This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Cobalt Free Cathode Synthesized By Sacrificial Template (α-MnOOH) for Rechargeable Lithium Batteries

, and

© 2021 ECS - The Electrochemical Society
, , Citation Hector David Agudelo Arias et al 2021 Meet. Abstr. MA2021-02 1964 DOI 10.1149/MA2021-0251964mtgabs

2151-2043/MA2021-02/5/1964

Abstract

Cobalt Free Cathode Synthesized by Sacrificial Template (α-MnOOH) for Rechargeable Lithium Batteries

LiCoO2 cathode has been used widely for Li-ion batteries (LIBs) for portable applications due to it is compactness, high energy density, excellent cycle life and reliability [1]. Nevertheless, the high cost of cobalt represent some of the limitations of this material [1]. As an alternative, LiNiO2, which iso-structural with LiCoO2, is reported as a stable material for LIB cathodes. Although, the poor thermal stability of this material in operating LIB represents safety risk [2]. On the other hand, LiMnO2 has also been proposed as a low-cost cathode for LIB. However, it is not stable during charging/discharging processes [3]. Ni-rich layer oxide (LiM1-x NxiO2, where M is a transition metal, x > 0.8) appeared as result of much effort dedicated for finding an adequate balance between cost and stability [4]. In comparison to Ni-rich layer, Li-rich layer oxide exhibited better cyclability and safety performance at higher electrode potentials (>4.5 V vs. Li|Li+) [4]. However, the structural and electrochemical properties of the as-prepared materials are determined by the synthesis methods and/or preparation conditions [5]. For instance, the electrochemical performance of Li1.5Ni0.25Mn0.75O2.5 layer material obtained by a simple carbonate coprecipitation method was improved with 240 mAh g-1 and 70.3% of capacity retention after 30 cycles at 0.05C [6].

In this work, we report the feasibility of producing a cobalt free cathode LiNi0.5Mn0.5O2 with high energy density using a sacrificial template α-MnOOH as precursor with a simple balance between lithium and nickel content. The synthesis strategies performed in this work led to a promising cathode material with high energy density without sacrificing the operating voltage window, by combining our understanding of the factors governing the cation order with a facile synthetic route that ensured good cation mixing.

The LiNi0.5Mn0.5O2 active cathode material was produced by co-precipitated method according to the following procedure:

  1. α-MnOOH sacrificial template was synthesized according to ref. [7].

  2. Then active cathode material was obtained by co-precipitation method using α-MnOOH, lithium acetate and nickel acetate with a molar ratio of 0.5:1.05:0.5 mol at different treatment temperatures (700°C, 800°C and 900°C).

Rate capabilities of all samples are displayed in Fig. 1. The charge-discharge current was increased from 20 mA g-1 (0.1C) to 2000 mA g-1 (10C), and then decreased back to 20 mA g-1. The Li1.05Ni0.5Mn0.5O2 material displayed the best electrochemical performance at 800°C which the initial discharge capacity was 179.9 mAh g-1. The other samples at 700°C and 900°C showed initial discharge capacities of 171.3 mAh g-1 and 156.4 mAh g-1 at 0.1C, respectively. On the other hand, α-MnOOH sacrificial template synthesis showed to be a plausible formation mechanism and the structure–function relationships of LiNi0.5Mn0.5O2.

[1] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: present and future," Mater. Today, vol. 18, no. 5, pp. 252–264, Jun. 2015.

[2] M. Bianchini, M. Roca-Ayats, P. Hartmann, T. Brezesinski, and J. Janek, "There and Back Again—The Journey of LiNiO2 as a Cathode Active Material," Angew. Chemie Int. Ed., vol. 58, no. 31, pp. 10434–10458, Jul. 2019.

[3] T. Ohzuku and Y. Makimura, "Layered Lithium Insertion Material of LiNi 1/2 Mn 1/2 O 2 : A Possible Alternative to LiCoO 2 for Advanced Lithium-Ion Batteries," Chem. Lett., vol. 30, no. 8, pp. 744–745, Aug. 2001.

[4] G. Hu et al., "A facile cathode design with a LiNi0.6Co0.2Mn0.2O2 core and an AlF3-activated Li1.2Ni0.2Mn0.6O2 shell for Li-ion batteries," Electrochim. Acta, vol. 265, pp. 391–399, Mar. 2018.

[5] C. Zhao, X. Wang, R. Liu, F. Xu, and Q. Shen, "β-MnO2 sacrificial template synthesis of Li 1.2Ni0.13Co0.13Mn0.54O2 for lithium ion battery cathodes," RSC Adv., vol. 4, no. 14, pp. 7154–7159, Jan. 2014.

[6] M. Akhilash, P. S. Salini, K. Jalaja, B. John, and T. D. Mercy, "Synthesis of Li1.5Ni0.25Mn0.75O2.5 cathode material via carbonate co-precipitation method and its electrochemical properties," Inorg. Chem. Commun., vol. 126, p. 108434, Apr. 2021.

[7] F. A. Vásquez, J. E. Thomas, A. Visintin, and J. A. Calderón, "LiMn1.8Ni0.2O4 nanorods obtained from a novel route using α-MnOOH precursor as cathode material for lithium-ion batteries," Solid State Ionics, vol. 320, pp. 339–346, Jul. 2018.

Figure 1

Export citation and abstract BibTeX RIS

10.1149/MA2021-0251964mtgabs