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In order to examine the controversial hypothesis put forward to explain the entropy step experimentally observed for the stage II to
stage I transition for lithium intercalation in graphite, a transparent statistical mechanical model is developed. The results obtained
show that the entropy increase can be explained by the change of configurational entropy occurring at occupation of half of the
lattice. Comparison with experimental data shows that attractive interactions between intercalated particles in the same layer must
be assumed, in agreement with the ansatz made in the original experimental work.
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It is well known that intercalation materials are widely used
for electrodes as anodes or cathodes in electrochemical cells to
store energy. Materials of intercalation, such as lithium cobalt ox-
ide (LiCoO2),1,2 lithium iron phosphate (LiFePO4 ),3,4 lithium titanate
oxide (LTO)5,6 and graphite,7,8 are commonly found in electrodes of
commercially lithium-ion cells. In addition to the mentioned interca-
lation materials, there are many others that are currently being studied
or used as electrodes in lithium-ion cells. In particular, graphite is the
most common material found in anodes of commercial lithium-ion
cells.

One of the most important features of the intercalation materials
is that they can have ions stored in them with little changes in their
crystalline structures. This feature allows a fast ion insertion and ex-
traction and therefore high power density cells can be obtained when
used as electrodes. However, a fast ion insertion and extraction gener-
ates heat in the cell, which can produce high temperature excursions
of the cell and a premature aging.

It has been demonstrated that a great portion of the heat that is
generated in the intercalation materials comes from the intercalation
entropy during a discharge.9–11 In this sense, different methods to
measure the intercalation entropy have been developed.12–17 In the case
of Li-ion insertion into graphite, the experimental curve for entropy as
a function of composition, Reference 12, shows a step in the transition
of stage II to stage I that could not be explained in the terms presented
there. In a subsequent work,18 two of the previous authors, state that
a possible mechanism of the stage I phase formation may involve a
‘dilute lithium layer’ (noted dil-Li) that would have an alternating
‘normal’ Li layer (Li) with a hexagonal structure and a dilute lithium
layer following the sequence (Li)–G–(dil–Li)–G. However, in a more
recent review, Fultz19 stated that the vibrational entropy resulting from
the insertion dominates the entropy, and also he added that there should
be a small change in the configurational entropy when compounds are
formed in stage I or II, as they are ordered.

In a previous work20 we have proposed a theoretical approach
to determine the intercalation entropy, and we applied this approach
to the graphite/lithium compound. In order to clarify the origin of
this entropy, in the present work we have used a simplified two-level
lattice gas model to analyze the configurational contribution to the
intercalation entropy of the graphite/lithium compound. The main
features of the intercalation entropy are elucidated.

zE-mail: eze_leiva@yahoo.com.ar

Model and Statistical Mechanical Background

The Monte Carlo simulations performed in Reference 20, based
on a semiempirical hamiltonian, showed the sequential filling of a
hexagonal lattice in a two-step sequence. Voltammetric experiments
also have shown that the occurrence of Stages I and II is related to
two well-defined energy states, which become evident as voltammet-
ric peaks. For this reason, and seeking the simplest model that allows
the experimental features to be understood, we propose the model
described in Figure 1. We show there two lattices, defined as 1 and
2, which we will assume that may be occupied by particles (the Li+

ions), and we will denote the interaction energies of the particles with
the lattices as E1 and E2 respectively (E1 < E2). We will neglect the
interactions between particles in different lattices, so that the interac-
tion of the particles coming into lattice 2 with the particles in lattice 1
is included in its energy E2. Thus, the present formulation corresponds
to a two-level lattice gas. It will be assumed that each lattice has M
sites where the incoming ions may be located, thus giving a total of
2M sites that may be occupied.

In statistical mechanics, all the thermodynamic properties of a sys-
tem can be obtained from its partition function once it is determined.
Different partition functions may be formulated in different ensembles
(microcanonical, canonical, grand canonical, etc), depending on the
boundary conditions chosen to describe the related thermodynamic
systems. However, it can be shown that all the ensembles are thermo-
dynamically equivalent as long as the systems are large enough so that
their fluctuations may be ignored.21 Thus, a currently used strategy

Figure 1. Schematic representation of the present model for Li intercalation
in graphite. The upper part shows the two empty lattices (empty symbols), say
lattice 1(squares) and lattice 2(circles), which may be progressively occupied
by Li ions. The lower part of the figure shows on the left the representation of
Stage II (X = 0.5), where filled squares represent filled sites for lattice 1; and
on the right, the representation of Stage I (X = 1), where filled circles denote
that lattice 2 has also been filled.
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is to choose the ensemble where the calculations are less demanding,
then calculate the thermodynamic properties within it, and assume the
results to be valid for thermodynamic systems under other boundary
conditions. This is the approach we have applied here. On this basis,
our calculations will be made within the canonical ensemble, where
the partition function Q is given by:

Q(N , 2M) =
∑

i(states)

e−Ei /kT =
∑

j(levels)

� j e
−E j /kT [1]

where � j labels the degeneracy of the jth energy level E j and N the
number of inserted ions. The term 2M indicates the total number of
sites where the ions may be inserted and kT is the Bolzmann constant
multiplied by the absolute temperature.

The degeneracy �i may be straightforwardly calculated by count-
ing the number of ways of distributing N particles among M sites
with energy E1 and M sites with energy E2. Two cases may by dis-
tinguished, for N < M and for N ≥ M . For N < M we obtain:

� j = (M!)2

(M − N + j)! (N − j)! (M − j)! j!
[2]

where j is an index running between 0 andN in Equation 1.
For the case where N ≥ M we have:

� j = (M!)2

(2M − N − j)! (N − M + j)! (M − j)! j!
[3]

where j is an index running between 0 and 2M − N in Equation 1.
The energy for E j is in turn given by:

E j =
{

(N − j)E1 + j E2 for N < M
(M − j)E1 + (N − M + j)E2 for N ≥ M [4]

We have used a numerical procedure to evaluate the partition function
Q for different situations, and found that results with M = 100
are converged with respect to the size of the system. Once Q was
obtained for different N , different properties were obtained according
to following equations:

A = −kT ln Q [5]

S = −
(

∂ A

∂T

)
M,N

= k

∑
j(levels)

� j
E j

kT e−E j /kT

Q
+ k ln Q [6]

μ = −kT

(
∂ ln Q

∂ N

)
T,M

[7]

(
∂ N

∂μ

)
T,M

= − 1

kT

1(
∂2 ln Q
∂ N 2

)
T,M

[8]

where A denotes the Helmholz free energy, S the entropy and μ the
chemical potential. The last two equations may be useful to simulate
voltammograms under quasi-equilbrium conditions, since μ is linearly
related to the electrode potential, and the derivative in Equation 8 is
proportional to the current in a linear voltammetric sweep.

Results and Discussion

To proceed with the discussion, instead of using the number of par-
ticles as the independent variable, we define the fractional occupation
X of the lattices as:

X = N/(2M) [9]

and all thermodynamic properties will be discussed in terms of this
quantity.

Figure 2 shows the entropy of the present system as a function
of the occupation, for different energy differences �E = E2 − E1,
which are indicated in the figure.

Figure 2. Configurational entropy according to the double lattice model pre-
sented in Figure 1, as a function of the fraction of occupied sites X . The entropy
has been divided by the total number of lattice sites 2M , and the energy differ-
ence �E/kT = (E2 − E1)/kT employed for each curve is shown close by.
The �E/kT values were 0 (──), 2 (- - -), 4( · · · ), 6(- · - · - · ) and 8(- · · - · · -)
respectively.

Let us discuss first the case �E = 0. In this case, the particles
distribute over all sites with the same probability, and the entropy
reflects the following conditions: for X → 0, we have that S → 0,
since there are no particles in the system. In the discrete system,
S(1)/(2Mk) = ln(2M)

2M , which comes close to zero for very large sys-
tems. For X → 1, we have similarly that S → 0, since the system be-
comes completely ordered. The entropy maximum occurs at X = 0.5,
a condition that delivers the maximum number of configurations. It
is interesting to see what happens for larger �E values. The entropy
curve becomes progressively flat at the maximum, and finally devel-
ops a local minimum between two local maxima, located at X ≈ 0.25
and X ≈ 0.75 (See Figure 2). The derivatives of the curves shown in
Figure 2, correspond to the entropy values measured in the literature,12

and are illustrated in Figure 3. We will from now on denote this quan-
tity as S′(N ) = ( ∂S

∂ N )T,M . It is evident from this Figure that a step
develops in S′(N ) for increasing �E/kT values. The origin of this

Figure 3. Derivative of the configurational entropy according to the double
lattice model presented in Figure 1, as a function of the fraction of occupied
sites X . The curves for increasing �E/kT values are indicated by the arrows,
and correspond to �E/kT = 0 (──), 2 (- - -), 4( · · · ), 6(- · - · - · ) and
8(- · · - · · -), respectively.
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Figure 4. Occupancy ni of the energy levels E1 and E2 as a function of
the fraction of occupied sites X , for different energy differences �E/kT =
(E2 − E1)/kT . The �E/kT values correspond to 0 (──), 2 (- - -), 4( · · · ),
6(- · - · - · ) and 8(- · · - · · -), respectively. The direction of increasing �E/kT
values is indicated by the arrows.

step can be understood by consideration of the occupancy of the two
energy levels, E1 and E2, which are shown in Figure 4.

It becomes evident that as the energy difference �E/kT increases,
the occupation of the two energy levels becomes progressively differ-
entiated, until a point is reached where the occupation is close to being
sequential. Thus, the situation for �E/kT = 8 is such that lattice 1 is
practically completed as lattice 2 starts to fill. Under this condition, the
step in S′(N ) is quite large, since the change in the physical situation
is from one where the entropy of the system is rapidly decreasing, as
lattice 1 is completely filled, to another one where entropy increases
because an empty lattice is starting to be filled. Thus, up to now, the
present model is able to account qualitatively for the entropy step
found in experiments at X = 0.5. However, a close comparison with
experiments shows that some improvements are necessary to be able
to obtain a quantitative agreement.

If we look, for example, at the voltammograms of Levi et al.,22

we can see that the peaks attributed to the occurrence of stages I
and II are separated by about 37 mV, which in terms of the thermal
energy at room temperature (0.0257 eV) amounts to 1.44 kT. Thus,
1.44 is the value that corresponds to �E/kT in the present modeling.
Figures 2 and 3 clearly show that such a small value of �E/kT
could not account for the step in S′ in References 12, 13. In order to
come close experimental results, an important conclusion drawn by
Levi and Aurbach must be born in mind: The effective interaction of
the particles leading to the peaks labeled as e) and d) in Reference
20 is attractive, leading to a half-width of peaks close to 18 mV,
instead of the 90 mV for the Langmuirian-Nerstian relationship. These
attractive interactions are absent in our model so far, but this can be
remediated straightforwardly, by modifying Equation 4 to account for
the interaction among particles in an average way. This can be easily
done by replacing E1 and E2 by E∗

1 and E∗
2 , which are defined as:

E∗
1 = E1 + g1 N n

1 n1
1

2
[10]

E∗
2 = E2 + g2 N n

2 n2
1

2
[11]

where g1 and g2 are interaction parameters, N n
1 = N n

2 = 6 is the
number of neighbors in each of the lattices, n1 and n2 are the occu-
pancies of the layers, and the factor 1/2 is to account for the double
summation in the average interaction. The set of Equations 10 and 11
is the Bragg-Williams approximation applied to each of the lattices.23

Assuming a value of �E/kT = 1.44, as suggested by experiments,

Figure 5. Voltammograms simulated with different values of g1 = g2 in
Equations 10–11. These correspond to: g1/(kT ) = −0.30 (—–), g1/(kT ) =
−0.40 (- - -), g1/(kT ) = −0.50 (- - -),g1/(kT ) = −0.60 (- - -).

we can simulate voltammograms using Equations 7 and 8. Voltammo-
grams simulated with different values of g1 = g2 = g are shown in
Figure 5, where we can appreciate how the half-width peak is strongly
sensitive to the interaction parameter gi .

According to these results, one possible approach to come closer
to experimental findings would be to fit the half-peak width of the
experimental voltammograns (18 mV) and calculate with these pa-
rameters the S′(N ) plots. Calculations with g/(kT ) = −0.471 deliver
a half peak width of this order, and the corresponding S′(N ) vs N plot
is shown in Figure 6. While the general behavior of the S′(N ) - N
resembles the experiment, the entropy increases at the transition be-
tween stages, say �S′(II → I ) yields a value 5.8 J/(mol.K), which
strongly underestimates the experimental value (14 J/(mol.K)).

While this disagreement may be attributed to the approximate
nature of the present model, a number of considerations must be
made concerning the experimental results. On the one hand, although
the voltammetric experiments have been made at very low sweep
rates (4μV .s−1), it is possible that quasi-equilibrium conditions have
not been reached. The potential difference between the anodic and
cathodic peaks, as well as their different widths may be an indication of
this. Also, it is intrinsic from experiments that the graphite electrodes
are not perfect, and a number of other technical features, such as

Figure 6. Derivative of the configurational entropy according to the double
lattice model presented in Figure 1, as a function of the fraction of occupied
sites X for �E/kT = 1.44 and g1/(kT ) = −0.471.
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Table I. Entropy increase at the transition between stages,
�S′(II → I), for the different values of the interaction parameters
g. The predicted voltammetric half peak is also included.

Interaction
parameter g/(kT )

Entropy change at the
stage II→stage I
transition S′(N ) J

mol−1 K−1
Voltammetric Half

peak width mV

−0.5 7.2 14.1
−0.6 12.6 3.51
−0.65 15.1 0.26

−2/3 (Braggs
Williams limit for

the first-order
phase transition)

15.9 0

contact resistances between grains may be widening the voltammetric
profiles. Another consideration that should be taken into account is:
the occurrence of borders of the growing phases, suggesting nucleation
and growth processes taking place, and also suggesting the occurrence
of a first-order phase transition for each of the states being formed
(II, I, etc.). It is well known that the incidence of a first order phase
transition should be present as a step in the adsorption isotherm, or,
what is equivalent, as the occurrence of a spike in the voltammogram.
Although the latter event has so far not been observed for the present
system (probably due to kinetic hindrances, as pointed out above),
we will now analyze the occurrence of a first order phase transition
within the present modeling.

Depending on the interaction between the particles of the sys-
tem, the Braggs-Williams approximation predicts an undulation in
the pressure-volume isotherms, with the concomitant prediction of a
first order phase transition.

Within the present notation, for each of the lattices, the first order
phase transition should occur when g/(kT ) = −2/3 = −0.666. To
analyze how the approach to this limit affects the entropy increase at
the transition between stages, �S′(I I → I ), we calculated the latter
quantity for the different interaction parameters g. These results are
shown in Table I.

It is remarkable how the predicted S′(N ) values come closer to
the experimental results as g/(kT ) → −2/3. The S′(N ) vs N for the
latter condition is shown in Figure 7.

At first sight, it may appear as strange that interactions between
ions that are in the same lattice are attractive, despite having the same
charge. However, a couple of considerations are pertinent: Levi and
Aurbach22 have reproduced the voltammetry of the different stages of

Figure 7. Derivative of the configurational entropy according to the double
lattice model presented in Figure 1, as a function of the fraction of occupied
sites X for �E/kT = 1.44 and g/(kT ) = −0.666.

insertion of Li into graphite. In order to get the half-height widths of the
experimental peaks, they must assume attractive interactions among
absorbed atoms in the same layers. The theoretical work of Filhol
et al.24 also points in the same direction. These authors performed
density functional calculations for the absorption of a neighboring
Li atom close to a previously absorbed Li atom. They found that
absorption on a second neighboring site is more stable than absorption
on more distant sites, clearly denoting an attractive interaction between
adsorbates. Thus, it appears that although interactions are repulsive
if Li atoms come too close to each other (say first neighbors on the
honeycomb graphic lattice), these interactions become attractive if
they arrange in a

√
3 × √

3 structure.

Conclusions

In the present work, we have shown using a very simple model,
based on statistical mechanics, that the controversial origin of the
entropy step between stage II and stage I for lithium intercalation in
graphite may be explained on a configurational basis, in agreement
with the conjecture of Yazami and Reynier18 concerning the occur-
rence of a dilute lithium layer between adjacent complete lithium
hexagonal layers.

Another important result is that the interaction between interca-
lated ions can be inferred to be strongly attractive, as was assumed by
Levi et al.22 when simulating voltammetric profiles.
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