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Abstract – It is shown here that if we assume that what is conserved in nature is not simply
mass-energy, but rather mass-energy plus the energy uncertainty of the uncertainty principle, and
if we also assume that position uncertainty is reduced by the formation of relativistic horizons,
then the resulting increase of energy uncertainty is close to that needed for a new model for inertial
mass (MiHsC, quantised inertia) which has been shown to predict galaxy rotation without dark
matter and cosmic acceleration without dark energy. The same principle can also be used to
model the inverse square law of gravity, and predicts the mass of the electron.
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Introduction. – Although special relativity and quan-
tum mechanics have been partially merged in quantum
field theories, some aspects, and general relativity and
quantum mechanics are still incompatible. For example,
relativity is based on a smooth spacetime and demands
locality, whereas quantum mechanics is modelled using
discrete particles and quantum experiments seem to de-
mand non-locality [1–5].

In some instances it has been possible to combine gen-
eral relativity and quantum mechanics, at least partially,
for example [6] proposed that the event horizons caused
by the strong gravity within black holes would seperate
pairs of particles produced by the quantum vacuum, leav-
ing one to fall into the black hole and one to escape, giving
rise to a new kind of radiation called Hawking radiation
that originates from a combination of relativity (curved
space) and quantum mechanics on a large scale. There is
now some evidence that at least analogues of this process
occur [7].

References [8,9] and [10] showed that when an object
accelerates, say, to the left, an information horizon, very
like an event horizon, forms to its right since informa-
tion which is limited to the speed of light by relativity
cannot now get to the object from behind that horizon.
They showed that this horizon can seperate paired virtual
particles in a similar way to a black hole event horizon,
leading to the production of acceleration-dependent Unruh
radiation. This conclusion is now generally accepted, but
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see [11] for remaining controversies. It is possible that
Unruh radiation has already been observed [12].

An early inspiring attempt to implicate quantum me-
chanics and the zero point field in inertial mass was made
by [13]. However, they required an arbitrary cutoff to
make their scheme work. Also, [14] questioned whether
Unruh radiation might account for inertial-MoND (Mod-
ified Newtonian Dynamics), but concluded that Unruh
radiation was unlikely to be the cause of inertia because
it was isotropic.

A new model for inertia was proposed by [15,16]. It is
called Modified inertia by a Hubble-scale Casimir effect,
MiHsC or quantised inertia. This model assumes that
the inertia of an object is due to the Unruh radiation it
sees when it accelerates. The relativistic Rindler horizon
that appears in the opposite direction to its acceleration
damps the Unruh radiation on that side of the object
producing an anisotropic radiation pressure that looks
like inertial mass [16]. So inertia arises in this model
from the interplay of relativity (horizons) and quantum
mechanics (Unruh waves). Also, when accelerations are
extremely low the Unruh waves become very long and are
also damped, this time equally in all directions, by the
Hubble horizon (Hubble-scale Casimir effect) [15]. This
leads to a new loss of inertia as accelerations become tiny.
So MiHsC modifies the standard inertial mass (m) to a
modified one (mi) as follows:

mi = m

(
1 − 2c2

|a|Θ
)

, (1)
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where c is the speed of light, Θ is the diameter of the
observable universe and “|a|” is the magnitude of the
acceleration of the object relative to surrounding matter.
Equation (1) predicts that for terrestrial accelerations
(e.g., 9.8 m/s2) the second term in the bracket is tiny
and standard inertia is recovered, but in low acceleration
environments, for example at the edges of galaxies (when
a is tiny) the second term in the bracket becomes larger
and the inertial mass decreases in a new way so that
quantised inertia (MiHsC) can explain galaxy rotation
without the need for dark matter [17] and cosmic acceler-
ation without the need for dark energy [15,18]. There are
also anomalies seen in Solar System probes [19] that can
be explained by this model [15,20]. Quantised inertia does
not significantly affect the predictions of general relativity
for high accelerations and only becomes significant for
very low accelerations or upon a change in acceleration.

Similarly, applying quantum mechanics on a large
scale [21] derived Newtonian gravity from the uncertainty
principle. The main aim of this paper is to extend [21]
and show that both gravity and quantised inertia can be
derived by allowing large-scale dynamics or horizons to
determine the position uncertainty in the Heisenberg un-
certainty principle, and allowing the resulting energy un-
certainty to become real.

Gravity from uncertainty. – Imagine there are two
Planck masses orbiting each other. With Planck masses,
we are still, just, in the quantum realm, Heisenberg’s un-
certainty principle applies to their mutual position un-
certainty (Δx) given by the distance between them, and
momentum (Δp), and the total uncertainty is twice that
for a single particle

ΔpΔx ∼ h̄. (2)

Now E = pc so
ΔĒΔx̄ ∼ h̄c. (3)

If a bigger mass M has N Planck masses in it, and an-
other big mass m has n of them, then we can add up all
the possible interactions (all the various uncertainties: h̄c)
between the various Planck masses

ΔĒΔx̄ =
N∑

i=1

n∑
j=1

(h̄c)ij . (4)

The double summation on the right-hand side is equal to
the number of Planck masses in mass m (m/mP ) times the
number in M (M/mP ), where mP is the reduced Planck
mass, so

ΔĒ =
h̄cmM

m2
P Δx̄

. (5)

Now let us imagine that the Planck masses within m and
M are being buffeted from all sides by particles from the
zero point field and moving at random. The net effect,
forgetting horizons for a moment, will be zero. Sometimes
random motion will increase the distance between the two

objects, Δx, so their uncertainty in energy, ΔE, decreases,
and sometimes it will decrease Δx, so the uncertainty in
energy, ΔE, will increase. This latter event means that
energy will suddenly be available that was not before, ex-
tracted from the decrease in position uncertainty, and if
the objects continue to move together then more energy
will be released in this way allowing the motion to con-
tinue. What if we assume that the sum of the kinetic
energy and the energy uncertainty is conserved?

1
2
m(Δv)2 +

h̄cmM

m2
P Δx̄

= const. (6)

Differentiating

mΔv
d(Δv)

dt
=

h̄cmM

m2
P Δx2

d(Δx)
dt

. (7)

Since the rightmost fraction can be written as Δv, we get

m(Δa) =
h̄cmM

m2
P Δx2 . (8)

Now we assume that m(Δa) = F (force) and that the
uncertainty of the average position (�x) is the orbital
radius r

F ∼ h̄c

m2
P

mM

r2 . (9)

This looks like Newton’s gravity law, and if we insert the
value of the Planck mass, for which the value of G must
be assumed, we get

F =
GMm

r2 . (10)

The force required to drive the motion only becomes avail-
able for objects moving closer together since this reduces
Δx and increases ΔE (the inevitability of attraction was
not discussed in [21]). In this model, gravity is a process
by which quantum mechanics applies at this large scale
and converts position uncertainty to energy uncertainty,
which shows up as an acceleration-dependent heat (Unruh
radiation) and so it satisfies the second law of thermody-
namics: increasing entropy. It has therefore been shown
that Newton’s gravity law can be produced if a summa-
tion is made for all interactions between masses equal to
the Planck mass, but this requires an assumption of the
value of G [21].

Quantised inertia from uncertainty. – Again, us-
ing Heisenberg’s momentum-position uncertainty princi-
ple we get

ΔpΔx ∼ h̄. (11)

Since E = pc we can write

ΔEΔx ∼ h̄c. (12)

The energy uncertainty is then ΔE ∼ h̄c/Δx. The new
proposal here is that if the particle in question acceler-
ates and a relativistic Rindler horizon forms then this de-
stroys knowledge of all positions beyond the horizon and

69001-p2



Quantised inertia from relativity and the uncertainty principle

decreases the uncertainty in position Δx. From eq. (12)
we would then expect the uncertainty in energy to go up.
Now, as above we assume that what is conserved in na-
ture is not mass-energy, but rather mass-energy plus the
energy uncertainty identified above, as follows:

m1c
2 +

h̄c

Δx1
= m2c

2 +
h̄c

Δx2
, (13)

where m1 and m2 are the initial and final inertial masses
and Δx1 and Δx2 are the initial and final positional un-
certainties. Note that the energy uncertainty terms are
usually many orders of magnitude smaller than the mass-
energy terms. Rewriting we get

m2 − m1 = dm =
h̄

c

(
1

Δx2
− 1

Δx1

)
. (14)

Now we can start to consider relativistic horizons. For an
minimally-accelerated object (a zero acceleration cannot
exist in MiHsC) the maximum uncertainty in position has
to be due to the cosmic horizon, and equal to the radius
of the cosmos, so Δx1 = Θ/2 so that

dm =
h̄

c

(
1

Δx2
− 2

Θ

)
. (15)

If an object then is subjected to an acceleration, a, then
a Rindler horizon forms at a distance d = c2/a away. So
the new uncertainty in position is smaller Δx2 = c2/a so
that

dm =
h̄

c

(
a

c2 − 2
Θ

)
. (16)

Rearranging we get

dm =
h̄a

c3

(
1 − 2c2

aΘ

)
. (17)

Now an acceleration “a” is associated with Unruh radi-
ation of wavelength λ where, using Unruh’s expression
for the Unruh temerature T = h̄a/2πck and Wien’s law
T = βhc/kλ where β = 0.2, it follows that a = 4π2c2β/λ.
Also E = hc/λ. Using these to replace “a” in the factor,
we get

dm =
h̄

c3 × 4π2βcE

2πh̄
×

(
1 − 2c2

aΘ

)
, (18)

so that

dm =
4π2β

2π
× E

c2 ×
(

1 − 2c2

aΘ

)
. (19)

Using E = mc2 we get

dm = 2πβm

(
1 − 2c2

aΘ

)
. (20)

This is the same as eq. (1), except for the initial factor
of 2πβ ∼ 1.26 which could be due to the crudity of this
model, which has treated the Rindler horizon as being a
sphere around the object whereas it is a more complex
shape. The important point is that eqs. (1) and (20),
by allowing quantum mechanics and relativity to interact

in this way, can model the observed anomalous galactic
rotation without dark matter [17] and the observed cosmic
acceleration without dark energy [15,18].

Applications. –
Particle masses. An electron can be regarded as a

photon that has become confined to a particular orbit and
so eq. (14) can be used to predict the mass-energy of the
electron as follows:

dm =
h̄

c

(
1

Δx2
− 1

Δx1

)
. (21)

Initially the photon is confined to the cosmic scale so
Δx1 = Θ/2 and it is known that for it to form an
electron it must have the Compton wavelength λC =
2.426 × 10−12 m so

dm =
h̄

c

(
1

λC
− 2

Θ

)
. (22)

Neglecting the second term, which since Θ ∼ 1026 m is
about 38 orders of magnitude smaller than the first, we get

dm =
h̄

cλc
= 9.1 × 10−31 kg. (23)

This is very close to the mass of the electron measured
in experiments. Similarly we can consider the protons
and neutrons which are confined to the nucleus of radius
rn = 1.75 × 10−15 m (for hydrogen) so that

dm =
h̄

c

(
1
rn

− 2
Θ

)
= 1.3 × 10−27 kg. (24)

This is close to the observed masses of the proton and
neutron which are 1.67 × 10−27 kg. Equation (24) also
predicts a small correction to the proton mass given by
the second term in the bracket, which is about 41 orders
of magnitude smaller than the first term in the bracket.

If we use the Planck length 1.616×10−35 m instead this
gives

dm =
h̄

c

(
1
lP

− 2
Θ

)
= 1.4 × 10−7 kg. (25)

This is close to the Planck mass, which is 2.2176×10−8 kg.
The agreement is very close if we use a scale of 2πlP

dm =
h̄

c

(
1

2πlP
− 2

Θ

)
= 2.2 × 10−8 kg. (26)

Thus the assumption that what is conserved in nature is
not mass-energy as previously assumed, but mass-energy
plus the energy uncertainty and assuming the position un-
certainty is determined by relativistic horizons, allows the
calculation of some particle masses in this way as well as
Newtonian gravity and quantised inertia (MiHsC).

Discussion. – These derivations can be explained more
intuitively as follows. For gravity: As the radius of an or-
bit decreases and so the uncertainty in position decreases,
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then the momentum (dp = Fdx/c) or force (F ) on the
orbiting body must increase, producing an inverse square
law. In the above gravitational derivation, the correct
value for the gravitational constant G can only be obtained
when it is assumed that the gravitational interaction oc-
curs between whole multiples of the Planck mass, but this
last part of the derivation involves some circular reason-
ing since the Planck mass is defined using the value for
G (this was not discussed in the precursor gravity pa-
per, [21]). This paper also builds on [21] by showing how
this formalism specifically implies attraction rather than
repulsion (previously it could have been either).

For inertia: as an object accelerates, a relativistic
Rindler horizon forms in the opposite direction. This
curtails the object’s observable space and reduces its
uncertainty in position. The uncertainty principle then
implies that the uncertainty in momentum (or energy)
must increase, and the energy released agrees (within the
uncertainty of the calculation) with the specific energy
required for quantised inertia (MiHsC) which allows the
prediction of galaxy rotation without dark matter and cos-
mic acceleration without dark energy.

Conclusion. – The uncertainty principle of quan-
tum mechanics states that if the uncertainty in position
reduces, then the uncertainty in momentum increases.
Relativity predicts that if an object accelerates, a Rindler
horizon forms, curtailing its observable space.

If we combine these two principles, the formation of
the Rindler horizon reduces position uncertainty, increas-
ing energy uncertainty. It has already been shown, in a
similar way, that if we accept this energy as being real,
Newtonian gravity is the result, though a value for G has
to be assumed.

It is shown here that using the same method, the model
known as quantised inertia or MiHsC can also be derived,
solving the problems of galaxy rotation and cosmic accel-
eration, and predicting the electron mass.
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