ + γẋ + V ′(x, t) − Af(t) = F (t), (3)

where m is the mass of the particle, γ the friction coef-
ficient, f(t) a tilting force with amplitude A, and F (t)
a centered white noise force with variance 〈F (t)F (t′)〉 =
2mγkTδ(t − t′). For concreteness, the symmetric double-
well potential V (x, t) is taken to be of the form (fig. 1)

V (x, t) = −
[
h(t)a + g(t)

b

2
x2

]
exp

(−cx2

2

)
, (4)

with a tunable barrier height via g(t) and a tunable barrier
width via the function h(t). Such a potential appears nat-
urally in the optomechanical setup discussed below. We
stress that our findings do not depend on the specific shape
of the double-well potential nor on the level of damping.

Equilibrium erasure protocol. – To put our
nonequilibrium results into proper perspective, we first
investigate commonly used equilibrium erasure proto-
cols [9,11–13]. The particle is initially prepared to oc-
cupy either of the two wells with equal probability 1/2
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Fig. 2: Reset protocols. The sawtooth function f(t), eq. (5),
applies the tilt toward the right well, while the function g(t),
eq. (6), cyclically modulates the barrier height. The barrier
width is controlled by h(t). The blue (solid) lines show the
equilibrium protocol (5), (6) and the yellow (dashed) lines
the nonequilibrium protocol (9), (10) designed to harness the
nonequilibrium preparation energy and entropy.

(fig. 1). In this configuration Smem(0) = k ln 2, I(0) = 0
and the memory stores one bit of information. That in-
formation is erased by modulating the shape of the con-
fining potential during time τ such that the particle ends
up with probability 1 in one of the wells, Smem(τ) = 0,
I(τ) = k ln 2, irrespective of its initial location [30]. The
reset operation is implemented by decreasing the height of
the barrier via g(t) and applying the tilt f(t) in a cyclic
manner, h(t) = 1 throughout this process (fig. 2, blue solid
lines) [31]:

f(t) =

⎧⎪⎪⎨
⎪⎪⎩

(t − t1)/(t2 − t1), t1 < t ≤ t2,

1 − (t − t2)/(τ − t2), t2 < t ≤ τ,

0, otherwise,

(5)

g(t) =

⎧⎨
⎩

1 − B sin
[
π(t − t0)
τ − t0

]
, t0 < t ≤ τ,

1, otherwise.
(6)

The parameter B controls the amplitude of the barrier
lowering. Erasure protocols of this type have been imple-
mented in the recent experiments [9,11–13], where infor-
mation was encoded in an initial equilibrium state. We
therefore call them equilibrium erasure protocols.

We choose the initial nonequilibrium distribution of the
symmetric memory device to be given by (fig. 1)

ρ(x, p, 0) =
1

Z ′
b+ε

exp
[
−β

(
p2

2m
+ V ′

b+ε(x)
)]

, (7)
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Fig. 3: Nonequilibrium Landauer bounds. Heat QL (red),
eq. (1), and work WL (blue), eq. (2), as a function of the pa-
rameter ε that quantifies the departure from equilibrium of the
initial state, eq. (7). Both nonequilibrium bounds decrease and
become negative with increasing values of ε.

where Z ′
b+ε is the normalization constant and β = 1/(kT )

the inverse temperature. The modified potential reads

V ′
b+ε(x) = −

[
a′(b + ε) +

b + ε

2
x2

]
exp

(
−cx2

2

)
, (8)

with a′(b′) = b′/(2c)(2 − cx̄2) and x̄ =
√

2/(bc)(b − ca)
the fixed position of the potential minima (fig. 1).
Equations (7) and (8) are chosen in order to decrease en-
ergy and entropy of the initial nonequilibrium state as
compared to the equilibrium state. In particular, the
nonequilibrium state is narrower than the corresponding
equilibrium state (fig. 1). The parameter ε controls the
departure from equilibrium and eq. (7) reduces to the
equilibrium distribution ρeq(x, p, 0) for ε = 0. The initial
nonequilibrium state (7) may be prepared by letting the
system equilibrate in the modified potential (8) and then
instantaneously, that is, much faster than the relaxation
time of the system, switching to the unmodified poten-
tial (4). The energetic cost of this preparation is ΔUpre.
Additional energy may be dissipated if the initial state
preparation is done in finite time.

In order to study the approach to the nonequilibrium
Landauer bounds (1), (2), we simulate the reset process
by numerically solving the Langevin equation (3) for the
protocols (5) and (6) with experimentally realistic param-
eters, using a 4th-order Runge-Kutta method (see the
Supplementary Material Supplementarymaterial.pdf
(SM)). The starting points of the simulations are randomly
generated according to ρ(x, p, 0), eq. (7). The final distri-
bution ρ(x, p, τ) is determined from the end points of the
simulated trajectories. We evaluate the stochastic work
as W̃ =

∫
dt ∂V (x, t)/∂t and the stochastic heat from the

first law, Q̃ = ΔŨ − W̃ [31,32]. We calculate their respec-
tive mean values, W and Q, by averaging of many (∼105)
trajectories. Figure 3 shows the Landauer bounds QL and
WL, eqs. (1), (2), as a function of the parameter ε, for
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Fig. 4: Work consumed during reset. Work W as a function of
the reset time τ for three values of the nonequilibrium param-
eter ε: ε = 0 (blue circles), ε = 3b (yellow squares), ε = 8.5b
(green triangles). (a) is obtained with the equilibrium proto-
cols (5), (6); (b) is obtained with the nonequilibrium protocols
(9), (10). The two nonequilibrium curves are shifted in time by
the duration of the nonequilibrium process, τε (∼20ms), com-
pared to the equilibrium one. The solid lines display a fit with
the function ∼1/τ . The dashed lines show the nonequilibrium
Landauer bound WL (2).
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Fig. 5: Heat dissipated during reset. Heat Q as a function of
the reset time τ for the same three values of the nonequilib-
rium parameter as in fig. 4. (a) is obtained with the equilibrium
protocols (5), (6); (b) is obtained with the nonequilibrium pro-
tocols (9), (10). The solid lines display a fit with the function
∼1/τ . The dashed lines show the nonequilibrium Landauer
bound QL (1).

an infinitely large τ , which corresponds to a final equi-
librium state with I(τ) = 0. As expected, both QL and
WL decrease with increasing ε, that is, with increasing ini-
tial departure from equilibrium I(0), and eventually turn
negative. The actual work and heat, W and Q, for the
equilibrium reset process are plotted in figs. 4(a) and 5(a)

as a function of the duration τ for three different values
of ε, indicated by the circle, square and triangle symbols
in fig. 3. We observe that, for all values of the param-
eter ε, work W remains above the equilibrium Landauer
bound of kT ln 2 (horizontal dashed lines) in the limit of
long times, while heat Q is only slightly reduced below
that value. The nonequilibrium bounds (1) and (2) are
thus not reached. By naively implementing the commonly
used equilibrium protocols (5) and (6) [9,11–13], the extra
energy and entropy that are required to prepare the ini-
tial nonequilibrium state ρ(0) are simply dissipated at the
beginning of the erasure process, and therefore lost.

Nonequilibrium erasure protocol. – In order to
successfully harness the preparation energy and entropy to
reduce work and heat dissipated during reset, we modify
the equilibrium protocol g(t), eq. (6), and h(t) by adding
an additional modulation of the potential at the start of
the process (fig. 2, yellow dashed lines):

ḡ(t) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +
b′ − 1

b

t′

τ1
, t0 − τε < t ≤ t0 − τε + τ1,

1 +
b′ − 1

b

(
τε − t′

τε − τ1

)
, t0 − τε + τ1 < t ≤ t0,

1 − B sin
[
π(t − t0)
τ − t0

]
, t0 < t ≤ τ,

1, otherwise,

(9)

h̄(t) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 +
a′ − 1

a

t′

τ1
, t0 − τε < t ≤ t0 − τε + τ1,

1 +
a′ − 1

a

(
τε − t′

τε − τ1

)
, t0 − τε + τ1 < t ≤ t0,

1, otherwise,

(10)

with b′ = b + ε and t′ = t − t0 + τε. The constants
τε (∼20 ms) and τ1 (∼0.2 ms) depend in general on the pa-
rameter ε. They are chosen in order to effectively extract
the preparation energy and entropy of the initial nonequi-
librium state. Figures 4(b) and 5(b) show the erasure work
W and the dissipated heat Q computed with the nonequi-
librium erasure protocol (9), (10) for the same three val-
ues of ε as before (the tilting function f(t), eq. (5), is kept
unmodified). We see that both quantities now asymptot-
ically approach the nonequilibrium Landauer bounds (1),
(2) for higher values of time. In particular, heat van-
ishes for ε = 3b and work vanishes for ε = 8.5b. In these
cases, the memory has been reset without work and heat
dissipation.

Experimental setup. – To experimentally verify the
nonequilibrium Landauer principle (1) and (2), we propose
to use an optically levitated nanoparticle. The two main
advantages of this setup are that the optical confining po-
tential can be flexibly tuned and that the underdamped
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regime, described by the Langevin equation (3), is easily
accessible. While first experiments on optical levitation
have already been realized in the early 1970s [33], more
recently an excellent experimental control in ultra-high
vacuum has been demonstrated in optical tweezers [34].
In order to implement a double-well potential with a con-
trolled barrier height g(t), we suggest to form an opti-
cal trap by the combination of a TEM00 and a TEM01
mode inside a Fabry-Perot cavity, leading to a potential
of the form (4) (alternative options to create complex po-
tential landscapes may be found in ref. [35]). This con-
figuration ensures particularly low intensity fluctuations
of the optical trap and the additional cavity power en-
hancement allows to use a wide trap (here approximately
80 micrometers) with low driving powers of only a few
milliwatts. Stable optical trapping directly inside an op-
tical cavity has been lately successfully demonstrated in
refs. [36–38].

The height function g(t), eqs. (6) and (9), may be
changed by varying the power of the cavity modes, while
the tilt f(t), eq. (5), may be implemented using the ra-
diation pressure from a cavity-independent light source.
The feasibility of this approach is underlined by a simi-
lar strategy that has been recently followed to achieve ra-
dial feedback cooling of levitated microparticles [39]. The
experimental parameters chosen for the numerical simu-
lations (table 1 in the SM) are taken from ref. [36]. Ad-
ditional information on experimental details and position
readout may be found in the SM.

Discussions. – We have studied the erasure of infor-
mation encoded in a nonequilibrium state of a symmetric
memory. We have concretely derived a nonequilibrium
extension of Landauer’s principle and shown that the cor-
responding bounds for heat and work, eqs. (1) and (2),
may both be reduced to zero. Using a generic model
based on an underdamped Brownian particle in a double-
well potential, we have demonstrated that these nonequi-
librium limits may be reached by properly tuning the
reset protocol to harness the initial preparation energy
and entropy. We have further performed detailed numer-
ical simulations of the nonequilibrium Landauer princi-
ple with realistic parameters using an optically levitated
nanosphere to support these findings. In contrast to the
standard equilibrium situation, the complete nonequilib-
rium erasure cycle here consists of distinct preparation and
reset stages (the preparation stage being absent for equi-
librium erasure). This offers new and powerful means to
control the thermodynamics of logically irreversible oper-
ations. By, for instance, considering a computer architec-
ture where preparation and processing zones are spatially
separated [40], logically irreversible transformations, such
as the reset-to-one operation, could be performed locally
at no energetic cost and without dissipating any heat. The
thermodynamic cost associated with the generation of the
initial nonequilibrium state would be restricted to the re-
mote preparation zone before the bit is transferred to the

processing area. Remarkably, while information erasure
can never be performed for free, going away from equi-
librium permits local dissipation-free logically irreversible
reset.
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M., Höfling S., Worschech L. and Carlotti G.,
Nano Energy, 19 (2016) 108.

[13] Hong J., Lambson B., Dhuey S. and Bokor J., Sci.
Adv., 2 (2016) e1501492.

[14] Sagawa T. and Ueda M., Phys. Rev. Lett., 102 (2009)
250602.

[15] Dillenschneider R. and Lutz E., Phys. Rev. Lett., 104
(2010) 198903.

[16] Gavrilov M. and Bechhoefer J., Phys. Rev. Lett., 117
(2016) 200601.

[17] Stallings W., Computer Organization and Architecture
(Pearson, London) 2015.

[18] Theis T. N. and Solomon P. M., Proc. IEEE, 98 (2010)
2005.

[19] Mahboob I. and Yamaguchi H., Nat. Nanotechnol., 3
(2008) 275.

[20] Bagheri M., Poot M., Li M., Pernice W. P. H. and
Tang H. X., Nat. Nanotechnol., 6 (2011) 726.

[21] Venstra W. J., Westra H. J. R. and van der Zant

H. S. J., Nat. Commun., 4 (2013) 2624.
[22] Ricci F., Rica R. A., Spasenovic M., Gieseler J.,

Rondin L., Novotny L. and Quidant R., Nat. Com-
mun., 8 (2017) 15141.

[23] Aspelmeyer M., Kippenberg T. J. and Marquardt

F., Rev. Mod. Phys., 86 (2014) 1391.
[24] Zemansky M. W. and Dittman R. H., Heat and Ther-

modynamics (McGraw-Hill, New York) 1997.
[25] Takara K., Hasegawa H. H. and Driebe D., Phys.

Lett. A, 375 (2010) 88.
[26] Deffner S. and Lutz E., Phys. Rev. Lett., 107 (2011)

140404.

60004-p5



M. Konopik et al.

[27] Esposito M. and Van den Broeck C., EPL, 95 (2011)
40004.
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