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PACS 72.15.Rn – Localization effects (Anderson or weak localization)

Abstract – We present a detailed analysis of the length- and timescales needed to approach
the critical region of MBL from the delocalised phase, studying both eigenstates and the time
evolution of an initial state. For the eigenstates we show that in the delocalised region there is
a single length, which is a function of disorder strength, controlling the finite-size flow. Small
systems look localised, and only for larger systems do resonances develop which restore ergodicity
in the form of the eigenstate thermalisation hypothesis. For the transport properties, we study
the time necessary to transport a single spin across a domain wall, showing how this grows quickly
with increasing disorder, and compare it with the Heisenberg time. For a sufficiently large system
the Heisenberg time is always larger than the transport time, but for a smaller system this is not
necessarily the case. We conclude that the properties of the MBL transition cannot be explored
using the system sizes or times available to current numerical and experimental studies.

editor’s  choice Copyright c© EPLA, 2020

Introduction. – The question of whether or not a
generic, isolated quantum system must necessarily reach
thermal equilibrium, as described in the canon of Statisti-
cal Mechanics [1–3], has received a great deal of attention.
This question is important both for our understanding of
the fundamental laws of Nature (which are quantum me-
chanical at their core) and for applications in the grow-
ing field of Quantum Technologies. Counterexamples in
various forms have been found as time-translation invari-
ant systems with strong disorder (many-body localised
systems [4–10]), periodically driven systems (time crys-
tals [11–13]), and even systems without disorder [14–21].
Many-body localised systems, the focus of this letter, pos-
sess an extensive set of quasilocal conserved quantities (so-
called local integrals of motion) [22–25], and thus exhibit
no transport of conserved quantities such as particles or
energy, but only of entanglement [26].

The ergodic phase of these systems, found at weak
disorder strengths preceding the many-body localisation
(MBL) transition, also exhibits fascinating phenomena,
with numerical studies observing anomalous subdiffusive

(a)E-mail: staylor@ictp.it (corresponding author)

transport [27–33], yet also volume-law entanglement en-
tropy of eigenstates [9]. Despite the fact that there is
compelling evidence for both the subdiffusive phase, dom-
inated by an unusually slow (but complete) decay of exci-
tations, and for the freezing of excitations for very strong
disorder (at least for the small system sizes in numerical
studies or small times observed in cold atoms experi-
ments [34]), the properties of the phase transition sepa-
rating the ergodic and MBL phases remain elusive [35].
This has led to a fierce debate in the community [36–38]
on the nature and even the existence of an MBL transition.

For lack of a theory of the transition, all numerical stud-
ies based on exact diagonalisation (ED) [39] have adopted
a single-parameter scaling to achieve a data collapse. It
is assumed that a single lengthscale ξ ∝ |W − Wc|−ν ,
where W is a measure of the strength of the disorder,
diverges at the transition, and all other quantities (en-
tanglement entropy, correlation functions, level statistics,
etc.) are functions of L/ξ, where L is the system size.
The collapse thus obtained is usually quite good (see for
example [35,40–42]) but the critical exponents contradict
simple bounds set by general considerations [43]: numeri-
cal works find ν � 1, while the arguments in ref. [43] would
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imply ν ≥ 2. A possible explanation of this contradic-
tion is given by the strong-disorder renormalisation group
(SDRG) picture of the MBL transition [44–47], which
can imply that the transition has the characteristics of
a Kosterlitz-Thouless transition [48,49]. This transition is
known to have particularly bad (logarithmic) corrections,
which could explain how numerical methods are fooled
into finding unphysical critical exponents.

In this letter we study the disordered spin-1/2
Heisenberg chain:

H = J

L∑
n=1

�sn · �sn+1 + hns
z
n, (1)

where L is the system size, J = 1, and hn ∈ [−W,W ]
are uniformly distributed independent random numbers.
We argue that the physics of the MBL transition is not
accessible by current numerical and experimental meth-
ods, and that even approaching the transition from the
ergodic side is unfeasible with methods like ED. Depend-
ing on the true critical disorder, large system sizes are
needed to make any claim about the physics close to the
transition. Under reasonable assumptions, we suggest sys-
tems sizes L � 40 are necessary. We reach this conclusion
on two independent fronts. First we analyse eigenstates
and in particular the validity of the eigenstate thermalisa-
tion hypothesis (ETH), with a slightly different focus from
previous works [50–53]. We show that for W ≤ 2.4 (well
within the subdiffusive region [30,33]), if the system size
is larger than a critical length L0, then the ETH is fully
recovered and the matrix elements of local operators have
a Gaussian distribution. At W = 2.8 we have L0 � 22,
which is the largest system size we can analyse, and L0(W )
is very much linear in W up to this disorder strength. We
observe no signature of the upward curvature preceding
the putative MBL transition at W = Wc ∼ 4, suggesting
that the transition must be at significantly larger disorder
strengths (this is corroborated by the second part of the
letter, where a quantity analogous to L0(W ) shows cur-
vature only for W � 2.5). On the second front, we quan-
titatively study the slow transport on the ergodic side.
We argue that the dynamics could be so slow that the er-
godic time becomes larger than the Heisenberg time for
small systems and large disorder, and one cannot make
reliable statements about the true behaviour in the ther-
modynamic limit (TDL) because Heisenberg recurrences
can be mistaken for localisation. The Heisenberg time has
been compared to times over which chaos is developed in
ref. [36] for a range of L,W , and it is conjectured that
for any L there is always a disorder value W for which
this is true. Our main observation is rather different: one
cannot extract the location (or even the existence) of the
transition from small ED studies.

Lengthscales near the MBL transition. – In an
isolated quantum system, the behaviour of the expectation
value of an operator, 〈Â〉(t) = 〈ψ(t)|Â|ψ(t)〉, is most easily
understood in the eigenbasis of the system’s Hamiltonian

(eigenstates |α〉 with eigenenergies Eα): the diagonal ele-
ments of Â govern the long-time average value, while the
off-diagonal elements are associated with the relaxation
to this value. The ETH ansatz describes the statistical
properties of matrix elements in this basis. If the matrix
obeys the ETH ansatz, then the expectation value will
thermalise under unitary dynamics. The ansatz has the
form:

〈α|Â|β〉 = A(E)δα,β + e−s(E)L/2f(E,ω)Rα,β , (2)

where E = (Eα +Eβ)/2, ω = Eβ −Eα, s(E) is the micro-
canonical entropy density, L is the system volume, A(E)
and f(E,ω) are smooth functions of their arguments, and
Rα,β is a random variable with zero mean and unit vari-
ance. Consider the connected correlation function of Â in
an eigenstate,

〈α|Â(t)Â(0)|α〉c =
∑
β �=α

e−i(Eα−Eβ)t|〈α|Â|β〉|2

=
∫ ∞

−∞
dωeiωtf(E,ω)2, (3)

where we have replaced R2
α,β with its mean, 1, and f2 is

then interpreted as the structure factor associated with the
correlation function (we assume Eα is an infinite tempera-
ture state). Under general assumptions about the equilib-
rium state, the connected correlation function must decay
to zero as t → ∞ and the mean value A(E) must be equal
to the microcanonical expectation value of Â at energy E.

The distribution of Rα,β is assumed to be
Gaussian [54–56], and recent studies have linked
subdiffusive transport of conserved quantities to non-
Gaussian (i.e., power-law) distributions of the operator’s
off-diagonal matrix elements. However, these studies were
limited to values of ω ∝ ΔE, the mean level spacing, which
is exponentially small in L [50]. Correlation functions of
local operators in the ETH have a well-defined limit as
L → ∞; in particular, for t = O(1) as L → ∞, the contri-
butions to the integral (3) from an interval of ω ∼ O(L−a)
are negligible. On the other hand, the matrix elements
at very small ω determine transport properties (or large
time t ∼ La behaviour) as can be seen in the limit of DC
conductivity (i.e., when ω → 0) in the Kubo formula. An
anomalous small-ω behaviour is indeed linked to a sub-
ohmic conductivity σ ∝ L−γ , with γ > 1, signalling subd-
iffusive transport. To the best of our knowledge the ETH
and subdiffusive transport are compatible, and a system
whose local correlation functions equilibrate can indeed
present slow dynamics at global, O(Lγ+1) time scales.

We find that if one focuses on matrix elements at finite
energy differences, say ω = 1 (no significant differences
are observed for ω = 0.25, 0.5, 1.5, as shown in the Sup-
plementary Material Supplementarymaterial.pdf (SM);
the data can be found at [57]), if the system size L is suf-
ficiently large, the Gaussian distribution is recovered, and
therefore the power-law distribution must be confined to
a vanishing interval of ω.
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Fig. 1: Behaviour of the Binder cumulant B. (a) Dependence
of the median value of B on system size L for several disorder
strengths W , which tends to a Gaussian distribution (B = 1,
black dashed line) for large system sizes. Disorder values: W =
0.4 (yellow triangles) and W = 0.8–4.0 in steps of 0.2, where
the lines become darker as W increases. (b) Peak positions L0

and peak heights B0, obtained from a scaling collapse of the
median and average values of B.

We obtain Rα,β = 〈α|sz
L/2|β〉/σ(〈α|sz

L/2|β〉) (where
σ(〈α|sz

L/2|β〉) is the standard deviation of the matrix ele-
ments) by numerical ED on small systems (L ≤ 22), using
the shift-invert technique to target eigenstates at a chosen
energy [39,58–64]. We work in the zero-magnetisation sec-
tor, which has a Hilbert space dimension of DL = ( L

L/2),
applying open boundary conditions. We calculate Rα,β

between 50 states closest to two target energies from near
the middle of the spectrum; for the first target we choose
the average energy in the sector, E0 = Tr(H)/D = −1/4,
and the second target is at E0 + ω.

We quantify the shape of the distribution with the
Binder cumulant:

B =

〈
R4

〉
3 〈R2〉2 , (4)

where the angled brackets denote an average. The closer
B is to 1, the better the Gaussian distribution is realised.

For each disorder realisation, B is found by averaging
over the 50 × 50 off-diagonal matrix elements. Here we
focus on the median value of B (we find no significant dif-
ferences in the behaviour of the average). We notice that
the Binder cumulant is always larger than 1, or consistent
with 1 within errors, so we define C := B − 1.

Figure 1 shows the L-dependence of B for a range of
disorder strengths. In the diffusive phase (W � 0.5),
the distribution is Gaussian for all system sizes that we
have considered. For intermediate system sizes, in the
subdiffusive phase, B initially increases with L, indicating
that the distributions of matrix elements are becoming
less Gaussian. However, when the system size exceeds a
critical length L0(W ) this trend reverses, tending back to
B = 1 at large L (non-monotonic L-dependences, where
a flow initially towards MBL reverses at larger L, have
been observed before [65] and speak about the nature of
the critical point). The large values of B near L0 origi-
nate from broad distributions of B, which become narrow
again as L becomes large (see the SM).
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Fig. 2: Numerical collapse of the median value of C(L, W ), the
inset shows the same data on a normal vertical axis.

If the physics of the ergodic region is homogeneous, then
one expects that a single function should determine the
behaviour of different L and W . Therefore we assume
that, once L0 and B0 := B(L0(W ),W ) (or equivalently
C0 = B0 − 1) are found, we can write a universal form

C(L,W ) = C0(W )g (L/L0(W )) , (5)

where g(x) → 0 both for x → 0,∞ and g(1) = 1. We
perform the collapse numerically, and the extracted val-
ues of L0(W ) and B0(W ) are shown in fig. 1(b). The
collapse itself is shown in fig. 2, and we see that it only
becomes imperfect for the largest disorder strengths near
the peak, which are the values that we believe may be
underestimated due to poor statistics (very large values
of B result from heavy-tailed distributions of Rα,β, which
require many data points to sample effectively).
L0 is the lengthscale at which resonances that ther-

malise the system start appearing [66], and it must there-
fore diverge as W → Wc. One could also define a second
length, L1(W ) at which C � 0 (say C < 10−2) or
B � 1; this would be the length at which resonances
become effective (L1 � L0). If one assumes a single
parameter scaling, as W → W−

c , then L0 diverges as
L0(W ) = c|W − Wc|−ν(1 + a1(W − Wc) + . . .). Using
the SDRG [48] (for a quick derivation see the SM) one in-
stead finds L0(W ) ∼ ec|W−Wc|−1/2

. We observe the value
of L0(W ) to grow linearly with W until the maximum ac-
cessible W = 2.8 (see fig. 1(b)), excluding any divergence
for W � 8 if we assume ν > 2. If we impose ν = 1 the
critical value is around Wc � 5, while for the SDRG pre-
diction the value of Wc compatible with our data is larger,
Wc ≈ 6. Analogously, the value of the maximum C0(W ),
which must diverge at the transition W → Wc, shows ex-
ponential growth lnC0(W ) � W/W0 (see fig. 1(b)). The
value of W0 � 0.4 is approximately the disorder strength
at the diffusion-subdiffusion transition [30].

The exponential growth of B for L < L0 can be under-
stood in the strong-disorder limit W � 1 (or equivalently
the limit of L0 � L). Here we can apply the usual argu-
ments of perturbative MBL (e.g., the forward-scattering
approximation [24,67]) to say that the matrix element
Rα,β is independent of ω (see footnote 1), Rα,β ∼ e−�α,β/ξ,

1The ω-dependence is not at the exponential level for ω = O(1).
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where ξ ∼ ln(W/J)−1 is the LIOMs range or localisation
length, and � is the number of spin flips connecting |β〉
to |α〉 to lowest order in perturbation theory. For typical
α, β, and large L, the distance can be taken as an approx-
imately Gaussian-distributed random variable with mean
L/2 and variance L/4. Computing 〈R4〉 and 〈R2〉, we find
that B = eL/ξ2

/3. The length ξ decreases uniformly with
W (see fig. 1(a)), therefore representing the effect of local
physics, distinct from that of resonances, which is cap-
tured by L0. The exponential growth with L continues up
to L = L0 ∼ W , resulting in a maximum value B0 ∼ ecW ,
explaining the behaviours seen in fig. 1(b).

The function g(x) seems to decay exponentially for x �
1, like ln g(x) ∼ 10.3−9.0x (the dashed line in fig. 2). This
predicts that L0 ≈ 25 at the estimated critical disorder
strength W = 4, which is at the upper limit of the system
sizes solvable by ED, and that a system of size L ≈ 46 is
required to observe Gaussian-distributed matrix elements.

There are two main messages from this analysis: first,
that a scaling form for B works for a wide range of W,
and second, that we do not see any sign of the transition
in terms of divergence of either L0(W ) or B0(W ) for W �
2.8. This may suggest that the divergence is found at
larger W , and our scaling function g works qualitatively
fine, but L0 and B0 do not yet show signs of the upward
curvature necessary for the transition. In this case our L0
and B0, extrapolated as analytic functions of W , must be
taken as lower bounds, and we would require even larger
systems than we predict to study the critical point. For
example, if we suspect that Wc � 10 then we would need
at least a system size L0 ≈ 57 to study the critical point.

An alternative possibility is that there is no transition,
and that we see only a finite-size effect: if we take a finite
system larger than L0 we will always recover the ETH.
In this sense L0(W ) and L1(W ) would be analogous to
the scales observed in the development of ergodicity in
SU(2)-symmetric random Hamiltonians [68]. However, in
our opinion the data up to W = 2.8 represent too small
an interval of disorder to make such a strong statement;
larger W and therefore considerably larger L data are nec-
essary to support this possibility. Additionally, as we will
see in the next section, the microscopic timescale for trans-
port shows a qualitative change of its dependence on W
at around the same value W � 2.5.

Timescales near the MBL transition. – One can
argue on purely dynamical grounds that one must be care-
ful when studying the effects of strong disorder on small
systems, without resorting to eigenstates and eigenvalues
(which in a many-body system due to exponentially
small level spacing are anyway not necessarily physically
observable). Namely, for strong disorder the dynamics
can become so slow that non-thermodynamic effects (e.g.,
finite-size effects) become important before the system
has a chance to develop full many-body macroscopic dy-
namics. More precisely, our analysis relies on two simple
facts: i) to probe the slow asymptotic behaviour of an

ergodic phase, one must examine the dynamics at least up
to a correspondingly large “ergodic time” tE , and ii) for
finite quantum systems it is meaningless to look at times
larger than the Heisenberg time tH = 2π/ΔE. After tH
the dynamics become “quasiperiodic” (a discrete spec-
trum is resolved), and are influenced by various non-bulk
particularities such as boundary conditions. Therefore,
one can make reliable statements about behaviour in the
TDL only if tH � tE ! While this condition will always be
satisfied in the TDL, in a finite system, and especially for
slow dynamics preceding a possible MBL phase, it is not
guaranteed.

An important point to keep in mind when generalis-
ing quantum chaos concepts, predominantly explored in a
single-particle context [69], to many-body systems, is that
for single-particle (non-localised) systems tE and tH are
both polynomial in L, while in a many-body system tH is
exponentially large in L (as ΔE is exponentially small). It
is largely unexplored how this affects the standard notions
of quantum chaos. For example, using level repulsion as
an indicator of many-body quantum chaos can lead to a
false identification of a system as chaotic [70], at least if
chaoticity is meant to denote a system with sufficiently
complex dynamics that, for instance, lead to diffusion.

We shall estimate the ergodic timescale tE , and thereby
probe transport, by examining the spreading of an in-
homogeneous initial state under unitary time evolution.
We note that we can reliably simulate only modest times
t ≈ 100 for rather small disorder strengths W . Therefore,
we cannot and do not make any claims to find the true
asymptotic transport exponents. Nevertheless, we shall
use our short-time dynamics to get a gross estimate and
show that tE increases very quickly with disorder strength
W , which will suffice to make our argument.

As an initial state we take a weakly polarised domain
wall, ρ(0) ∼ ∏L/2

k=1(1 + μσz
k) ⊗ ∏L

k= L
2 +1(1 − μσz

k), with a
small polarisation μ = 10−3. Such an initial state is use-
ful for probing infinite-temperature spin transport [71,72].
The initial state is evolved in time as ρ(t) = e−iHtρ(0)eiHt,
with ρ encoded using a matrix product operator (MPO)
ansatz of bond dimension χ, and using tDMRG with a
4th order Trotter-Suzuki timestep Δt = 0.2. To quan-
tify the slowness of the domain wall decay we calculate
the transferred magnetisation across the mid-point up to
a time t, ΔS(t) = μL

2 − ∑L/2
k=1 tr[ρ(t)σz

k]. The dimension-
less quantity ΔS(t)/μ then tells us how many spins have
moved after a time t. In fig. 3(a) we show the evolution of
the disorder-averaged ΔS(t) for a few representative dis-
order strengths. It is clear that the dynamics get slower
with W . The method’s limitation is the maximal time one
can reach with a given MPO bond dimension χ, while, on
the other hand, we always take a sufficiently large L such
that there are no boundary effects (in practice this means
sizes L=32–120, averaging over 10–560 disorder samples).
Note how the widths of the distributions of ΔS, shown by
shading for W = 0.5 and W = 2, increase with W .
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Fig. 3: Magnetisation transferred across a domain wall under
unitary dynamics. (a) Average magnetisation ΔS as a func-
tion of time. The width of the distribution of ΔS over disorder
is indicated by shading for W = 0.5, 2. (b) Finite-time scal-
ing exponent z from the data shown in the left panel (fitting
window t ∈ [50, 100]), obtained for several different MPO bond
dimensions χ and from NESS exponents in boundary-driven
systems [30,33].

From fig. 3(a) it appears that the magnetisation relaxes
in a power-law fashion,

ΔS(t)/μ ≈ At1/z . (6)

The fitted A and z are shown in fig. 3(b). It is clear
that due to limited times, at least for larger W , one can-
not claim that the so-obtained z is the correct asymptotic
transport coefficient (for instance, at W = 3 only about
1 spin is transferred between t = 10 and t = 100), never-
theless, it is clear that the dynamics at such W are very
slow. At small W we find good agreement with the results
from boundary-driven open systems on the scaling of the
non-equilibrium steady state (NESS) current with system
size, j ∼ L1−z [30,33].

We also note that we cannot determine the point where
z diverges (i.e., the MBL transition). First, while the data
has converged with χ for small W , this is not the case for
W > 2 where the numerics are harder. However, we see a
systematic tendency for z to increase with χ, so our z(χ =
300) can be used as a lower bound. Second, the exponent
z tends to decrease with time. For instance, at W = 2 and
χ = 300 we get exponents 1/z = 0.264, 0.300, 0.324 using
fitting windows t ∈ [20, 40], [40, 60], [60, 80], respectively.
Using longer times would therefore tend to move a possible
divergence of z towards larger W .

From the fitted A(W ) and z(W ) values we can now
estimate the time at which a given number of spins will
be transferred across the middle of the chain. This can
then serve as an estimate for the ergodic time. We denote
by tN the time when ΔS/μ = N , i.e., the time when
N spins are transported across the domain wall, which is
asymptotically equal to tN = (N/A)z according to (6).
Depending on the context different values of N might be
used as a criterion for the ergodic time. To assess many-
body transport in the TDL one certainly requires N �
1 to be able to discuss dynamics of many particles, and
to presumably reach a limit where some coarse-grained
hydrodynamic description applies. In a finite system a
reasonable value might be a fixed fraction of spins, e.g.,
N/L = 1/4, to probe relaxation on the largest wavelength.
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Fig. 4: Timescales in the disordered Heisenberg model.
(a) Growth of the asymptotic time t1 needed to move one
spin with increasing W , shown for several bond dimensions χ.
Pluses labelled “i.c.” denote t1 determined for our particular
initial state (i.e. not from A and z). (b) Main panel: Maximal
W for a system of size L below which at least 4 spins are trans-
ferred at tH . Inset: Time tN as a function of W using data
with χ=200–300. Horizontal lines indicate tH for L = 18, 24.

Let us first analyse the time t1(W ) in which a single
spin moves. Using it one can write

tN (W ) = Nz t1(W ), (7)

that is, tN is simply some high multiple (for large z) of
t1. Figure 4(a) shows the empirically determined t1 using
the fitted values of A and z (i.e., t1 = (1/A)z); note that
because t1 is obtained from A and z, for small W it is not
equal to the time at which the first spin crosses the mid-
point from a particular initial state (pluses in fig. 4(a)).

We can see that t1 is a very steep function of W , in
fact roughly compatible with an exponential dependence
t1 ∼ eW/W̃ for a range of intermediate W [36,73,74].
This is the crux of the problem! If the MBL transition
happens at large W , and in all claimed MBL systems this
is the case, then in small systems it can easily happen
that t1, and even more so tN , is in fact larger than the
Heisenberg time tH . Below we compare explicit numbers
for the XXX spin chain.

We note that the numerical value of W̃ � 0.66 is simi-
lar to the parameter extracted from the Binder cumulant
analysis (W0 ≈ 0.4), and it is also compatible with the
value of the disorder at which the transition from diffu-
sive transport happens. At W � W sub

c ≈ 0.5 we have
t1 ≈ 1, suggesting that subdiffusion emerges when the
natural timescale of the effective dynamics becomes longer
than the bare hopping timescale (1/J = 1 in our units).

In fig. 4(a) one can also see that for W � 2–2.5, when
t1 � 20, the W -dependence of t1 becomes faster than ex-
ponential. At W > 2.5 we also observe (data not shown)
that there is a visible non-zero probability for an individ-
ual disorder realisation to result in an essentially zero value
of 1/z. As a result, the distribution of z gets fat-tailed
simply due to the Jacobian, p(z) = p(x := 1/z)|dx/dz|,
where |dx/dz| = 1/z2. In turn, fluctuations in z between
realisations become large, and the results depend on which
quantity one averages (e.g., the mean is not the same as
the median). While it is tempting to speculate that this
is a sign of a possible transition (Griffiths effects, etc.),
we again stress that to give such a statement a sound
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foundation one would have to simulate longer times: to
distinguish slow transport from no transport one needs
large times and correspondingly large systems —the very
point we are trying to make.

Let us now take the above t1 and some reasonable N ,
and make an estimate for the ergodic time tE ∼ tN =
Nzt1. We estimate the Heisenberg time tH = 2π/ΔE from
the mean level spacing ΔE in the centre of a half-filling
sector, resulting in tH ≈ 2L

LW
8√

4/3+3/W 2
. For W = 3 this

gives a Heisenberg time of tH ≈ 2 · 103 for L = 14, and
tH ≈ 2 · 104 for L = 18. On the other hand, for W = 3 we
have t1 ∼ 102 and z > 5, so t3 = 3zt1 � tH(L = 18,W =
3). Observing the dynamics of even 3 spins is impossible
with L = 18 and W � 3 because the Heisenberg time
“kicks in” before those three spins have had time to move!

In the inset of fig. 4(b) we show a more detailed com-
parison. We can for instance see that with L = 18 (the
typical maximal size used in ED studies) tH is barely long
enough to transfer N = 4 spins at W ≈ 2.7. When W is
larger, tH becomes smaller than t4 and statements about
the behaviour in the TDL are questionable. For L = 24
and requiring N = 4 one can get only up to W ≈ 3.2
(considering that our tN are only a lower limit estimate
due to finite χ, the true value of W is likely even smaller).
This means that for W > 3.2 even L = 24 is not large
enough to resolve the slow dynamics. On a similar note,
in recent experiments [34] one has access to times of order
t ∼ 100, so beyond W ≈ 2 one cannot really distinguish
localisation from slow transport (only about N = 2 spins
are transferred at t = 100 and W = 2). The main panel
of fig. 4(b) shows the largest W that can be studied in
a system of size L, demanding that t4 < tH. Finally, we
observe that the exponential dependence of t1 on W for
W � 2.5 means that the minimal size grows linearly with
W in that range of W , compatible with a similar finding
for the Binder cumulant.

Conclusions. – More than 10 years after the first
works proposing the existence of an MBL phase, and of an
MBL-ETH transition, the transition itself has resisted all
attacks aimed at defining its critical properties. We have
asked why this is the case, and in particular what are the
length- and timescales necessary to enter an asymptotic
region. We have found that the lengthscales for an exact
diagonalisation study must grow at least linearly in W ,
and that if the critical disorder is around W = 10 we
need system sizes of at least 50 spins to check the hy-
pothesis against the null hypothesis, i.e., that no tran-
sition exists and everything is just finite-size corrections
to ETH Physics. In particular, the value of the Binder
cumulant at the peak of the finite-size curve scales expo-
nentially with the disorder W , with a scale that is equal,
within errors, to the disorder strength at which one finds
the diffusion-subdiffusion transition. We have also looked
at the time taken for one or more spins to diffuse away
from a domain wall configuration. This time also increases

exponentially with W , with approximately the same rate
as the Binder cumulant. For finite systems, as the dis-
order strength increases this time becomes rapidly larger
than the Heisenberg time when the discrete spectrum is
recognised.

More work is needed to distinguish between the pos-
sibilities that Wc > 4 or that the MBL transition does
not occur in this particular model Hamiltonian. However,
we think we have made a clear point that this cannot be
done with simply further numerical works or experiments
at marginally larger system sizes or times than what the
current technology can provide.
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[72] Ljubotina M., Žnidarič M. and Prosen T., Nat. Com-

mun., 8 (2017) 16117.
[73] Barisic O. S. and Prelovsek P., Phys. Rev. B, 82

(2010) 161106(R).
[74] Schiulaz M. et al., Phys. Rev. B, 99 (2019) 174313.

67003-p7


