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Abstract – The scattering of quantum particles by non-Hermitian (generally non-local)
potentials in one dimension may result in asymmetric transmission and/or reflection from left
and right incidence. After extending the concept of symmetry for non-Hermitian potentials,
eight generalized symmetries based on the discrete Klein’s four-group (formed by parity, time
reversal, their product, and unity) are found. Together with generalized unitarity relations
they determine selection rules for the possible and/or forbidden scattering asymmetries. Six
basic device types are identified when the scattering coefficients (squared moduli of scattering
amplitudes) adopt zero/one values, and transmission and/or reflection are asymmetric. They can
pictorically be described as a one-way mirror, a one-way barrier (a Maxwell pressure demon),
one-way (transmission or reflection) filters, a mirror with unidirectional transmission, and a
transparent, one-way reflector. We design potentials for these devices and also demonstrate that
the behavior of the scattering coefficients can be extended to a broad range of incident momenta.
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Introduction. – The current interest to develop new
quantum technologies is boosting applied and fundamen-
tal research on quantum phenomena and on systems with
potential applications in logic circuits, metrology, commu-
nications or sensors. Robust basic devices performing ele-
mentary operations are needed to perform complex tasks
when combined in a circuit.

In this paper we investigate the properties of potentials
with asymmetric transmission or reflection for a quantum,
spinless particle of mass m satisfying a one-dimensional
(1D) Schrödinger equation. If we restrict the analysis to
transmission and reflection coefficients (squared moduli of
the scattering complex amplitudes) being either zero or
one, a useful simplification for quantum logic operations,
there are six types of asymmetric devices, see fig. 1. These
devices cannot be constructed with Hermitian potentials.
In fact for all device types with transmission asymmetries,
which are four of the six possible devices, the potentials
have to be also non-local. Therefore, non-local poten-
tials play a major role in this paper. They appear natu-
rally when applying partitioning techniques under similar
conditions to the ones leading to non-Hermitian poten-
tials, namely, as effective interactions for a subsystem or

component of the full wave function, even if the interac-
tions for the large system are Hermitian and local [1].

Symmetries can be used, analogously to their standard
application in atomic physics to determine selection rules
for allowed/forbidden transitions, to predict whether a
certain potential may or may not lead to asymmetric scat-
tering. The concept of symmetry, however, must be gen-
eralized when dealing with non-Hermitian potentials.

The theory in this paper is worked out for particles
and the Schrödinger equation but it is clearly of rele-
vance for optical devices due to the much exploited analo-
gies and connections between Maxwell’s equations and the
Schrödinger equation, which were used, e.g., to propose
the realization of PT-symmetric potentials in optics [2].

Generalized symmetries. – The detailed technical
and formal background for the following can be found
in a previous review on 1D scattering by complex po-
tentials [1], a companion to this article for those readers
willing to reproduce the calculations in detail. The Sup-
plemental Material (sect. I) Supplementarymaterial.pdf
(SM) provides also a minimal kit of scattering theory for-
mulae that may be read first to set basic concepts and
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Table 1: Symmetries of the potential classified in terms of the commutativity or pseudohermiticity of H with the elements
of Klein’s 4-group {1, Π, θ, Πθ} (second column). The first column sets a simplifying roman-number code for each symmetry.
The relations among potential matrix elements are given in coordinate and momentum representations in the third and fourth
columns. The fifth column gives the relations they imply in the matrix elements of S and/or Ŝ matrices (S is for scattering by
H and Ŝ for scattering by H†). From them the next four columns set the relations implied on scattering amplitudes. Together
with generalized unitarity relations (3) they also imply relations for the moduli (tenth column), and phases (not shown). The
last two columns indicate the possibility to achieve perfect asymmetric transmission or reflection: “P” means possible (but not
necessary), “No” means impossible. In some cases “P” is accompanied by a condition that must be satisfied.

Code Symmetry 〈x|V |y〉 = 〈p|V |p′〉 = 〈p|S|p′〉 = T l = T r = Rl = Rr = From eq. (3) |T l|=1 |Rl|=1
|T r|=0 |Rr|=0

I 1H = H1 〈x|V |y〉 〈p|V |p′〉 〈p|S|p′〉 T l T r Rl Rr P P

II 1H = H†1 〈y|V |x〉∗ 〈p′|V |p〉∗ 〈p|Ŝ|p′〉 T̂ l T̂ r R̂l R̂r |T l|= |T r|, |Rl|= |Rr| No No
III ΠH = HΠ 〈−x|V | − y〉 〈−p|V | − p′〉 〈−p|S| − p′〉 T r T l Rr Rl |T l|= |T r|,|Rl|= |Rr| No No
IV ΠH = H†Π 〈−y|V | − x〉∗ 〈−p′|V | − p〉∗ 〈−p|Ŝ| − p′〉 T̂ r T̂ l R̂r R̂l P , RrRl∗ = 1 P , T rT l∗ = 1
V ΘH = HΘ 〈x|V |y〉∗ 〈−p|V | − p′〉∗ 〈−p′|Ŝ| − p〉 T̂ r T̂ l R̂l R̂r |Rl| = |Rr| P , |Rr,l| = 1 No
VI ΘH = H†Θ 〈y|V |x〉 〈−p′|V | − p〉 〈−p′|S| − p〉 T r T l Rl Rr |T l| = |T r| No P

VII ΘΠH = HΘΠ 〈−x|V | − y〉∗ 〈p|V |p′〉∗ 〈p′|Ŝ|p〉 T̂ l T̂ r R̂r R̂l |T l| = |T r| No P , |T r,l| = 1
VIII ΘΠH = H†ΘΠ 〈−y|V | − x〉 〈p′|V |p〉 〈p′|S|p〉 T l T r Rr Rl |Rl| = |Rr| P No

Fig. 1: (Color online) Devices with asymmetric scattering
(limited to scattering coefficients being 0 or 1). The dashed
and continuous lines represent, respectively, zero or one for
the moduli of the scattering amplitudes; the bended lines
are for reflection amplitudes, and the straight lines for trans-
mission: (a) One-way mirror (T R/A); (b) One-way barrier
(T /R); (c) One-way T-filter (T /A); (d) Mirror and 1-way
transmitter (T R/R); (e) One-way R-filter (R/A); (f) Trans-
parent, one-way reflector (T R/T ). The letter codes summarize
the effect of left and right incidence, separated by a slash “/”.
T or R on one side of the slash indicate a unit transmission
or reflection coefficient for incidence from that side, whereas
the absence of one or the other letter corresponds to zero co-
efficients. An A denotes “full absorption”, i.e., both moduli of
reflection and transmission amplitudes are zero for incidence
from one side. For example, T R/A means unit modulus trans-
mission and reflection from the left and total absorption from
the right.

notation. The notation is essentially as in [1], but it
proves convenient to use for the potential matrix (or kernel
function) in coordinate representation two different forms,
namely 〈x|V |y〉 = V (x, y). “Local” potentials are those
for which V (x, y) = V (x)δ(x − y).

For Hermitian Hamiltonians, symmetries are repre-
sented by the commutation of a symmetry operator with
the Hamiltonian. In scattering theory, symmetry plays an
important role as it implies relations among the S-matrix
elements beyond those implied by its unitarity, see, e.g., [3]
and, for scattering in one dimension, sect. 2.6 in [1].

Symmetries are also useful for non-Hermitian Hamil-
tonians, but the mathematical and conceptual framework
must be generalized. We consider that a unitary or
antiunitary operator A represents a symmetry of H if it
satisfies at least one of these relations

AH = HA, (1)
AH = H†A. (2)

For a right eigenstate of H , |ψ〉, with eigenvalue E, eq. (1)
implies that A|ψ〉 is also a right eigenstate of H , with the
same eigenvalue if A is unitary, and with the complex con-
jugate eigenvalue E∗ if A is antiunitary. Equation (2) im-
plies that A|ψ〉 is a right eigenstate of H† with eigenvalue
E for A unitary or E∗ for A antiunitary, or a left eigenstate
of H with eigenvalue E∗ for A unitary, or E for A antiuni-
tary. For real-energy scattering eigenfunctions in the con-
tinuum, the ones we are interested in here, E∗ = E. When
eq. (2) holds we say that H is A-pseudo-Hermitian [4].
Parity-pseudohermiticity has played an important role as
being equivalent to space-time reflection (PT) symmetry
for local potentials [4,5]. A large set of these equivalences
will be discussed below. A relation of the form (2) has
been also used with differential operators to get real spec-
tra beyond PT-symmetry for local potentials [6,7].

Here we consider A to be a member of the Klein 4-
group K4 = {1,Π,Θ,ΠΘ} formed by unity, the parity
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Table 2: Equivalences among symmetries for the potential elements. Given the symmetry of the upper row, the table provides
the equivalent symmetries. For example, if II is satisfied, then III=IV holds. In words, if the potential is Hermitian, parity
symmetry amounts to parity pseudohermiticity. In terms of the matrix elements of the potential, if 〈x|V |y〉 = 〈y|V |x〉∗ and also
〈x|V |y〉 = 〈−x|V | − y〉, ∀(x, y), then 〈x|V |y〉 = 〈−y|V | − x〉∗ holds as well. One may proceed similarly for all other relations.
The commutation with the identity (I) is excluded as this symmetry is satisfied by all potentials.

II III IV V VI VII VIII
III=IV II=IV II=III II=VI II=V II=VIII II=VII
V=VI V=VII V=VIII III=VII III=VIII III=V III=VI

VII=VIII VI=VIII VI=VII IV=VIII IV=VII IV=VI IV=V

operator Π, the antiunitary time-reversal operator Θ, and
their product ΠΘ. This is a discrete, Abelian group.
We also assume that the Hamiltonian is of the form
H = H0 + V , with H0, the kinetic energy operator of the
particle, being Hermitian and satisfying [H0, A] = 0 for
all members of the group, whereas the potential V may
be non-local in position representation. The motivation
to use Klein’s group is that the eight relations implied by
eqs. (1) and (2) generate all possible symmetries of a non-
local potential due to the identity, complex conjugation,
transposition, and sign inversion, both in coordinate or
momentum representation, see table 1, where each sym-
metry has been labeled by a roman number. Interesting
enough, in this classification hermiticity (symmetry II in
table 1) may be regarded as 1-pseudohermiticity.

Examples on how to find the relations in the fifth col-
umn of table 1 of S- and Ŝ-matrix elements (for scattering
by H and H†, respectively) are provided in ref. [1], where
the symmetry types III, VI, and VII where worked out.
Similar manipulations, making use of the action of uni-
tary or antiunitary operators of Klein’s group on Möller
operators, help to complete the table.

From the fifth column in table 1, equivalences among the
amplitudes for left and right incidence for scattering by H ,
(T l,r, Rl,r) or H† (T̂ l,r, R̂l,r), are deduced, see the SM and
the four columns for T l,r, and Rl,r in table 1. Together
with the generalized unitarity relations Ŝ†S = SŜ† = 1,
which in terms of amplitudes take the form [1]

T̂ lT l∗ + R̂lRl∗ = 1,
T̂ rT r∗ + R̂rRr∗ = 1,
T̂ l∗Rr + T rR̂l∗ = 0,
T lR̂r∗ + T̂ r∗Rl = 0,

(3)

these equivalences between the amplitudes imply further
consequences on the amplitudes’ moduli (tenth column of
table 1) and phases (not shown). The final two columns
use the previous results to determine if perfect asymme-
try is possible for transmission or reflection. This makes
evident that hermiticity (II) and parity (III) preclude,
independently, any asymmetry in the scattering coeffi-
cients; PT-symmetry (VII) or Θ-pseudohermiticity (VI)
forbid transmission asymmetry (all local potentials satisfy
automatically symmetry VI), whereas time-reversal sym-
metry (i.e., a real potential in coordinate space) (V) or

PT-pseudohermiticity (VIII) forbid reflection asymmetry.
A caveat is that asymmetric effects forbidden by a cer-
tain symmetry in the linear (Schrödinger) regime consid-
ered in this paper might not be forbidden in a non-linear
regime [8], which goes beyond our present scope.

The occurrence of one particular symmetry in the po-
tential (conventionally “first symmetry”) does not exclude
a second symmetry to be satisfied as well. When a dou-
ble symmetry holds, excluding the identity, the “first”
symmetry implies the equivalence of the second symmetry
with a third symmetry. We have already mentioned that
Π-pseudohermiticity (IV) is equivalent to PT-symmetry
(VII) for local potentials. Being local is just one particular
way to satisfy symmetry VI, namely Θ-pseudohermiticity.
The reader may verify with the aid of the third column for
〈x|V |y〉 in table 1, that indeed, if symmetry VI is satisfied
(first symmetry), symmetry IV has the same effect as sym-
metry VII. They become equivalent. Another well-known
example is that for a local potential (symmetry VI is sat-
isfied), a real potential in coordinate space is necessarily
Hermitian, so symmetries V and II become equivalent.
These examples are just particular cases of the full set of
equivalences given in table 2.

Combining the information of the last two columns in
table 1 with the additional condition that all scattering co-
efficients be 0 or 1 we elaborate table 3, which provides the
symmetries that do not allow the implementation of the
devices in fig. 1. The complementary table 4 gives instead
the symmetries that allow, but do not necessarily imply,
a given device type. The device denominations in fig. 1
or table 3 are intended as short and meaningful, and do
not necessarily coincide with some extended terminology,
in part because the range of possibilities is broader here
than those customarily considered, and because we use a
1 or 0 condition for the moduli. For example, a device
with reflection asymmetry and with T r = T l = 1 would in
our case be a particular “transparent, one-way reflector”,
as full transmission occurs from both sides. This effect
has however become popularized as “unidirectional invis-
ibility” [9,10]. A debate on terminology is not our main
concern here, and the use of a code system as the one pro-
posed will be instrumental in avoiding misunderstandings.

Designing potentials for asymmetric devices. –
We will show how to design non-local potentials leading
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Table 3: Device types for transmission and/or reflection asymmetry, restricted to 1 or 0 moduli for the scattering amplitudes.
The fifth column indicates the symmetries in table 1 that forbid the device. Figures S1, S2, S3, S4, and S5 can be found in the
SM to this paper.

Device type Left incidence Right incidence Code Forbidden by Example
One-way mirror transmits and reflects absorbs T R/A II, III, IV, V, VI, VII, VIII fig. S1
One-way barrier transmits reflects T /R II, III, IV, V, VI, VII, VIII fig. S2
One-way T-filter transmits absorbs T /A II, III, IV, V, VI, VII fig. 2, S3

Mirror and 1-way transmitter transmits and reflects reflects T R/R II, III, VI, VII fig. S4
One-way R-filter reflects absorbs R/A II, III, IV, V, VII, VIII [11]

Transparent 1-way reflector transmits and reflects transmits T R/T II, III, V, VIII figs. 3, S5

Table 4: Device types allowed for a given symmetry.

Symmetry Allowed devices
I All types
II None
III None
IV T R/R, T R/T
V T R/R
VI R/A, T R/T
VII T R/T
VIII T /A, T R/R

to the asymmetric devices. For simplicity we look for non-
local potentials V (x, y) with local support that vanish for
|x| > d and |y| > d.

Inverse scattering proceeds similarly to [12], by impos-
ing an ansatz for the wave functions and the potential in
the stationary Schrödinger equation

�
2k2

2m
ψ(x) = − �

2

2m
d2

dx2ψ(x) +
∫ d

−d

dyV (x, y)ψ(y). (4)

The free parameters are fixed making use of the boundary
conditions. The form of the wave function incident from
the left is ψl(x) = eikx +Rle−ikx for x < −d and ψl(x) =
T leikx for x > d, where k = p/�. The wave function
incident from the right is instead ψr(x) = e−ikxT r for
x < −d and ψr(x) = e−ikx +Rreikx for x > d.

Our strategy is to assume polynomial forms for the two
wave functions in the interval |x| < d, ψl(x) =

∑5
j=0 cl,jx

j

and ψr(x) =
∑5

j=0 cr,jx
j , and also a polynomial ansatz of

finite degree for the potential V (x, y) =
∑

i

∑
j vijx

iyj .
Inserting these ansatzes in eq. (4) and from the conditions
that ψl,r and their derivatives must be continuous, all co-
efficients cl,j , cr,j and vij can be determined. Symmetry
properties of the potential can also be imposed via addi-
tional conditions on the potential coefficients vij . For ex-
ample we may use this method to obtain a one-way T-filter
(T /A) device (third device in table 3) with a non-local PT-
pseudo-Hermitian potential (symmetry VIII of table 1) for
a chosen wave vector k = k0. The absolute value and ar-
gument of the resulting potential V (x, y) are shown in
figs. 2(a) and (b) together with its scattering coefficients

as function of the incident wave vector, fig. 2(c). As can
be seen in fig. 2(c) the imposed scattering coefficients are
fulfilled exactly for the chosen wavevector. They are also
satisfied approximately in a neighborhood of k0. In the
SM (sect. II) we give further details about the construc-
tion of this potential and we work out other asymmetric
devices of fig. 1.

Extending the scattering asymmetry to a broad
incident-momentum domain. – The inversion tech-
nique just described may be generalized to extend the
range of incident momenta for which the potential works
by imposing additional conditions and increasing corre-
spondingly the number of parameters in the wavefunction
ansatz, for example we may impose that the derivatives of
the amplitudes, in one or more orders, vanish at k0, or 0/1
values for the coefficients not only at k0 but at a series of
grid points k1, k2, . . . , kN , as in [1,12–14].

Here we put forward instead a method that provides a
very broad working-window domain. While we make for-
mally use of the Born approximation, the exact numerical
computations demonstrate the robustness and accuracy of
the approach to achieve that objective by making use of
an adjustable parameter in the potential. The very spe-
cial role of the Born approximation in inverse problems
has been discussed and demonstrated in [15–17]. Specif-
ically we study a transparent one-way reflector T R/T .
Our aim is now to find a local PT-symmetric potential
such that asymmetric reflection results, T l = T r = 1,
Rr = 0, |Rl| = 1 for a broad range of incident momenta.
A similar goal was pursued in [18] making use of a super-
symmetric transformation, without imposing |Rl| = 1.

In the Born approximation and for a local potential
V (x), the reflection amplitudes take the simple form

Rl = −2πim
p

〈−p|V |p〉, Rr = −2πim
p

〈p|V | − p〉. (5)

Defining the Fourier transform

Ṽ (k) =
1√
2π

∫ ∞

−∞
dxV (x)e−ikx, (6)

we get for k = p/� > 0

Rl = −
√

2πim
k�2 Ṽ (−2k), Rr = −

√
2πim
k�2 Ṽ (2k). (7)
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(a)

(b)

Fig. 2: (Color online) One-way T-filter (T /A,
∣∣T l

∣∣ = 1, T r =
Rl = Rr = 0) with potential V (x, y) = |V (x, y)|eiφ(x,y) set for
k0 = 1/d. (a) Absolute value |V (x, y)|; (b) argument φ(x, y);
(c) transmission and reflection coefficients: |Rl|2 (black, solid
line), |T l|2 (green, solid line), |Rr|2 (blue, thick, dashed line),
|T r|2 (red, dotted line). V0 = �

2/(2md3).

Assuming that the potential is local and PT-symmetrical,
we calculate the transition coefficient from them using gen-
eralized unitarity as |T |2 = 1 −Rr∗Rl.

To build a T R/T device we demand: Ṽ (k) =√
2παk (k < 0) and Ṽ (k) = 0 (k ≥ 0). By inverse Fourier

transformation, this implies

V (x) = −α ∂

∂x
lim
ε→0

1
x− iε

= α lim
ε→0

1
(x− iε)2

= α lim
ε→0

[
x2 − ε2

(x2 + ε2)2
+ i

2xε
(x2 + ε2)2

]
, (8)

which is indeed a local, PT-symmetric potential for α real.
α is directly related to the reflection coefficient, within
the Born approximation, Rl = 4πimα/�2. As the Born
approximation may differ from exact results we shall keep
α as an adjustable parameter in the following.

In a possible physical implementation, the potential
in eq. (8) will be approximated by keeping a small fi-
nite ε > 0, see fig. 3(a). Then, its Fourier transform is
Ṽ (k) =

√
2παkeεk (k < 0) and Ṽ (k) = 0 (k ≥ 0). In

figs. 3(b) and (c), the resulting coefficients for ε/d = 10−4

and two different values of α are shown. These figures have
been calculated by numerically solving the Schrödinger

Fig. 3: (Color online) Transparent 1-way reflector with a lo-
cal PT potential: (a) approximation of the potential (8), real
part (green solid line), imaginary part (blue dashed line). (b),
(c) Transmission and reflection coefficients vs. momentum kd;
left incidence: |Rl|2 (black, solid line), |T l|2 (green, solid line);
right incidence: |Rr|2 (blue, thick, dashed line), |T r|2 (red,
dotted line, coincides with green, solid line). ε/d = 10−4. (b)
α = 1.0�

2/(4πm) (c) α = 1.225�
2/(4πm) (the black, solid

line coincides here mostly with the red, dotted and green,
solid lines).

equation exactly. Remarkably, the Born approximation
contains all the information required to build the required
potential shape up to a global factor. Such a prominent
role of the Born approximation in inverse problems has
been noted in different applications [15–17]. For a range
of α, the potential gives |Rr| ≈ 0, a nearly constant |Rl|2,
and |T r| = |T l| ≈ 1 in a broad k-domain, see fig. 3(b). Ad-
justing the value of α, fig. 3(c), sets |Rl| ≈ 1 as desired.

Discussion. – Scattering asymmetries are necessary to
develop technologically relevant devices such as one-way
mirrors, filters and barriers, invisibility cloaks, diodes,
or Maxwell demons. So far much effort has been de-
voted to build and apply local PT-symmetric potentials
but the possible scattering asymmetries with them are
quite limited. We find that six device types with asym-
metric scattering are possible when imposing 0 or 1 scat-
tering coefficients. PT-symmetry can only realize one of
them, but this symmetry is just one among eight pos-
sible symmetries of complex non-local potentials. The
eight symmetries arise from the discovery that Klein’s
four-group {1,Π,Θ,ΘΠ}, combined with two possible
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relations among the Hamiltonian, its adjoint, and the sym-
metry operators of the group, eqs. (1) and (2), produce all
possible equalities among potential matrix elements after
complex conjugation, coordinate inversion, the identity,
and transposition. In other words, to have all possible
such equalities, the conventional definition of a symmetry
A in terms of its commutation with the Hamiltonian H is
not enough, and A-pseudohermiticity must be considered
as well on the same footing. Extending the concept of
what a symmetry is for complex, non-local potentials is a
fundamental, far-reaching step of this work. This group
theoretical analysis and classification is not only estheti-
cally pleasing, but also of practical importance, as it re-
veals the underlying structure and span of the possibilities
available in principle to manipulate the asymmetrical re-
sponse of a potential for a structureless particle.

We provide potentials for the different asymmetric de-
vices including an example that works in a broad domain
of incident momenta. Although the present theory is for
the scattering of quantum particles, the analogies between
quantum physics and optics suggest to extend the concepts
and results for optical asymmetric devices.

Interesting questions left for future work are the inclu-
sion of other mechanisms for transmission and reflection
asymmetries (for example non-linearities [8,19], and time-
dependent potentials [20,21]), or a full discussion of the
phases of the scattering amplitudes in addition to the
moduli emphasized here. In this paper the properties
of the scattering amplitudes have been worked out as-
suming that the operator A in the symmetry relations
in eqs. (1) and (2) is a unitary/antiunitary operator in
Klein’s group. We may generalize the study to include
more general operators, possibly including differential op-
erators, as was done in [22] for phase transitions of optical
potentials, or the operator that swaps internal states or
waveguides [23,24].

We shall also examine in a complementary paper the
physical realization of complex non-local effective poten-
tials. In a quantum optics scenario, simple examples were
provided in [25] based on applying the partitioning tech-
nique [26,27] to the scattering of a particle with internal
structure. The experimental realization of all new symme-
tries and devices may be challenging, e.g., to engineer the
non-locality in optics, but there is much to gain. We may
expect progress similar to the successful evolution from
theory to actual devices in the sequence from the first
mathematical models of PT-symmetric potentials [28], to
the proposal of an optical realization [2], and to the ac-
tual experiments [29], even if considerable time lapses were
needed between the three steps.
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