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Abstract – We consider a coupled nonlinear Schrödinger (NLS) equation, which can be reduced to
the generalized NLS equation by constituting a certain constraint. We first construct a generalized
Darboux transformation (DT) for the coupled NLS equation. Then, by using the resulting DT, we
analyse the solutions with vanishing boundary condition and non-vanishing boundary condition,
respectively, including positon wave, breather wave and higher-order rogue wave solutions for
the coupled NLS equation. Moreover, in order to better understand the dynamic behavior, the
characteristics of these solutions are discussed through some diverting graphics under different
parameters choices.

Copyright c© EPLA, 2018

Introduction. – Rogue waves (RWs), also known as
killer waves, extreme waves, giant waves, have been grad-
ually extended to diverse fields, such as shallow waters and
deep ocean, nonlinear optics, Bose-Einstein (BE) conden-
sates, finance, etc. [1–8]. Especially, RWs are constructed
with relation to supercontinuum generation (SCG) in pho-
tonic crystal fibers, which can motivate the corresponding
researches for RWs in some physical models. RWs, appear-
ing abruptly and disappearing without any trace, primar-
ily cover the prominent characteristics of high peak and
being rationally localized. There are some main propelling
methods in studying RWs, containing Wronskian tech-
nique, Bäcklund transformation, Darboux transformation
(DT) method and the bilinear method [9–17]. Generally,
the nonlinear Schrödinger (NLS) equation is regarded as a
common model to describe RWs [18]. The NLS equation
arises from different fields, such as nonlinear optics, deep
water waves and plasma physics [19–24]. In recent years,
the generalized formalizations of the NLS equation involv-
ing additional terms and derivatives have been studied
extensively in order to reflect the contributions of higher-
order nonlinear effects which cannot be ignored in optical
fibers [25]. One example of the above consideration is a

(a)E-mail: shoufu2006@126.com, sftian@cumt.edu.cn (corre-
sponding author)

generalized NLS introduced in ref. [26], namely,

iut + uxx − 2δ|u|2u + 4β2|u|4u + 4iδβ(|u|2)xu = 0, (1)

where u(x, t) is a complex valued function of the real vari-
ables x and t, β is a real constant, and δ = ±1. When
δ = −1, eq. (1) reduces to the Kundu-Eckhaus (KE)
equation which has a Lax representation and Hamiltonian
structure. Plentiful results have been presented by a series
of methods [27–32].

In this paper, we mainly focus on a coupled NLS
equation

iut + uxx − 2u2υ + 4β2u3υ2 + 4iβ (uυ)x u = 0,
iυt − υxx + 2uυ2 − 4β2u2υ3 + 4iβ (uυ)x υ = 0,

(2)

through the generalized Darboux transformation. When
u∗ = δυ, eq. (2) reduces to the above eq. (1), ∗ denotes
the complex conjugation. The soliton solutions have been
derived based on the Darboux transformation in [33].

To the best of our knowledge, the positon waves,
breather waves and higher-order rogue waves of (2) have
not been investigated by using the method of the gener-
alized Darboux transformation. In this work, the gen-
eralized Darboux transformation for eq. (2) is briefly
introduced to find these solutions.
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Generalized Darboux transformation. – Next, we
construct a generalized Darboux transformation for the
coupled NLS equation (2) whose Lax pair has been given
in [33]. According to the variable transformation

u = qe−2iβ
∫

qrdx, v = re2iβ
∫

qrdx, (3)

the spectral problem for (2) can be turned into the follow-
ing standard AKNS spectral problem, given by

Φx = UΦ, Φt = VΦ =
(V2λ

2 + V1λ + V0
)
Φ (4)

with

U =
(−iλ q

r iλ

)
, V2 =

(−2i 0
0 2i

)
, V1 =

(
0 2q
2r 0

)
,

(5)

V0 =
(

v11 iqx

−irx −v11

)
, v11 = β (qxr − qrx) − iqr

+ iβ

∫
(qr)t dx, (6)

where Φ(x, t, λ) = (φ, ϕ)T is the new eigenfunction, and
q = q(x, t) and r = r(x, t) are two new potentials.

Theorem 1. Supposing Φ1(λ1 + ε) is a basic solution to
the Lax pair equations (4) related to {q = q[0], r = r[0]}
and λ = λ1 + ε, of which ε is an infinitesimal parameter,
and expanding Φ1 at ε = 0 by higher-order Taylor expan-
sion, we have

Φ1 = Φ[0]
1 + Φ[1]

1 ε + Φ[2]
1 ε2 + . . . + Φ[n]

1 εn + . . . , (7)

where

Φ[k]
1 =

(
φ

[k]
1 , ϕ

[k]
1

)T

=
1
k!

∂kΦ1

∂εk
|ε=0, k = 0, 1, 2, . . . . (8)

Thus, {u[n], v[n]} presented by the following formulae are
new solutions of the CNLS equation (2) with δ = −1:

u[n] = q[n]e−2iβ
∫

q[n]r[n]dx, v[n] = r[n]e2iβ
∫

q[n]r[n]dx,

(9)

and

q[n] = q − 2i(λ1 − λ∗
1)

n−1∑
j=0

φ1[j]ϕ1[j]∗

|φ1[j]|2 + |ϕ1[j]|2 ,

r[n] = r + 2i(λ1 − λ∗
1)

n−1∑
j=0

φ1[j]∗ϕ1[j]
|φ1[j]|2 + |ϕ1[j]|2 ,

(10)

where

Φ[0]
1 = Φ1[0], Φ1[j] = (φ1[j], ϕ1[j])T ,

Φ1[j] = Φ[0]
1 +

j∑
k=1

T1[k]Φ[1]
1 +

j∑
k=1

k−1∑
s=1

T1[k]T1[s]Φ
[2]
1

+ . . .+T1[j]T1[j − 1] . . . T1[1]Φ[j]
1 , j = 0, 1, 2, . . . ,

(11)

T1[j] = λI − H [j − 1]ΛjH [j − 1]−1, I =
(

1 0
0 1

)
,

(12)

H [j − 1] =
(

φ1[j − 1] −ϕ1[j − 1]∗

ϕ1[j − 1] φ1[j − 1]∗

)
, Λj =

(
λ1 0
0 λ∗

1

)
.

(13)

It is trivial to confirm q∗ = −r, thus N steps of the Dar-
boux transformation meet q[n]∗ = −r[n]. Apparently, we
have u∗ = −v and u[n]∗ = −v[n].

Solutions with vanishing boundary condition. –
Next, we start from a zero seed solution to construct

positon solutions by employing Theorem 1. Let u = 0, on
the basis of the transformation (3), we obtain q = 0 which
can be used to generate an essential solution to the Lax
pair equations (4). Inspired by the physical importance
of DT theory in multi-rational solutions [34,35], we take
λ = ξ+iη, then the solutions of the Lax pair equations (4)
with eigenvalues λ are solved as

Φ1 =

⎛⎝ e−i
(
(ξ+iη)x+2(ξ+iη)2t+

∑n
k=1 pkε2k

)
ei
(
(ξ+iη)x+2(ξ+iη)2t+

∑n
k=1 pkε2k

) ⎞⎠ . (14)

Taking η = 1 − iε2 and expanding the vector function
Φ1(ε) at ε = 0, we have

Φ1(ε) = Φ[0]
1 + Φ[1]

1 ε2 + Φ[2]
1 ε4 + . . . , (15)

where Φ[j]
1 = (φ[j]

1 , ϕ
[j]
1 )T , (j = 0, 1, 2, 3, . . .), and pk =

mk + ski. Letting λ = λ1 = ξ + i, and using Theorem 1,
we obtain the one-positon wave solutions by taking n = 2

q[2]Pws =
4G

F
exp

(
i
(− 2ξx + 4t − 4ξ2t

))
, (16)

where

G = (8it + 2s1i + 1)[cosh(6x + 24ξt) + 3 cosh(2x + 8ξt)]
− (2x + 8ξt + 2m1)[sinh(6x + 24ξt)
+ sinh(2x + 8ξt)],

F = cosh(2x + 8ξt)
[
(16(4ξt + x + m1)2

+ 16(4t + s1)2 + 3)
cosh(2x + 8ξt) + cosh(6x + 24ξt)

]
. (17)

Naturally, the one-positon solutions for (2) admit the fol-
lowing expression:

u[2]Pws = q[2]Pwse
−2iβ

∫
q[2]Pwsr[2]Pwsdx, (18)

where
∫

q[2]Pwsr[2]Pwsdx = − 8H
D with

H =
(
8(4ξt + x + m1)2 + 8(4t + s1)2 + 16ξt

+ 4m1 + 4x + 1
)
exp(−4x − 16ξt) + 1,

D =
(
16(4ξt + x + m1)2

+16(4t + s1)2 + 2
)
exp(−4x − 16ξt)

+ exp(−8x − 32ξt) + 1. (19)
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(a) (b) (c)

Fig. 1: (Color online) Profiles of the one-positon solutions (18)
with the parameters ξ = 0, s1 = 0 and (a) m1 = 0, (b) m1 = 2,
(c) m1 = 30.

(a) (b) (c)

Fig. 2: (Color online) Profiles of the one-positon solutions (18)
with the parameters ξ = − 1

3 , m1 = 0 and (a) s1 = −10,
(b) s1 = 0, (c) s1 = 10.

In fact, the one-positon wave solutions (18) represent the
interaction of two-soliton solutions, and the high peak
comes from the interaction of two solitons under the de-
generation of the associated eigenvalues. The correspond-
ing dynamic characteristics of the solutions are discussed
in figs. 1 and 2. Figure 1 shows the process of evolution for
different selections of parameter m1 = 0, m1 = 2, m1 = 30,
respectively. we can easily find that the high peak is swal-
lowed by the two solitons as m goes up. The high peak
appears at m1 = 0, and then the one-positon wave so-
lutions (18) reduce to the two-soliton waves. As shown
in fig. 2, we find that parameter s1 affects the phase of
the high peak. In addition, by comparing fig. 1(a) with
fig. 1(b), we understand that the distance between two
solitons depends on the parameter ξ.

Solutions with a non-vanishing boundary con-
dition. – Next, we discuss the solutions from a non-
trivial seed. Without loss of generality, starting with
u[0] = exp(iθ), θ = (ax + bt), b = 4β2 − a2 + 2, a ∈ R,
we shall present the breather solutions and higher-order
rogue wave solutions of the coupled nonlinear Schrödinger
equation. Based on the transformation (9), we have the
non-trivial seed for the Lax pair equations (4), reading as
q[0] = exp(ax − 2βx + bt). Then the new eigenfunctions
corresponding to λ = ic + β − a

2 can be provided by

Φ1 =
(

ω1 exp
(
� + i

2θ
)− ω2 exp

(−� + i
2θ
)

ω1 exp
(−� − i

2θ
)− ω2 exp

(
� − i

2θ
) ) , (20)

with

ω1 =

(
c − √

c2 − 1
) 1

2

√
c2 − 1

, ω2 =

(
c +

√
c2 − 1

) 1
2

√
c2 − 1

,

(a) (b) (c)

Fig. 3: (Color online) Profiles of the first-order breather waves
for (23) with the parameters (a) a = 0, β = 0, c = 3

2 , (b) a = 0,
β = 0, c = 2, (c) a = 1

2 , β = 0, c = 2.

� = −
√

c2 − 1

(
x + 4βt + 2ict − 2at +

n∑
k=1

pkε2k

)
.

(21)

First-order breather and rogue wave solutions. Next,
we shall analyse the solutions with a non-vanishing bound-
ary condition for the case of pk = 0. On account of
Φ[0]

1 = Φ1[0], we can derive first-order breather waves,

q[1]Bws =
G̃1

F̃1
exp(i(ax − 2βx + 4β2t − a2t + 2t)), (22)

where

G̃1 = c cosh
[
2
√

c2 − 1(2at − 4βt − x)
]

+ (1 − 2c2) cos(4c
√

c2 − 1t)

− 2c
√

c2 − 1i sin(4c
√

c2 − 1t),

F̃1 = cos(4c
√

c2 − 1t)

− c cosh[2
√

c2 − 1(2at − 4βt − x)].

Naturally, the first-order breather wave solutions for (2)
admit the expression

u[1]Bws = q[1]Bwse
−2iβ

∫
q[1]Bwsr[1]Bwsdx

with r[1]Bws = −q[1]∗Bws.
In fig. 3, the first-order breather wave solutions are

shown which progress periodically along a certain straight
line. As depicted in figs. 3(a) and (b), the waves, called
KM breather waves, are periodic in time and localized in
space for fixed a = β = 0. Moreover, the increase of pa-
rameter c leads to the decrease of the KM breather waves
period. But when a turns into 1

2 , the breather waves evolve
with a certain angle with the x-axis and t-axis.

We have known that the breather waves are a type of
periodic wave. Obviously, 2π√

c2−1
denotes the period of

eq. (22). When the period 2π√
c2−1

tends to infinity, the
breather waves can transform into the rogue waves. There-
fore, we take c → 1, the first-order rogue waves of (2) can
be written as

q[1]Rws =
(

1 − 2
G1

F1

)
exp(i(ax − 2βx + 4β2t

− a2t + 2t)), (23)
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(a) (b) (c)

Fig. 4: (Color online) Profiles of the first-order rogue wave
solutions (24) with the parameters (a) a = 0, β = 0, (b) a = 2

3 ,
β = 0, (c) a = 0, β = 4

5 .

(a) (b) (c)

Fig. 5: (Color online) Profiles of the second-order rogue wave
solutions (24) with the parameters m1 = s1 = 0 (a) a = 0,
β = 0, (b) a = 0, β = 2

3 , (c) a = 2, β = 0.

where

G1 = (4at − 8βt − 2x)2 − (4it + 1)2,
F1 = 16(at − 2βt)(at − 2βt − x) + 16t2 + 4x2 + 1.

(24)

Naturally, the first-order rogue wave solutions for (2) ad-
mit the following expression:

u[1]Rws = q[1]Rwse
−2iβ

∫
q[1]Rwsr[1]Rwsdx, (25)

where
∫

q[1]Rwsr[1]Rwsdx = −H1
D1

with

H1 = 4x3 + 16(2β − a)(x2 + 1)t
+ 16((2β − a)2 + 1)t2x + 9x,

D1 = 4x2 + (32β − 16a)tx
+ 16(4β2 − 4aβ + a2 + 1)t2 + 1.

(26)

It is easily calculated that the maximum amplitude of
|u[1]Rws| is equal to 3 times that of the background plane
wave. Three graphics are displayed in fig. 4 through differ-
ent selections of parameters a and β. The fact that a and
β affect the phase of rogue waves can be attested by fig. 4.
In addition, as β increases, the angle between the ridge of
the rogue waves and the x-axis becomes larger. Similarly,
the change of a can also result in the corresponding angle
change.

Higher-order rogue wave solutions. In the above
method, the first-order rogue wave solutions have also
been obtained by an advisable limit from the breather so-
lutions. However, the method is hard for calculating the
higher-order rogue waves. Here, we discuss the higher-
order rogue waves in terms of the generalized Darboux
transformation (see Theorem 1). Analogously, we take
c = 1 − iε2, and carry out the Taylor expansion as (15).
It is not difficult to verify that the first-order waves ob-
tained by Theorem 1 are completely consistent with the

(a) (b) (c)

Fig. 6: (Color online) Three-dimensional plots and density
plots of the second-order rogue wave solutions (24) with the
parameters: (a) a = 0, β = 0, m1 = 0, s1 = 200, (b) a = 0,
β = 0, m1 = 0, s1 = 200, (c) a = 0, β = 0, m1 = 200, s1 = 0.

(a) (b) (c)

(d) (e) (f)

Fig. 7: (Color online) Three-dimensional plots and density
plots of the fourth-order rogue wave solutions for eq. (2) with
the parameters: a = 0, β = 0, m1 = 0, m2 = 0, s2 = 0, m3 = 0,
((a), (d)) s1 = 200, s3 = 0, ((b), (e)) s1 = 0, s3 = 2000, ((c),
(f)) s1 = 200, s3 = 2000000.

above first-order waves (23). Therefore, we omit the case
of n = 1, and take n = 2 to derive the explicit form of
second-order rogue waves, constructed by

q[2]Rws =
G2

F2
exp(i(ax − 2βx + 4β2t − a2t + 2t)), (27)

where G2 and F2 are six binary polynomials in x and t,
which are presented in the appendix. Using the trans-
formation in (9), we obtain the second-order rogue wave
solutions for (2) u[2]Rws = q[2]Rwse

−2iβ
∫

q[2]Rwsr[2]Rwsdx

with r[2]Rws = −q[2]∗Rws.
As shown in fig. 5, for fixed parameters m1 = s1 = 0,

the second-order rogue waves have a single peak with two
ridges of the rogue waves presented clearly in fig. 5(a).
But with parameters a, β changed, the intersecting angle
between two ridges of the rogue waves makes a difference,
which can be observed in figs. 5(b) and (c). From fig. 6, for
fixed parameters a = β = 0, the second-order rogue waves
in fig. 5 separate into three peaks as m1, s1 are given a
big enough value. Here, when m1 = 0, s1 = 200, the three
peaks are symmetric about the straight line t = 0 in the
(x, t)-plane. When m1 = 200, s1 = 0, the three peaks are
symmetric about the straight line x = 0 in the (x, t)-plane.
This phenomenon is easily confirmed by figs. 6(b) and (c).
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In general, it is not hard to see that the higher-order
rogue wave solutions can be generated by Theorem 1.
However, due to their complex expressions showing these
solutions, we just display some plots of the fourth-order
rogue wave here by taking n = 4 in the Theorem. From
fig. 7, we find out that parameters mk and sk control the
distribution of these rogue waves. Figures 7(a) and (d)
present the triangular distribution including ten first-order
fundamental patterns. Figures 7(b) and (e) display a ring
pattern with inner second-order fundamental patterns.
Figures 7(c) and (f) are the ring-triangle distribution.

Conclusions and discussions. – In this paper,
we have systematically studied the coupled nonlinear
Schrödinger equation, which can be reduced to the gen-
eralized NLS equation. The exact solutions are presented
by the generalized Darboux transformation. The one-
positon wave solutions are obtained in the circumstance
of vanishing boundary. When u[0] is written as exp(iθ),
a non-vanishing boundary condition, we generate the first
breather wave and higher-order rogue wave solutions, re-
spectively. The first-order rogue wave is produced by
taking the limit in the first-order breather wave. Further-
more, we consider how the related parameters impact the
dynamical characteristics of these exact solutions through
figs. 1–6, respectively. At last, we also show some graphic
analysis of the fourth-order rogue wave in fig. 7. These
results presented in this paper will make us understand
well the emergence of deep-ocean waves with large ampli-
tude and the generation of few-cycle optical pulses which
are launched by high-power laser. It is hoped that our
results may be helpful to enrich and illustrate some other
nonlinear systems.
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Appendix

In eq. (27), F2 are G2 are given by

F2 = 4096a6t6 − 49152a5βt6 + 245760a4β2t6

− 655360a3β3t6 + 983040a2β4t6 − 786432aβ5t6

+ 262144β6t6 − 12288a5t5x + 122880a4βt5x

− 491520a3β2t5x + 983040a2β3t5x − 983040aβ4t5x

+ 393216β5t5x + 12288a4t6 + 15360a4t4x2

−98304a3βt6 − 122880a3βt4x2 + 294912a2β2t6

+368640a2β2t4x2 − 393216aβ3t6 − 491520aβ3t4x2

+196608β4t6 + 245760β4t4x2 − 24576a3t5x

− 10240a3t3x3 + 147456a2βt5x + 61440a2βt3x3

− 294912aβ2t5x − 122880aβ2t3x3 + 196608β3t5x

+81920β3t3x3 + 768a4t4 − 6144a3βt4 + 18432a2β2t4

+12288a2t6 + 18432a2t4x2 + 3840a2t2x4 − 24576aβ3t4

−49152aβt6 − 73728aβt4x2 − 15360aβt2x4

+12288β4t4 + 49152β2t6 + 73728β2t4x2 + 15360β2t2x4

−1536a3n1t
3 − 1536a3t3x + 9216a2βn1t

3 + 9216a2βt3x

−18432aβ2n1t
3 − 18432aβ2t3x − 12288at5x

−6144at3x3 − 768atx5 + 12288β3n1t
3 + 12288β3t3x

+24576βt5x + 12288βt3x3 + 1536βtx5 − 4608a2m1t
3

+2304a2n1t
2x − 4608a2t4 + 1152a2t2x2

+18432aβm1t
3 − 9216aβn1t

2x + 18432aβt4

−4608aβt2x2 − 18432β2m1t
3 + 9216β2n1t

2x

−18432β2t4 + 4608β2t2x2 + 4096t6 + 3072t4x2

+768t2x4 + 64x6 + 4608am1t
2x + 4608an1t

3

−1152an1tx
2 + 4608at3x − 384atx3 − 9216βm1t

2x

−9216βn1t
3 + 2304βn1tx

2 − 9216βt3x + 768βtx3

+432a2t2 − 1728aβt2 + 1728β2t2 + 1536m1t
3

−1152m1tx
2 − 2304n1t

2x + 192n1x
3 + 6912t4

−1152t2x2 + 48x4 + 288an1t − 432atx − 576βn1t

+864βtx + 144m2
1 + 864m1t + 144n2

1 − 144n1x

+1584t2 + 108x2 + 9, (A.1)

and

G2 = 45 − 786432aβ5t6 − 12288a5t5x + 393216β5t5x

+92160aβt4 + 23040at3x − 46080βt3x − 864an1t

+18432a3βt4 + 1728βn1t − 55296a2β2t4 + 73728aβ3t4

+4608a3t3x − 36864β3t3x − 13824β2t2x2 − 3456a2t2x2

+1152atx3 − 2304βtx3 + 245760β4t4x2 − 10240a3t3x3

−24576a3t5x + 4096t6 − 9216aβn1t
2x + 192n1x

3

+720axt − 1440βxt + 15360a4t4x2 − 98304a3βt6

−92160β2t4 − 9216βn1t
3 + 73728β2t4x2 + 432n1x

−36864β4t4 + 1536βtx5 + 4608an1t
3 + 12288βt3x3

+3840a2t2x4 − 122880a3βt4x2 + 4608am1t
2x

+368640a2β2t4x2 − 491520aβ3t4x2 − 983040aβ4t5x

+983040a2β2t5x − 491520a3β2t5x + 18432aβm1t
3

+122880a4βt5x − 15360aβt2x4 − 122880aβ2t3x3

−73728aβt4x2 − 294912aβ2t5x + 61440a2βt3x3

−9216βm1t
2x + 147456a2βt5x + 2304a2n1t

2x

+9216β2n1t
2x − 2880β2t2 − 720a2t2

+18432a2t4x2 + 81920β3t3x3 + 196608β3t5x
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−23040a2t4 − 180x2 − 1872t2 + 12288β3n1t
3

−27648a2βt3x + 55296aβ2t3x + 2880aβt2 + 24576βt5x

−768atx5 − 6144at3x3 + 9216a2βn1t
3 − 18432aβ2n1t

3

−2304a4t4 − 12288at5x + 294912a2β2t6 − 393216aβ3t6

+64x6 − 144x4 − 1152m1tx
2 − 4608a2m1t

3

−18432β2m1t
3 − 8448t4 + 15360β2t2x4 − 1536a3n1t

3

−49152a5βt6 + 245760a4β2t6 − 655360a3β3t6

+983040a2β4t6 + 1536m1t
3 + 3072t4x2 + 768t2x4

+12288a2t6 + 49152β2t6 − 1152an1tx
2 + 12288a4t6

+196608β4t6 + 4096a6t6 − 288m1t − 5760t2x2

+144n2
1 + 144m2

1 − 2304n1t
2x + i(−12288a4t5

+98304a3βt5 − 294912a2β2t5 + 393216aβ3t5

−196608β4t5 + 24576a3t4x − 147456a2βt4x

+294912aβ2t4x − 196608β3t4x − 24576a2t5

−18432a2t3x2 + 98304aβt5 + 73728aβt3x2 − 98304β2t5

−73728β2t3x2 + 24576at4x + 6144at2x3 − 49152βt4x

−12288βt2x3 + 2304a2m1t
2 + 4608a2t3 − 9216aβm1t

2

−18432aβt3 + 9216β2m1t
2 + 18432β2t3 − 12288t5

−768tx4 − 2304am1tx − 4608an1t
2 − 4608at2x

+4608βm1tx + 9216βn1t
2 + 9216βt2x − 2304m1t

2

+576m1x
2 + 2304n1tx − 1536t3 + 1152tx2 + 144m1

−6144t3x2 + 720t) − 49152aβt6 + 2304βn1tx
2

+ 13824βt2x2 + 262144β6t6. (A.2)
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