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Abstract – The anomalous Hall conductivity (AHC) in some ferromagnetic and antiferromagnetic
Heusler compounds was theoretically and experimentally found to be exceptionally large. For the
case of ferromagnetic Co2MnAl we here argue that the large AHC is connected with the appearance
of Weyl points near the Fermi energy. We find four Weyl points slightly above the Fermi edge.
We describe our analysis for a magnetization being in the (110)-direction. For the possible (100)-
direction we find at least four Weyl points, too. We predict that Co2MnGa also possesses Weyl
points near or at the Fermi energy.

Copyright c© EPLA, 2016

Introduction. – The study of the anomalous Hall ef-
fect (AHE) has recently been attracting a growing amount
of attention. Its basic theory and the connection with a
topological property, the Berry phase, has been reviewed
in great detail [1,2], and its application to ferromagnetic
compounds, also of the Heusler type, has appeared in
ref. [3–6]. Furthermore, a large anomalous Hall conduc-
tivity (AHC) was predicted and very recently discovered
experimentally in non-collinear antiferromagnetic com-
pounds [7–10].

An interesting question that comes up in connection
with the exceptional values of the AHC in some ferromag-
nets [3] and in the antiferromagnets concerns a possible
mechanism for the large size of the AHC. Here we believe
there is a connection with another growing field, namely
the discovery of Weyl fermions in semimetals [11–13].
Of special interest is a proposal by Wang et al. who
predict and see Weyl points in some magnetic Heusler
compounds [14].

The original concept of Weyl fermions comes from the
standard model, where Weyl fermions are predicted to ex-
ist, but are not found experimentally. In condensed matter
physics Weyl points appear when non-degenerate energy
bands cross near or at the Fermi energy. They give rise
to a singularity in the Berry curvature or a “magnetic
monopole” in momentum space. They come in pairs and
produce surface disconnected Fermi arcs, first predicted
by Wan et al. [11].

Heusler compounds are face-centered cubic metallic
compounds with space-group symmetry Fm-3m (No. 225

International Tables). Co2MnAl is a ferromagnet with a
magnetic moment of 4.04 μB p.f.u., a Curie temperature
of 697K, 75% spin polarization at the Fermi energy and
an AHC of σxy � 2000 (Ωcm)−1 [3,6,15].

The calculations. – The anomalous Hall effect is ob-
tained by computing the Berry curvature in momentum
space. This is a vector, writing its p-component as Ωp(k),
and is obtained from the curl of the Berry connection given
by A(k) = i

∑
n∈occ 〈unk|∇k|unk〉, where unk(r) is the

crystal-periodic eigenfunction having wave vector k and
band index n. The sum extends over the occupied states.
For its evaluation we use the wave functions from density
functional calculations [16] following ref. [3], where the
numerical work is based on � ln det[〈unk|umk′〉], which is
directly related to the Berry connection [17]. Spin-orbit
coupling (SOC) is treated in second variation and is an
essential ingredient. The Hall conductivity follows from
the Berry curvature by means of

σ�m =
e2

h̄

∫
dk

(2π)3
Ωp(k)f(k), (1)

where f(k) is the Fermi distribution function, Ωp(k) is the
p-component of the Berry curvature for the wave-vector k
and the components �,m, p are to be chosen cyclic [2]. A
limit to our numerical procedure is the rather high num-
ber of k-points, Nk, needed for convergence. We set a
probable error bar at approximately 20%.

An important relation is useful for understanding of our
results. Haldane [18] states that for a non-degenerate,
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Fig. 1: (Color online) Top: the band structure of Co2MnAl
along the usual symmetry lines. The magnetization is assumed
to be along the (110)-direction. Black lines: minority states,
red lines: majority states. Bottom: the Brillouin zone of the
fcc lattice.

Fig. 2: (Color online) Energy surfaces as seen from the (ky =
0.5)-plane. Red: from states number 28; blue: from states
number 29; grey: Fermi energy.

entirely occupied band n the following relation holds:

1
2π

∫
BZ

dkΩn
p (k) = CnGn

p , (2)

where the integral is over the Brillouin zone (BZ), Ωn
p (k)

is the p-component of the Berry curvature of band n, Cn is
the Chern number of band n and Gn

p is the p-component of
a reciprocal lattice vector. The latter quantizes the result.
It is the possible non-zero Chern number that leads to
striking topological effects.

Results and discussion. – We begin with the energy
band structure in its standard form, which is displayed
in fig. 1. The bands are spin-filtered, so that the lines in
black correspond to spin-minority states, the ones in red
to spin-majority bands. The spin orientation was chosen
in the (110)-direction. This orientation cannot definitely
be established as the ground state since the total energy

Fig. 3: (Color online) The x-component of the Berry curvature
in the (ky = 0.5)-plane, the letter P (corresponding to P in
fig. 2) marks the position of a Weyl point, which is found on
the right side of P. The white lines enclose the relevant part of
the BZ.

Fig. 4: (Color online) Energy surfaces near a Fermi circle which
is cut out by the states drawn in red (from states No. 28), grey:
Fermi energy. Color codes correspond to fig. 2.

in the (001)-direction is numerically indistinguishable.
A band-crossing is seen to occur slightly above the Fermi
energy (energy origin) between the points X and W . We
are thus led to look for the energy band-structure inside
the BZ choosing a plane in the BZ in order to graph the re-
sults in two dimensions. This would naturally be the (xy)-
plane, which we chose to name by the normal “z-plane”.
In fact Wang et al. [14] employ symmetry arguments to
demonstrate that in magnetic Heusler compounds Weyl
points are expected to exist in the (z = 0)-plane in mo-
mentum space. But rather than doing a search directly
in this plane, we find it advantageous to start the search
in the (x = ±0.5)- and the (y = ±0.5)-planes. As an ex-
ample, we therefore graph the energy-band structure as it
is seen from the (y = 0.5)-plane in fig. 2. There are four
small Fermi circles (in red) to be seen at the Fermi energy
(in grey), one near the point marked P. The star of the
corresponding k-vector in the (y = 0.5)-plane under the
the 2-fold symmetry operation, rotation about the z-axis
times time reversal, C2zT , consist of this point and an-
other one partly covered by the states of band 29 (blue).
The remaining two Fermi circles are not in the (z = 0)-
plane. In fig. 3 we plot the Berry-curvature computed for
the (y = 0.5)-plane. This gives us information about the
nearly filled band (and all lower ones because of the sum
in the definition of the Berry connection A). Zooming in
on the signal on the left, which originates from the partly
covered star of k in fig. 2, we see that its states are gapped
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Fig. 5: (Color online) Energy surfaces of a Weyl point that is
located 30.9 meV above the Fermi energy.

Fig. 6: (Color online) Berry curvature in the (kx = 0.5)-plane
in a logarithmic presentation. (a) The Fermi energy is located
at the self-consistent position. (b) The Fermi energy is shifted
such that the Weyl point is at the Fermi energy. The Weyl
point in both cases is at the right.

as shown in fig. 4. The states are of the same symmetry
and the gap disappears if spin orbit coupling (SOC) is re-
moved. Doing the same for the states on the right near
the letter P in the figure we find that its states cross.
Its energy surfaces are depicted in fig. 5. This is clearly
a Weyl point, albeit slightly above the Fermi energy.
There are all together four such Weyl points, their coor-
dinates being (0.5, 0.81, 0), (−0.5,−0.81, 0), (0.81, 0.5, 0),
and (−0.81,−0.5, 0). They are protected by different
eigenvalues of the symmetry operation C2110 [14]. They
are easily found by a search in the other planes, each plane
hosting one Weyl point. As expected by the above men-
tioned symmetry arguments, the kz-coordinate is always 0,
and each pair is related by inversion symmetry.

It is to be noted that in contrast to the gapped states,
the Weyl point in the lower panel of fig. 3 on the scale plot-
ted leaves no mark to the right of the letter P. A numerical
experiment reveals more about this point. We look at the
signals of the gapped states and the Weyl point in the self-
consistent settings on a logarithmic scale and watch them
change when the Fermi energy is increased by 30.9meV,
which brings the Weyl point down to the Fermi edge. This
is shown in fig. 6(a) and (b). The Weyl-point in panel (b)
becomes distinct fanning out toward the center, while the
signal from the gapped states becomes slightly weaker.

Fig. 7: (Color online) The Weyl points, PW, in the (kz = 0)-
plane. The Berry curvature shown is in the −y-direction. The
standard symmetry points are marked.

Knowing the energy shift that is necessary to bring the
Weyl points to the Fermi energy we can now perform a cal-
culation of the Berry curvature to exhibit all Weyl points
in the kz = 0-plane. The result is shown in fig. 7 for the
−y-component. The four Weyl points are marked as PW.
The calculation for the x-component looks similar, except
for an interchange of the positive and negative values of
the PW’s (the reason is the negative y-direction).

It is of interest to notice that the two pairs of Weyl
points have different signs. Using the wording of Hal-
dane [18] we can say that these points show properties
of “wormholes”: Berry flux passes from one band to the
other in one pair and returns in the other one, the “space”
being momentum space and the “universes” being Bloch
bands. Dropping the bloomy language we state that the
origin of the sign change are the different chiralities of the
two pairs of Weyl points [19]. The other yellow markings
in fig. 7 are due to flux through gapped states.

It is to be noted that the number of Weyl points in
our calculation is twice as large as that found by Wang
et al. [14]. This is interesting since the symmetry argu-
ments used in their paper are applicable one to one to our
case, in spite of the fact that Co2MnAl possesses three
magnetic ions, a larger number of valence electrons and
consequently a different band-structure, compared with
the type of Heuslers investigated by Wang et al. The dif-
ferent eigenvalues of the two-fold rotation that makes the
band crossing possible depend on symmetry and on the
location of the band crossings in the BZ.

A brief excursion to the Heusler compound Co2MnAl
assuming a magnetization in the (100)-direction seems in
order. The number of symmetry elements is doubled now.
Still, going through the described analysis again we find
2 pairs of Weyl points at the same positions as in the
(110) case. The energy shift needed to bring these points
to the Fermi energy is 30.7meV, nearly the same as be-
fore. Because of the higher number of symmetry elements
there might be more Weyl points, however, which a further
study will reveal.

Since the electronic structure of Co2MnGa is very simi-
lar to that of Co2MnAl having the same number of valence
electrons and an extremely similar band structures, we ex-
pect to find four Weyl points also in Co2MnGa.
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Summary. – In the Heusler compound Co2MnAl a
large anomalous Hall effect, theoretically and experimen-
tally, finds a possible explanation by a topological argu-
ment; the non-zero Chern numbers of the non-degenerate
bands near the Fermi energy give rise to the existence of
Weyl points, unremovable band crossing near the Fermi
energy. There are two pairs in our analysis. However,
further calculations of surface states are necessary to sub-
stantiate the effect. For technical reasons these have
not yet been carried out. The Weyl points are slightly
above the Fermi edge, some 30 meV, and should therefore
be experimentally observable when the crystal is mildly
doped. Theoretically the AHC is large already in the self-
consistent calculations through the non-zero Chern num-
bers; it further increases markedly when the Fermi energy
is raised to coincide with the Weyl points.
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