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Abstract – The interplay between external field and fluid-mediated interactions in active sus-
pensions leads to patterns of collective motion that are poorly understood. Here, we study the
hydrodynamic stability and transport of microswimmers with weak magnetic dipole moments
in an external field using a kinetic theory framework. Combining linear stability analysis and
non-linear 3D continuum simulations, we show that for sufficiently high activity and moderate
magnetic field strengths, a homogeneous polar steady state is unstable and distinct types of splay
and bend instabilities for puller and pusher swimmers emerge. The instabilities arise from the
amplification of anisotropic hydrodynamic interactions due to the external alignment and lead to
a partial depolarisation and a reduction of the average transport speed of the swimmers in the
field direction. Interestingly, at higher field strengths the homogeneous polar state becomes stable
and a transport efficiency identical to that of active particles without hydrodynamic interactions
is restored.

Copyright c© EPLA, 2019

Introduction. – As a microswimmer propels itself
through a fluid, it generates a long-range disturbance.
This perturbation propagates through the fluid and in-
fluences the motion of other swimmers. Self-propulsion
in conjunction with fluid-mediated interactions in active
suspensions give rise to a wealth of collective phenomena
that are very distinct from those found in passive sys-
tems at equilibrium [1–5]. Some examples include hydro-
dynamic instabilities that lead to spatio-temporal pattern
formation [6–8], active turbulence [9–12] and unusual rhe-
ological properties [13–16]. Moreover, microswimmers ex-
hibit new motility patterns in response to external stimuli
such as chemical signals [12,17,18], light [19,20], gravita-
tional [21–25] and magnetic fields [26–30]. The control
and regulation of collective motion of microswimmers via
an external field offers a promising route for their ex-
ploitation in high-tech applications such as micro-scale
cargo transport, targeted drug delivery, and microfluidic
devices [31–34].

Presently, a theoretical understanding of collective be-
haviour and transport of microswimmers in an external
field is largely missing. Here, we put forward a kinetic
theory for active suspensions that extends the previous

kinetic models [6,7] to include the effects of an external
field. Our model is applicable to any active suspension
driven by an external aligning torque. Examples include
magnetotactic bacteria (MTB) carrying an intrinsic weak
magnetic moment [35–39] and weakly magnetised artificial
swimmers [40–49] in an external magnetic field or bottom-
heavy swimmers in a gravitational field [22]. MTB driven
by a sufficiently strong magnetic field exhibit particularly
intriguing patterns of collective behavior such as band for-
mation [26,27] and pearling instability under flow [28].
Thus, we focus on the dynamics of active magnetic sus-
pensions in a uniform magnetic field.

We investigate the instabilities and transport of di-
lute suspensions of spherical magnetic swimmers in an
external field combining linear stability analysis and 3D
numerical simulations. At low magnetic fields, a ho-
mogeneous weakly polarised state is stable, akin to an
isotropic suspension of spherical swimmers. However, for
sufficiently high activity strengths and moderately strong
magnetic fields, a homogeneous polar phase becomes un-
stable for both pushers and pullers. These instabilities
significantly reduce the polarisation of the swimmers and
lead to a decrease in their mean transport speed. In
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Fig. 1: Snapshots of density projections averaged along the
y-axis from 3D non-linear simulations at different time steps
for pusher (row (a)) and puller swimmers (row (b)) in the
unstable regime with dimensionless active stress |σa| = 1.5
and alignment parameter α = 4 ∝ B/Dr. The colours
encode the probability density integrated in the y-direction
ρ̄(x, z) = Δy

P

yρ(x, y, z). 3D volumetric rendering of the den-
sity field of a pusher (c) and puller (d) at t = 1800 corre-
sponding to the last time step presented in panels (a) and (b),
respectively.

the unstable regime, we observe a rich phenomenology
of pattern formation by varying the magnetic field and
activity strengths. Representative examples of pattern
development for pushers and pullers are shown in fig. 1.
Notably, pushers and pullers exhibit distinct instability
patterns that result from the divergence of bend and
splay fluctuations [50–52], respectively. The 3D visuali-
sation of the density field in fig. 1(c) and (d) (see also
the corresponding supplementary videos pusher.mp4 and
puller.mp4) clearly shows that the pushers concentrate in
band-like structures perpendicular to the magnetic field
that migrate in the field direction, whereas pullers form
lane-like patterns parallel to the field. Our results for the
pushers are remarkably similar to the observed magne-
totactic bands reported for spherical MTB [26,27]. The
instability of the polar state induced by an external field
shares similarities with the instability of aligned swimmers
with nematic or polar interactions [6,7]. However, for an
externally induced polar state such an instability disap-
pears by a further increase of the magnetic field strength.

To our knowledge such a re-entrant hydrodynamic stabil-
ity has not been previously reported in active systems and
calls for further experimental investigations.

Model system description. – We consider a dilute
suspension of N spherical magnetic microswimmers with
a hydrodynamic radius a immersed in a fluid of volume
V at a number density � = N

V . We assume that the
self-propulsion is generated by a force-free mechanism of
hydrodynamic origin such that the far field flow of a swim-
mer is well represented by that of a point-force dipole
with an effective dipolar strength Seff [7,53–55]. Seff de-
pends on the geometrical parameters of the model swim-
mer [42,43,45,55], for instance on a and the flagellum
length � [55]. Each swimmer carries a weak magnetic
dipole moment μm along its body axis n̂ and has a self-
propulsion velocity vspn̂. The suspension is exposed to a
uniform magnetic field B that exerts an aligning torque on
each swimmer. The magnetic moment values of MTB are
of the order of μm ≈ 1×10−16JT−1 [36,38,56,57] and their
size a ≈ 1μm. For dilute suspensions with inter-particle
distances r � 3a, their dipole-dipole interactions are small
compared to the thermal energy scale and we can neglect
their effect. Instead, we focus on the interplay between
the hydrodynamic interactions and the aligning torque.

Kinetic theory. – For sufficiently low �, the mean-field
configuration of an ensemble of the swimmers at a time t
can be described by the probability density 1

V Ψ(x, n̂, t)
of finding a particle with the center-of-mass position x
and the unit orientation n̂. Ψ is normalized such that
1
V

∫
dx

∫
dn̂Ψ = 1. The time evolution of Ψ is governed

by a Smoluchowski -equation of the form

∂tΨ + ∇ · Jtr[Ψ] + ∇S · Jrot[Ψ] = DΨ, (1)

where ∇S = (1 − n̂n̂) · ∇n̂ denotes the angular gradient
operator; Jtr and Jrot are the translational and rotational
drift currents. D = Dt∇2 +Dr∇2

S, with ∇2
S as the Laplace

operator on a unit sphere, accounts for the evolution of
Ψ resulting from the translational and rotational diffu-
sive currents. Dt and Dr represent the effective long-time
translational and rotational diffusion coefficients that can
be of thermal or biological origin, e.g., due to tumbling of
bacteria. Jtr ≡ Ψvtr describes the translational current
stemming from the self-propulsion of a swimmer and its
convection in the local flow u,

vtr = vspn̂ + u[Ψ]. (2)

The rotational current Jrot ≡ Ψvrot incorporates contri-
butions from the rotational velocities resulting from the
torque generated by the aligning magnetic field and the
local flow vorticity Wjl ≡ 1/2(∂jul − ∂luj) according to
Jeffery ’s equation [58,59]:

vrot = (1− n̂n̂) · (μm/ξRB − W[u] · n̂) , (3)

where ξR is the rotational friction coefficient.
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The flow field u[Ψ] in the low Reynolds number limit is
captured by the incompressible Stokes equation

ηΔu −∇P = −∇ · Σ[Ψ], ∇ · u = 0 (4)

in which P denotes the isotropic pressure and η the vis-
cosity of the suspending fluid and ∇ · Σ = ∂xi

Σij êj . The
flow is determined by the state of the system encoded by
Ψ via a mean-field stress profile Σ[Ψ]. It includes two
contributions: an active stress Σa, generated by the self-
propulsion of force-free dipolar swimmers [53,54], and an
antisymmetric magnetic stress Σm, caused by reorienta-
tion of swimmers in the magnetic field. The active stress
is proportional to the angular expectation value of the ne-
matic order tensor Σa(x) = Σa

∫
dn̂Ψ (n̂n̂ − 1

31) [7,60].
The strength of the active stress is given by Σa = ±�Seff .
The sign of Σa determines the nature of the swimmers,
being a puller Σa > 0 or a pusher Σa < 0. The magnetic
stress is given by Σm(x) = Σm

2

∫
dn̂Ψ (n̂B̂−B̂n̂), in which

B̂ = B/B and Σm = �μmB [61]. Note that the symmetric
part of the stress is zero for spherical particles [61].

To facilitate the analysis of our model, we ren-
der the equations dimensionless, using the follow-
ing characteristic velocity, length, and time scales:
uc = vsp, xc = �−1/3 (average inter-particle dis-
tance) and tc = xc/uc. These scaling choices leave
the distribution function unchanged: Ψ(x, n̂, t) ≡
Ψscaled(x/xc, n̂, t/tc). The corresponding dimensionless
model parameters are the magnetic field strength b =
tcμmB/ξR, the rotational and translational diffusion
coefficients dr = Dr�

−1/3v−1
sp and dt = Dt�

1/3v−1
sp ,

the active stress amplitude σa = tcη
−1Σa = �2/3

Seffv−1
sp η−1 and the magnetic stress amplitude σm =

tcη
−1Σm = �2/3μmBv−1

sp η−1.

Homogeneous steady state solution. – Let us first
consider a solution of eq. (1) satisfying, ∂tΨ0 = 0 and
∇Ψ0 = 0. Ψ0 is given by

Ψ0(n̂) =
α

4π sinh α
eαn̂·B̂. (5)

in which α = b/dr ≡ μmB/(ξR Dr) and it is identical to
the steady state solutions obtained in [16,28,39]. We call
α the alignment parameter as it is equal to the ratio of two
characteristic reorientation times; α ≡ τr/τm. τr = D−1

r

represents the average decorrelation time of the particle
from its initial orientation and τm = ξR/μmB describes
the typical time a non-diffusive particle needs to align itself
with the magnetic field. Hence, the degree of alignment is
determined by the competition between the aligning mag-
netic torque and the randomizing rotational diffusion. The
Ψ0(n̂) corresponds to a homogeneous polar state with a
mean polarization vector p0 ≡

∫
dn̂Ψ0(n̂) = p0(α)B̂ in

which
p0(α) = coth α − 1/α, (6)

is known as the Langevin function in the context of para-
magnetism. Note that a full alignment is only achieved
for α � 1.

−0.10

−0.05

0.00

0.05

0.10

R
e
λ

m
a
x

σa = −1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

k

−0.10

−0.05

0.00

0.05

0.10

R
e
λ

m
a
x

σa = +1.5

ΘB = 0◦

ΘB = 30◦

ΘB = 60◦

ΘB = 90◦

Fig. 2: The dependence of the largest growth rate Re λmax, on
the wave number k, for the homogeneous polar steady state
given in eq. (5) at several wave angles ΘB for pushers (top,
σa = −3/2) and pullers (bottom, σa = 3/2). The other dimen-
sionless parameters are fixed to α = 4, σm = 0.002, dr = 0.05,
and dt = 0.003.

Linear stability analysis. – We investigate the
linear stability of the homogeneous polar state by
considering a small perturbation of the form Ψ0 +
ε Ψ̃(k, n̂)eik·x+λt. The equation of motion linearised in
0 < ε � 1 can be expressed as an eigenvalue problem
of the form LΨ̃ = λΨ̃, where L(k, n̂,b,Ψ0) is a linear
differentio-integro-operator (see the Supplementary Ma-
terial Supplementarymaterial.pdf (SM)). We solve the
eigenvalue problem in the basis of spherical harmonics Y h

l

numerically by truncating the matrix 〈Y h
l |L|Y m

j 〉 at suffi-
ciently large number of modes such that the convergence
of the dominant eigenvalues are ensured. The external
field breaks the rotational symmetry. Hence, the stability
depends on the direction k̂ of the perturbation wave vec-
tor with respect to the magnetic field direction, which can
be characterized by a single angle ΘB ≡ cos−1(k̂ · B̂).

We first examine the stability of swimmers with moder-
ate values of activity and magnetic field strength leading
to σa = ±3/2 and α = 4. The remaining parameters
are chosen to be comparable to those of MTB [28] and
they are fixed to: σm = 0.01α dr, dr = 0.05, and dt =
0.003. Figure 2 shows the real part of the eigenvalue with
the largest magnitude Reλmax(k), the so-called maximum
growth rate, as a function of k = |k| at various pertur-
bation angles ΘB. For both puller and pusher swimmers,
long-wavelength perturbations dominate the instabilities
and destabilize the homogeneous polar state defined by
p0. For pushers, fluctuations of the linearised equations
in the direction of magnetic field grow fastest whereas for
pullers both perturbation directions parallel and perpen-
dicular to B predominate. Thus, we expect pushers and
pullers to exhibit distinct instability patterns as confirmed
by the non-linear dynamics simulations; see fig. 1.

Next, we present the stability phase diagram in which
we vary the strengths of both activity Seff ∝ σa and mag-
netic field B ∝ α. Figure 3 depicts the stability diagram
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Fig. 3: Stability diagram of the steady state given by eq. (5)
where we have varied the strengths of active stress ∝ σa and
magnetic field ∝ α assuming a constant volume fraction of
φ ≈ 0.01, a = 1 μm, vsp ≈ 100 μm s−1, and μm = 10−16J/T .
The dimensionless diffusion coefficients are fixed to dr = 0.05
and dt = 0.003, based on persistence times of τp ≈ 0.75 s at
room temperature, and the reduced magnetic stress amplitude
is varied as σm = 0.01 αdr accordingly, compatible with
experimental findings. The solid lines are determined using
linear stability analysis and separate the stable from unstable
regions. The circles and stars respectively depict stable and
unstable points determined by simulations. The right panel
displays the polarization of the steady state as a function of α
given by eq. (6).

for Ψ0(α) in the (σa, α)-plane. The magnetic stress is
varied concomitant with α as σm = 0.01αdr; the remain-
ing parameters are kept constant at the values given in
the caption. With this choice of parameters the diagram
should represent an experimentally accessible range. From
the linear stability analysis, we determine the border lines
that separate the stable from the unstable regions. Note
that the steady state Ψ0(α) and its polarization depend
on α. p0(α) given by eq. (6) is shown in the right panel
of fig. 3. At low values of α where polarization is weak,
p0(α) � 0.3, Ψ0(α) remains stable. At moderately strong
fields and for σa � 1, the hydrodynamic interactions be-
come amplified as a result of the increased polarization
and destabilize the steady state. Strikingly, at stronger
magnetic fields the hydrodynamic instabilities can be over-
come. At such strong fields, the randomizing effect of the
rotational diffusion can be ignored. The magnetic torque
∝ α dominates over the hydrodynamic torque and the
steady state becomes stable again. This is a consequence
of the fact that for a fixed active stress amplitude the
hydrodynamic stress and the resulting torque have an up-
per bound (perfect polarization), whereas we can increase
the external torque by increasing the magnetic field. To
examine the validity of these predictions, we study the
dynamics of swimmers by non-linear simulations.

Non-linear dynamics simulations. – We perform
non-linear simulations of the kinetic model in three
dimensions to study the long-time dynamics and pattern

formation resulting from the instabilities. To solve the
Smoluchowski equation, eq. (1), with periodic boundary
conditions, we use a hybrid stochastic particle based sam-
pling method to obtain Ψ(x, n̂, t) and a spectral method
to solve for the flow field u(x). For further details see the
SM. Probing the stability of Ψ0(α) for different activity
and magnetic field strengths by simulations, we find excel-
lent agreement with the predictions of the linear stability
analysis, as demonstrated in fig. 3. Ψ0(α) is stable for
the parameter points denoted by discs, whereas (σa, α)
values for which Ψ evolves towards an inhomogeneous
time-dependent density profile are depicted by stars. The
angular distribution of these unstable states appears to
converge towards a steady state, whereas their density
fields evolve towards dynamic spatial patterns. In the un-
stable regime, density and polarization gradients generate
a flow with an inhomogeneous vorticity field that is cou-
pled to the swimmers orientations and rotates them away
from the B̂ direction. To quantify these disorienting ef-
fects, we measure the time-averaged global polarization
defined as p̄t = 1

Nt

∑Nt

j=0 ‖〈n̂〉(t0 + jΔt)‖, where Δt =
40 δt (with the simulation time step δt = 0.2 in units of
tc) is about an order of magnitude larger than the reorien-
tation time τm. The braces 〈•〉 ≡ 1

V

∫
dx

∫
dn̂Ψ(x, n̂, t)•

define the expectation value. t0 marks a relaxation time
after which p̄t is nearly time-independent despite exhibit-
ing non-stationary patterns (see fig. 3 in the SM). Choos-
ing Nt = 20 allowed us to obtain sufficient statistics. We
find that B̂ · p̄t ≈ p̄t and p̄t is independent of the system
size for L � 50 (see SM). Figures 4(c) and (d) present the
p̄t as a function of α for pushers and pullers at different ac-
tivity strengths σa. For moderate σa and α values falling
in the unstable regime, we observe a significant reduction
in the polarization compared to p0(α) (eq. (6)), shown by
the dashed line. The decrease in the mean polarization is
stronger for larger activity strengths. Stronger magnetic
fields drive the system back into the stable regime and p̄t

agrees with p0(α) in those regions.
The mean polarization governs the mean transport

speed v̄ in the direction of magnetic field that additionally
includes a contribution from the convective flow compo-
nent along B̂:

v̄ = B̂ · 〈vspn̂ + u〉 = (vspp̄t + ūt) · B̂. (7)

For an efficient transport in the direction of the magnetic
field, a high polarization of swimmers parallel to B is desir-
able that can be achieved by increasing the field strength.
To evaluate the contribution of ūt · B̂ to the transport,
we calculate the space and time-averaged flow velocity as
ūt = 1

Nt

∑Nt

j=0〈u〉(t0 + jΔt).
Figures 4(e) and (f) show ūt · B̂ vs. α ∝ B for

pushers and pullers at different values of σa that is al-
most independent of box size for L ≥ 50 (see SM).
The mean flow velocity created by pushers has a van-
ishing component along B̂. Hence, their transport
speed is determined by the mean polarization whereas
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Fig. 4: (a) and (b): idealized streamlines of bend and splay
deformations of the polarization field p̂ occurring for pushers
and pullers, respectively. The signed squares describe regions
with positive and negative divergence of p̂ and the arrowed
circles show the vorticity direction. The blue arrows sketch
the local flow profile generated due to the instabilities. (c),
(d): the time-averaged polarization magnitude p̄t vs. α ∝ B at
different activity strengths ∝ σa for pushers and pullers. The
dashed line shows the polarization of the steady state given
in eq. (6). (e), (f): the time-averaged convection transport
speed in the magnetic field direction vs. α at different σa for
pushers and pullers. The box size in all simulations is 1003x3

c .
In panels (c) to (e) the confidence intervals are comparable to
the symbol size.

for the pullers the contribution of convective flow to
the transport is significant. This dissimilarity origi-
nates from distinct nature of instabilities that prevail the
pushers and pullers and distort their polarization field
p(x, t) = 1

V ρ(x,t)

∫
dn̂ Ψ(x, n̂, t) n̂, in which ρ(x, t) =

1
V

∫
dn̂ Ψ(x, n̂, t). For pushers, bending deformations in

their polarization field produce alternating shear flow lay-
ers perpendicular to B̂ as schematically drawn in fig. 4(a).
Because of imbalance of the magnetic and the flow-induced
torques, the bending fluctuations are further amplified and
decrease the mean polarization. These distortions also in-
crease the density where ∇ · p < 0. As a result, pushers
form dense layers perpendicular to B̂ that migrate par-
allel to B̂, see fig. 1. Similarly for pullers, splay defor-
mations generate alternating pillar-like flow regions along
B̂ as shown in fig. 4(b). Denser regions of pullers where
∇·p < 0 coincide with regions carrying a flow anti-parallel
to B̂. They result in a net convection anti-parallel the
magnetic field (fig. 4(f)) and reduce the mean transport
speed.

Conclusions. – The mean polarization of magnetic
swimmers increases continuously with the field at a pace

that depends on their activity strength. For B � 0.1mT,
a weakly polar state is always stable. At moderate fields,
for sufficiently strong activities where p̄ � 0.3, pushers
and pullers exhibit distinct bend and splay instability pat-
terns and propose a pragmatic approach for distinguish-
ing them in experiments. These instabilities highlight
the significance of hydrodynamic interactions that hinder
the directed transport of swimmers. The reduced trans-
port speed results from the coupling of density and flow
field to the distortions of the polarization field. Inter-
estingly, at field strengths beyond an activity-dependent
value (B � 1mT for Σa ≈ 0.02 Jm−3 and B � 3mT for
Σa ≈ 0.04 Jm−3) a homogeneous polar state becomes sta-
ble. We defer a classification of patterns as a function of
activity and magnetic field strengths to a future work.

Finally, we note that our results are valid in the limit of
negligible magnetic interactions that are of relevance to di-
lute suspensions of swimmers with weak magnetic dipole
moments such as magnetotactic bacteria. For synthetic
magnetic microswimmers with larger magnetic dipole mo-
ments or dense suspensions, the magnetic dipolar inter-
actions alone can lead to clustering instabilities [62] and
the interplay between long-range magnetic and hydrody-
namic interactions on development of instabilities deserves
to be explored. Moreover, clarifying the role of swimmer-
swimmer correlations [63], and near-field hydrodynamic
interactions in more concentrated suspensions merits fur-
ther investigations.
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