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We introduce theory to study the convection of active species with redox reactions at solid/solution interfaces within porous media,
motivated by applications in energy storage devices where cyclic charge and discharge with recirculating flow requires the consid-
eration of transient mass transfer. We show that under pseudo-steady conditions the coupled mass transfer problem involving redox
of active species can be simplified to a linear, time-independent auxiliary problem. The proposed model is then solved numerically
for porous media containing periodically spaced cylinders in crossflow. The results show three transport mechanisms depending on
Péclet number Pe. Interactions between solid surfaces induced either by diffusion or advection produce spatial variation of surface
flux. With Pe increasing from unity, advection initially causes diffusive flux to redistribute, causing a rise in Sherwood number Sh
(non-dimensional mass transfer coefficient). The locations of flux maxima coincide with those of vorticity and strain rate for Pe above
a certain “saturation” value. The variations of Sh with porosity and Pe are interpreted using a regime map that is defined based on the
spatial variance of solute concentration. The auxiliary problem introduced provides a framework to predict mass transfer coefficients
for arbitrary microstructures to guide the design of high-performance electrodes.
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Solute transport in porous media impacts many engineering and
natural processes. Past studies1–4 have shown that the microstructure
of porous substrates and flow fields affect heterogenous catalytic and
mixing controlled chemical reactions. One application of emerging
importance for energy storage and conversion involves reactive flow
through the porous electrodes of electrochemical devices, including re-
dox flow batteries (RFBs)5–7 that use dissolved molecules to store and
release electrons by way of faradaic electrochemical reactions. Such
heterogeneous electrochemical reactions are driven by overpotential
at the solid/solution interface, while also creating concentration gra-
dients within pores during the production and consumption of active
species. Similar processes arise in numerous engineering applications
where pore-scale transport is important, including water purification8,9

and desalination,10 catalytic purification of industrial and vehicle
exhaust,11,12 and transport of reactive minerals and biodegradation
of living cells.13–15 Among these applications RFBs exhibit unique
mass transfer characteristics owing to the inherently transient nature of
charge/discharge cycles that ultimately impact feasible cycling rates.
Attempts to increase RFB rate capability and efficiency have targeted
enhancing pore-scale mass transfer using modified macroscopic flow
fields,16,17 material selection18–20 and electrochemical aging of porous
substrates,21 and functionalization of porous electrodes to increase ac-
tive surface area by attaching nano-particles,22–24 -rods,25,26 -fibers,20 -
tubes,22 and -walls27 to micron-scale fibers. Building on earlier work,28

recent attempts have been made to measure the pore-scale mass trans-
fer coefficient hm of RFB porous electrodes by fitting the variation of
polarization with current density to predictions from transport models
of varying fidelity.29–31 These reports have shown conflicting correla-
tions for hm versus flow velocity,29–31 as well as non-dimensional mass-
transfer correlations that are flow-field dependent.29 Furthermore, the
advent of alternative battery-electrode fabrication techniques (includ-
ing additive manufacturing,32 templating,33–35 and biomineralization
processes36) motivates understanding the impact of porous electrode
microstructure on solute transport “from the bottom up.”
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Understanding of connections between macro-homogenous/up-
scaled transport coefficients with the microstructure of porous media
requires analysis of pore-scale transport phenomena. Early studies in
this regard focused on the calculation of these coefficients by either ho-
mogenization/volume averaging37 or percolation theory38 for ordered
and disordered porous structures. Later, application of the “method
of moments” for curvilinear velocity fields enabled their calculation
for more complex geometries.39,40 Another approach was proposed
by decomposing pore scale concentrations into volume averaged and
pore level variations.41,42 Both such approaches require the solution of
characteristic eigenvalue problems, or closure problems, with validity
only in the long-time limit with t � b2/D, where b is the charac-
teristic pore length and D is diffusivity of active species. For RFBs
the temporal variation of electrode potential during charge/discharge
cycling causes temporal concentration variation at the solid/solution
interface. This concentration variation leads to time-varying local dif-
fusion rates and affects the reaction rate at solid/electrolyte inter-
faces. To capture this unsteady effect, recently a model has been re-
ported where diffusion of active species alone is considered in the
absence of advection and migration.21 To the best of our knowledge,
no model capable of capturing such transient effects, together with
diffusion and advection, has previously been reported in the litera-
ture. In this study we introduce theory that not only captures such
transient effects but also simplifies the corresponding conjugate mass-
transfer problem into an auxiliary problem. Here, the auxiliary prob-
lem transforms the associated unsteady partial differential equations
(PDEs) of the conjugate problem into a steady PDE, while the cou-
pled non-linear boundary conditions (BCs) that define the conjugate
problem on the basis of redox-reaction stoichiometry/kinetics are de-
coupled into linear Dirichlet-type BCs. The validity of the proposed
model is analyzed analytically and is presented through nondimen-
sional parameters. In this analysis we also model porous media us-
ing a repetitive unit cell with periodic BCs that eliminates finite-size
effects.

The developed mathematical model is then solved numerically to
obtain the interstitial concentration field and the overall mass trans-
fer coefficient for flow through reactive arrays of circular cylinders.
The results are presented by correlating overall Sherwood number
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〈Sh〉 with Péclet number Pe. Péclet number and overall Sherwood
number are expressed based on cylinder diameter d respectively as
Pe = |us|d/D and 〈Sh〉 = 〈hm〉d/D, where 〈hm〉 is the average mass
transfer coefficient. The superficial velocity us is defined in terms of
porosity ε (i.e., fluid volume fraction) and the local pore-scale veloc-
ity u� as us = (ε/Vf ) ∫ u�dVf , where Vf is interstitial fluid volume.
These results provide insights into mass transfer at low flow velocity,
where past work has reported conflicting trends. In particular, many
previous studies43–45 argued that at low Reynolds number (Re < 1)
mass transfer rate is only a function of Pe, while 〈Sh〉 approaches a
fixed, non-zero value for Pe → 0. On the contrary, power law correla-
tions, obtained by fitting experimental data, suggest a vanishing trend
of 〈Sh〉 with decreasing Pe.29,30,46

We also use the proposed model to study the effect of porous elec-
trode microstructure on mass transfer coefficient by simulating differ-
ent porosities, array arrangements, and inlet flow angles for regular
arrays of cylinders in crossflow. The interactions between adjacent
solid cylinders are classified by inspecting correlations between con-
centration, velocity, and flux fields. The results show three different
transport regimes with a dramatic improvement in 〈Sh〉 for a specified
range of Pe, as demonstrated on regime map in the Pe − ε plane that
correlates the microscopic transport mechanisms with Pe and poros-
ity ε (medium microstructure). The regime map not only rationalizes
the scaling of 〈Sh〉 with Pe, but it also provides design guidelines
for optimizing the performance of porous media with electrochemical
reactions.

The organization of this article is as follows. We first present theory
for the transient production of redox reactions facilitated by the dif-
fusion and the flow of redox-active solution through periodic porous
media. We subsequently define an auxiliary problem posed in terms
of a single time-independent partial differential equation with linear
boundary conditions, and we derive conditions for its validity based
on non-dimensional parameters. Secondly, we describe the numerical
methods used to simulate Sh and the concentration field that produces
it for two-dimensional periodic porous media. Finally, we present re-
sults using this model to simulate pore-scale transport for crossflow
through an array of cylinders with varied porosity, flow orientation,
and Péclet number. These results are then used to predict overall mass
transfer coefficients.

Mathematical Model: Auxiliary Problem Definition

In this work we simulate the transient pore-scale transport of active
species using an auxiliary problem by which mass transfer coefficients
can be determined by solving for the time-independent contribution
ch,i(r) to the time- and space-dependent concentration field ci(r, t ) for
solute i subject to a homogeneous Dirichlet condition at solid/solution
interfaces. Here, r is position vector while t represents time. Further,
we define this problem for a periodic microstructure to eliminate finite-
size effects. In this section we present the governing equations for this
auxiliary problem and derive conditions for its validity. Inspired by
the transport processes that facilitate energy storage in redox flow
batteries (RFBs), this auxiliary problem replicates a conjugate mass
transfer problem under certain conditions of relevance to the RFB
application. In the porous electrodes of an RFB the consumption of
oxidized solute O is coupled to the production of reduced solute R
by electron transfer from the solid electrode surface to the oxidized
solute at the solid/solution interface (i.e., reduction), while the reverse
process occurs when an electron is transferred from species R into
the solid electrode. While such a conjugate problem is principally
governed by a set of mass conservation equations (MCEs) with non-
linear boundary conditions (BCs), we show that an auxiliary problem
governed by a single MCE with linear BCs can be used to obtain
equivalent solutions in the limit of facile electrochemical kinetics and
equal diffusion coefficients for O and R species. The details of this
auxiliary problem are discussed subsequently to establish it with rigor
in the context of pore-scale mass transport in RFB porous electrodes.

In this analysis we assume that the reactive electrolyte is isochorica in
which case the molar-volume averaged fluid velocity u� = ∑

i V̄iN i is
divergence free47,48 at the pore scale (i.e., ∇ · u� = 0). Here V̄i and N i

are the partial molar volume and flux of species i in the fixed reference
frame.

Periodic concentration condition for periodic microstructures.—
Because we seek to model porous microstructures that are periodic in
space, BCs are imposed at the boundaries of the primary image of
a given microstructure’s periodic repeat unit to enable the simula-
tion of an infinitely periodic system. For the present auxiliary prob-
lem, we invoke periodic BCs on the concentration field specified by
ci(r, t ) = ci(r + R, t ) where R is an integer multiple of any combina-
tion of lattice vectors that define the microstructure’s periodicity. This
periodic BC inherently neglects macro-scale streamwise concentration
gradients by enforcing them to be absent altogether. This assumption
has certain conditions that assure its validity, and thus we derive those
by introducing simplified analysis of RFB cycling dynamics. For this
analysis we consider a fluid circuit connecting an electrode to a tank,
such that electrolyte recirculates between the electrode and tank with
a constant volumetric flow rate V̇ while electric current I is simulta-
neously applied to the electrode. Positive I induces the oxidation of
redox-active molecules, while negative I induces their reduction. We
assume that this electrode is separated from a counter-electrode by a
membrane that selectively isolates redox-active molecules to the fluid
circuit of interest. We subsequently apply mass conservation for each
species i to the electrode (reactor) with volume Vr and to the tank with
volume Vt . This analysis produces two coupled ordinary differential
equations that govern the average concentrations in the reactor 〈c〉i,r

and in the tank 〈c〉i,t :

Reactor:
d

dt

(
Vr〈c〉i,r

) = V̇ 〈c〉i,t − V̇ 〈c〉i,r + Isi

F
[1a]

Tank:
d

dt

(
Vt 〈c〉i,t

) = V̇ 〈c〉i,r − V̇ 〈c〉i,t [1b]

where si is the stoichiometric coefficient for species i with sO = 1
and sR = −1 for a single electron-transfer reaction and F is Faraday’s
constant. We obtain solutions to the above equations using the Laplace
transform subject to the initial conditions 〈c〉i,r (t = 0) = 〈c〉0

i,r and
〈c〉i,t (t = 0) = 〈c〉0

i,t (see derivation in Appendix A):

〈c〉i,r (t ) = 〈c〉0
i,r

[
vr + vt e

−t/τ
] + 〈c〉0

i,t

[
vt

(
1 − e−t/τ

)]
+ Isi

F

[
t

Vr + Vt
+ vt

2

V̇

(
1 − e−t/τ

)]
[2a]

〈c〉i,t (t ) = 〈c〉0
i,r

[
vr

(
1 − e−t/τ

)] + 〈c〉0
i.t

[
vt + vre

−t/τ
]

+ Isi

F

1

(Vr + Vt )

[
t + τ

(
1 − e−t/τ

)]
[2b]

Here, τ is the harmonic mean residence time for flow through the tank
and the reactor τ−1 = (1/Vt + 1/Vr )V̇ . vr and vt are the fractions of
total electrolyte volume in the reactor and tank, respectively: vr =
Vr/(Vr + Vt ) and vt = Vt/(Vr + Vt ).

To satisfy the periodic BCs in the auxiliary problem of our ul-
timate interest streamwise concentration differences across the mi-
crostructure (�c)m

i,‖ should vanish in comparison with pore-scale con-
centration differences transverse to the mean flow (�c)m

i,⊥. The above
solutions enable us to analyze the macroscopic streamwise concen-
tration difference (�c)i,‖ across the electrode by recognizing its scal-
ing (�c)i,‖ ∼ (〈c〉i,r − 〈c〉i,t ). Microscopic streamwise concentration

aWe define a reactive isochoric fluid presently as having fixed partial molar volume V̄i

for all species i (including solvent), while simultaneously requiring that solution volume
be preserved during reactions that occur. In the context of an RFB using the reaction
OzO + nee− → RzR , the latter condition requires that V̄O = V̄R . Such fluids are not
necessarily incompressible because mass density can vary with solution composition.
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gradients are assumed to equal macroscopic ones such that stream-
wise concentration differences at the pore-scale (�c)m

i,‖ can be ex-
pressed in terms of the corresponding macroscopic concentration dif-
ference (�c)i,‖: (�c)m

i,‖ ∼ (�c)i,‖(b/Lr ) ∼ (〈ci,r〉 − 〈ci,t 〉)(b/Lr ),
where b and Lr are the relevant microscopic and macroscopic length
scales. For (�c)m

i,⊥ we consider the characteristic difference in con-
centration across a pore as (�c)m

i,⊥ ∼ (cs,i − 〈ci〉), where cs,i is
the local concentration at the solid/solution (electrolyte) interface,
〈ci〉 = (1/Vf ) ∫ cidVf is the volume-averaged concentration within the
microstructure, and Vf is interstitial fluid volume. Using these scal-
ing relationships, we express a non-dimensional parameter defined as
the characteristic ratio of the streamwise and transverse concentration
gradients at the pore scale (�c)∗i :

(�c)∗i = b

Lr
· 〈c〉i,r − 〈c〉i,t

cs,i − 〈c〉i
∼ (�c)m

i,‖
(�c)m

i,⊥
[3]

Thus, for (�c)∗i � 1 streamwise concentration gradients are
negligible.

To determine how (�c)∗i varies with Péclet number and other non-
dimensional parameters we consider that the RFB initially has uniform
concentration such that 〈c〉0

i,r = 〈c〉0
i,t . After substitution of the time-

dependent solutions for 〈c〉i,r and 〈c〉i,t into (�c)∗i and subsequent
simplification, we find the following expression for (�c)∗i :

(�c)∗i = (a · b)
〈Sh〉
Pe

[
1 − 1/α

(1 + 1/α)2

] (
1 − e−(1+1/α)(b/Lr )Pe·Fo

)
[4]

(�c)∗i is expressed in terms of the following non-dimensional param-
eters:

• α = Vt/Ve is the tank-to-electrode electrolyte volume ratio.
• Pe = |us|b/Di is the Péclet number expressed in terms of the

superficial velocity us and the diffusion coefficient Di.
• 〈Sh〉 = 〈hm〉b/Di is the overall Sherwood number expressed in

terms of the average pore-scale mass transfer coefficient 〈hm〉.
• Fo = Dit/b2 is the Fourier number.
• a · b is the product of volumetric surface area a and the charac-

teristic microscopic length-scale b.

Here, the dependence on applied current I is eliminated by using the
film theory of mass transport: (cs,i − 〈c〉i ) = Isi/(〈hm〉F ).

Henceforth, we assume a large RFB tank (i.e., α → ∞) to produce
the following expression:

(�c)∗i = (a · b) (〈Sh〉/Pe)
(
1 − e−(b/Lr )Pe·Fo

)
[5]

For (b/Lr )Pe · Fo → ∞ this expression approaches (�c)∗i =
(a · b)(〈Sh〉/Pe). Conversely, in the limit of (b/Lr )Pe · Fo → 0
Eq. 5 approaches (�c)∗i = (a · b)(b/Lr )Pe · Fo by application of
L’Hospital’s rule. In summary we find the following result for (�c)∗i
in these asymptotic limits:

(�c)∗i =
{

(a · b) (b/Lr ) 〈Sh〉Fo, for (b/Lr ) Pe · Fo → 0

(a · b) (〈Sh〉/Pe) , for (b/Lr ) Pe · Fo → ∞ [6]

Assuming that a · b is of order unity, the effect of streamwise con-
centration gradients becomes negligible (i.e., (�c)∗i � 1) for 〈Sh〉 �
(Lr/b)/Fo and 〈Sh〉 � Pe in the respective limits of low and high Pe.

Sufficient supporting electrolyte approximation.—Active species
transport in electrolyte within porous electrodes occurs by advection,
diffusion, and electromigration (i.e., drift). However, the contributions
of these driving forces relative to total species flux depend on elec-
trolyte composition. Electromigration is a transport process driven
by electric potential gradients in solution. For the present theory we
neglect electromigration contributions to flux by assuming that a suf-
ficient concentration of highly mobile supporting ions is dissolved in
addition to active species. Such a condition is satisfied by requiring
that the transference number t j = z2

j m jc j/
∑

i z2
i mici for active species

j is small (i.e., t j � 1), where zi and mi are the mobility and charge
number of ion i.

Decoupling conjugate transport in the pseudo-steady limit.—The
assumptions that were qualified in the two preceding sub-sections en-
able the specification of an advection-diffusion transport problem (i.e.,
neglecting electromigration) with a periodic microstructure having a
periodic concentration field. Here, we also assume that Fickian diffu-
sion prevails with a constant diffusion coefficient, such that flux can
be written in the fixed reference frame as Ni = u�ci − Di∇ci. Thus,
the governing equations for the oxidized and reduced species can be
expressed under these assumptions as:

∂co

∂t
+ ∇ · (

u�cO − DO∇cO

) = 0 [7a]

and
∂cR

∂t
+ ∇ · (

u�cR − DR∇cR

) = 0 [7b]

The dynamics embodied by these equations evolve in a coupled
manner as a result of the conjugate production and consumption of
active species when electron transfer occurs at solid/electrolyte in-
terfaces. These processes occur subject to reaction stoichiometry:
OzO + e− � RzR . In equation form conjugation is facilitated by con-
straining the local fluxes along the normal direction n of surface s to
be equal in magnitude and opposite in direction:

DO
∂cO

∂n

∣∣∣∣
s

= −DR
∂cR

∂n

∣∣∣∣
s

[8]

where Di is the Fickian diffusion coefficient of species i. Furthermore,
we assume fast reaction kinetics, such that reaction overpotential η =
φs − φe − φeq is small (η ≈ 0). Here, solid φs(t ) and electrolyte φe(t )
potentials are assumed to be time-dependent but uniform in space.b

Under such conditions the applied half-cell potential Ecell (t ) = φs−φe

is equal to the equilibrium potential φeq, which is expressed in terms
of active species concentrations cO/R using the Nernst equation.49

Ecell(t ) = φeq (t ) = φ0
eq + (RT/F ) ln (cO/cR ) [9]

Here we show that, under certain limiting conditions of high rele-
vance to RFBs, the preceding time-dependent, conjugate mass trans-
port problem can be solved using a time-independent auxiliary prob-
lem defined by a single MCE subjected to homogeneous Dirichlet
boundary conditions and having a certain volumetric source term. For
this auxiliary problem we posit the following decomposition of the
concentration field ci(r, t ), where surface concentration cs,i(t ) takes
on a uniform but time-dependent form: ci(r, t ) = cs,i(t ) + ch,i(r, t ).c

Here, ch,i(r, t ) is defined as the homogeneous contribution to the con-
centration field. Using this approach, we express the MCE for species
i in terms of ch,i as:

∂ch,i

∂t
+ ∇ · (

u�ch,i − Di∇ch,i

) = −σi [10]

where σi is the rate of change of surface concentration, i.e., σi =
dcs,i/dt . Together with this MCE, a homogeneous Dirichlet boundary
condition for ch,i|s ≡ ci|s − cs,i = 0 enforces the uniformity of surface
concentration at solid/electrolyte interfaces at each instant in time. If σi

varies slowly enough and enough time elapses for solute molecules to
diffuse across streamlines, ch,i becomes a time-independent field. This
limit, which we refer to as pseudo-steady, is satisfied for t � b2/Di,
and it enables the specification of ch,i(r) using a time-independent
equation:

∇ · (
u�ch,i − Di∇ch,i

) = −σi [11]

Until this point we have assumed that the surface concentration of
either active species is uniform in space at any given instant in time, but

bThese potentials are uniform in space when the representative conductivity for that phase
is large.
cWe note that this decomposition is different than that used in Ref. 41. For the present
auxiliary problem we decompose solute concentration using a spatially uniform surface
concentration, whereas the decomposition in Ref. 41 uses the average concentration inside
the pore with surface concentration varing subject to a Robin-type BC.
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Table I. Summary and comparison of equations governing the conjugate and auxiliary mass transfer problems.

Conjugate Problem Auxiliary Problem

MCEs ∂cO
∂t + ∇ · (u�cO − DO∇cO ) = 0 ∇ · (u�ch,O − D∇ch,O ) = −σ

∂cR
∂t + ∇ · (u�cR − DR∇cR ) = 0 ∇ · (u�ch,R − D∇ch,R ) = +σ

BCs DO
∂cO
∂n |s = −DR

∂cR
∂n |s ch,O|s = 0

φ0
eq + RT

F ln( cO
cR

)|s = φeq(t ) ch,R|s = 0

Coupling Coupled by BCs Decoupled

in general there is no such mathematical support for this assumption.
Here we examine the set of MCEs and BCs that govern ch,i to reveal
the particular conditions under which its solution is equivalent to the
conjugate problem. Defining the variable c′

h,i = ch,i/σi we have:

MCE: ∇ · (
u�c′

h,O − DO∇c′
h,O

) = −1

BCs: c′
h,O

∣∣
s
= 0 and periodic [12a]

MCE: ∇ · (
u�c′

h,R − DR∇c′
h,R

) = −1

BCs: c′
h,R

∣∣
s
= 0 and periodic [12b]

Inspection reveals that c′
h,O = c′

h,R = c′
h is satisfied when DO = DR =

D. Thus, we choose σi to determine ch,O and ch,R that also satisfy the
conjugate condition at the solid/electrolyte interface in the pseudo-
steady limit:

D
∂cO

∂n

∣∣∣∣
s

= −D
∂cR

∂n

∣∣∣∣
s

= σOD
∂c′

h

∂n

∣∣∣∣
s

= −σRD
∂c′

h

∂n

∣∣∣∣
s

[13]

From this expression we deduce that σO = −σR = σ enforces the
conjugate condition exactly. Furthermore, the uniform surface con-
centrations cs,O(t ) and cs,R(t ), chosen a priori, satisfy the condition
that equilibrium potential (φeq from the Nernst equation) is uniform on
solid/electrolyte interfaces, thus satisfying the second BC of the con-
jugate mass transport problem. Therefore, this analysis proves that,
in the pseudo-steady limit, the present auxiliary problem posed sep-
arately for R and O species decouples the conjugate problem when
kinetics are facile and when redox-active species possess identical
diffusion coefficients. A summary of the governing partial differential
equations, boundary conditions, and coupling conditions is shown in
Table I.

Numerical Solution to the Auxiliary Problem

Model domain.—In this section, we describe the numerical meth-
ods used to solve the auxiliary problem described in the preced-
ing section for a two-dimensional microstructure. Since the auxil-
iary problem decouples the heterogenous redox reaction for the ox-
idized and reduced species, only the production of R (reduction of
O) due to electron transfer to the electrode is considered. For brevity
the subscript R, which indicates reduced species, is dropped here-
after. The porous medium simulated here is a regular array of un-

consolidated cylinders that are infinitely long along the z-axis (Fig-
ure 1a). A unit cell is selected to represent the array of circular
cylinders as shown in Figure 1b. Figure 1c shows dimensions and
the angular direction θ about the unit cell’s centroid where the cen-
ter of the primary solid cylinder coincides. All angles are measured
from the negative x-axis, and counterclockwise rotation is taken as
positive. Two different array configurations of the cylinders (square
and rectangular) are studied along with different superficial velocity
orientations θ f .

The porosity ε of the unit cell is defined as the ratio of interstitial
fluid volume Vf to the volume of entire unit cell Vcell as ε = Vf /Vcell .
Five different porosity values are simulated by changing cylinder di-
ameter, ranging from ε = 0.446 to 0.874. Fifteen different superficial
velocities are studied with Pe ranging from 0.01 to 840. For rectan-
gular arrays, the L/H ratio is varied from 1.5 to 2.5 by keeping the
y-dimension H unchanged, while using a common flow with Pe = 420
that is aligned with either of the coordinate axes (θ f = 0 or π/2). For
inclined flows, the least porous microstructure of rectangular arrays
(ε = 0.446) is subjected to a constant superficial velocity (Pe = 420)
while θ f is varied between 0 and π/4.

Numerical discretization and solution methods.—We model the
interstitial velocity field u� assuming a Newtonian, isochoric solu-
tion with constant viscosity in the creeping flow limit, where inertial
effects are negligible (Re ≤ 0.05, where Re is Reynolds number).
To ensure the conservation of fluid volume and momentum in the
present isochoric flow, we pose the vorticity transport equation (de-
rived by application of the curl operator, ∇×, to the Navier-Stokes
equations) in terms of a stream function ψ to enforce linear mo-
mentum conservation: ∇4ψ = 0. The stream function ψ defines the
components of velocity as u�

x = ∂ψ/∂y and u�
y = −∂ψ/∂x, thus

automatically satisfying volume conservation for the isochoric flow
(∇ · u� = 0). Periodic jump/fall BCs are applied at unit-cell bound-
aries using the following expression: ψ(r) = ψ(r + R)+(R/|R|)·�ψ.
Here �ψ = �ψx î + �ψy ĵ represents the jump/fall in ψ across unit
cell boundaries in the x and y directions. The components of �ψ are
chosen to produce a certain volumetric flow rate of the solution. No slip
(∂ψ/∂n = 0) and impermeability (∂ψ/∂s = 0) conditions are applied
at the surface of solid cylinders. An additional boundary condition is
applied at the cylinder surface by considering that no lift is generated
perpendicular to us. Using the Kutta-Joukowski50 theorem this condi-
tion is expressed mathematically using the definitions of the circulation
� and the stream function ψ as � = ∮

c u� · ds = − ∮
c ∇2ψdAs = 0.

Figure 1. Geometry of domain. (a) Flow through regular array of reactive circular cylinders, (b) selection of a repetitive unit cell, and (c) a repetitive unit cell with
geometric parameters labeled.
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Figure 2. Contour plot of non-dimensional diffusive flux jd for flow with θ f = 0 and either (a) ε = 0.446 or (b) ε = 0.874. The numerical values at the middle
of contours show Pe values. Variation of diffusive flux on the particle surface j∗d,s with Pe for (c) ε = 0.446 and (d) ε = 0.874.

The vorticity transport equation and its associated boundary conditions
were discretized spatially using a 2nd order accurate finite difference
method, where ψ was solved at each node of a rectangular grid overlaid
on the unit cell. A direct linear solver was used to solve the resulting
discretized system of algebraic equations.

For the auxiliary problem governing pore-scale mass transfer, we
discretized the MCE for species R using the finite volume method
(FVM), where fluxes at mesh faces are approximated using central dif-
ferencing. A direct linear solver was used to solve for ch. To ensure nu-
merical stability subject to the Courant–Friedrichs–Lewy condition,51

mesh spacing parameters (�x and �y) were selected such that the
magnitude of the grid level Péclet numbers (Pex = u�

x �x/D and
Pey = u�

y �y/D) were less than 0.5. Verification of the implemented
model and its validation based on analytical theory is included in Ap-
pendix B.

Results and Discussion

Here, we present and analyze simulations of transient mass transfer
in periodic porous media comprised of cylinders in crossflow through
the use of the auxiliary problem introduced in the preceding sections.
From our analysis of the auxiliary problem we recall that the auxiliary
problem is valid for t >> b2/D in the respective limits of creep-
ing flow, fast redox kinetics, and equal diffusivity of oxidized and
reduced species. The effects of varying porosity, Péclet number, and
flow inclination on local concentration and diffusive flux distributions
are explored in the first sub-section. In the subsequent sub-section we
analyze the statistical variance of concentration fields to construct a
transport regime map that we ultimately use to interpret the variations
of non-dimensional mass transfer coefficient with Pe and porosity.

Analysis of diffusive flux and concentration distributions.—Bulk
flow through porous microstructures causes interstitial concentration
and diffusive flux fields to redistribute spatially. In this section we in-
vestigate the redistribution of these fields and how they are affected by
porosity, Péclet number, and flow direction. Figures 2a, 2b show the
distribution of the diffusive flux magnitude normalized by its max-
imum value within the fluid for ε = 0.446 and 0.874 with differ-
ent Pe values. Here, diffusive flux is jd = |−D∇c|. In Figs. 2c,
2d the diffusive flux distribution on cylinder surfaces is shown as

j∗d,s = jd,s/〈 jd,s〉, where 〈 jd,s〉 is the area-averaged diffusive flux de-

fined by 〈 jd,s〉 = −1/As ∫
s

D∇c · dAs.

For Pe ≤ 1 the diffusive flux field is symmetric about both axes in
the bulk (Figures 2a, 2b) and on surfaces (Figures 2c, 2d), resembling
that of pure diffusive transport when Pe = 0. This finding indicates
that the effect of advection is insignificant for Pe ≤ 1 and that diffusion
dominates solute transport in that regime. For Pe > 1 advection dis-
torts the diffusive flux field, and it becomes asymmetric with respect
to the axis perpendicular to bulk flow. Figure 2a (ε = 0.446) shows
that the initial effect of advection (i.e., for Pe = 4.2 to 84) causes jd

to redistribute locally. As Pe increases from 84 to 840, diffusive flux
increases in magnitude throughout the interstitial fluid volume without
substantial redistribution. Similar results are obtained for cases with
ε ≤ 0.678 that are not shown for brevity. A more gradual, yet similar,
transition in the jd field is observed for ε ≥ 0.788 (Figures 2b). We
note that, in all instances, the maximum local diffusive flux is always
obtained on cylinder surfaces and not in the bulk of the solution.

Further, on the solid surface a non-uniform distribution of dif-
fusive flux jd,s is evident for all Pe and ε values that are shown in
Figures 2c, 2d. The surface diffusive fluxes jd,s were calculated based
on local solute flow rates through each finite stair-stepped surface and
by dividing each flow rate by a corresponding curved surface area as
jd,s = −D∇c ·�As/{(d/2)�θ}. Here, d is the diameter of solid cylin-
ders and �θ is the angular span of each stair-stepped surface. Here,
jd,s is normalized as in Figures 2a, 2b ( j∗d,s = jd,s/〈 jd,s〉). Due to the
approximation of stair-stepped fluid/solid interfaces, the distribution
of j∗d,s can show artificial fluctuations. To eliminate such fluctuations
the local fluxes were averaged by conserving net molar flow over cir-
cular segments with angular span ≈ 6◦ to preserve the topology of j∗d,s
distributions (i.e., maxima and minima). This smoothing technique
conserved total solute mass flow rate within 10−11% of 〈 jd,s〉πd.

The variations of diffusive flux with increasing Pe at solid surfaces
are accompanied by variations in concentration within the interstitial
fluid volume. To classify the effect of interactions between adjacent
cylinders on surface flux distributions we attempt to find correspon-
dence between concentration and velocity fields. Using this approach
we ultimately classify interactions as either strong or weak, where
strong interactions produce more nonuniformity in surface flux. In
addition to the strength of interactions, we also classify the transport
mechanism by which such interactions are produced (i.e., by diffusion
or advection).
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Figure 3. Contour of c̃ at dfferent Pe for (a) ε = 0.446 and (b) ε = 0.874. Variation of c∗ with Pe for (c) ε = 0.446 and (d) ε = 0.874 along the y (left panel),
downstream-x (middle panel), and upstream-x (right panel) directions.

For ε = 0.446 and Pe ≤ 1, the distribution of j∗d,s = jd,s/〈 jd,s〉
shows four peaks comprising local maxima at θ = π/4, 3π/4, 5π/4
and 7π/4. This nonuniform distribution results from the diffusive in-
teractions between cylinders, and the peaks correspond to the angular
positions of points with most extreme (lowest) concentrations. For
ε = 0.874 and Pe ≤ 1, the distributions of j∗d,s are more uniform due
to the diminishing interactions between the concentration fields around
adjacent solid cylinders when cylinders are separated by sufficient dis-
tance. Thus, we conclude that, for diffusion-dominated transport, the
cylinders in low porosity media experience strong diffusive interac-
tions (SDIs), while cylinders in high porosity media experience weak
diffusive interactions (WDIs). For both low and high porosity media
(Figures 2c, 2d) the j∗d,s distribution becomes more nonuniform with
increasing Péclet number. During this transformation j∗d,s decreases
weakly upstream of the cylinder, whereas in the downstream region
j∗d,s decreases significantly. In the midstream regions (i.e., between
upstream and downstream regions) j∗d,s increases substantially with
increasing Pe. A gradual shift occurs for the location of j∗d,s maxima
toward θ = π/2 and 3π/2 with increasing Pe (Figures 2c, 2d). Fur-
ther, we observe that for both low and high porosity media advection
influences the distribution of j∗d,s to a diminishing degree for very large
Pe, showing an insignificant shift of j∗d,s maxima.

To identify the effect of advection on interactions between cylin-
ders for Pe > 1, we analyze the variations of concentrations by exam-
ining the concentration deviations between cases simulated at non-zero
Pe with that simulated at Pe = 0 for the same microstructure. To do this
we define the following non-dimensional concentration deviation c̃ in
terms of local c, surface cs, and volume-averaged 〈c〉 concentrations:
c̃ = c∗|Pe>0 − c∗|Pe=0, where c∗ = (c − cs )/(〈c〉 − cs ) is nondimen-
sionalized local solute concentration. c̃ can be interpreted as a change
in the driving force for diffusion relative to pure diffusion (Pe = 0)
that is induced by advection with non-zero Pe. Hence, regions with
negative c̃ promote diffusion away from solid surfaces, while regions
with positive c̃ suppress it. Accordingly, we refer to these regions as
positively (PAZs) and negatively (NAZs) affected zones, respectively.
The location of NAZs downstream of the solid shows that solutes ac-
cumulate there. For low-porosity media advection causes solute accu-
mulation where pore dimensions are largest in the downstream region
(i.e., along θ ≈ 3π/4 and 5π/4), as shown in Figure 3a. For higher
porosity media (Figure 3b), larger pores allow solute to accumulate
downstream of the cylinder along θ ≈ π. This local accumulation
of solute, which results from advection, retards the flux at the next
downstream cylinder surface (Figure 2d, Pe = 200 for example) by
increasing the surrounding solute concentration (Figure 3b, Pe = 200

for example). We refer to this correspondence of reduced flux and
solute accumulation at high Pe as an advective interaction. For high
porosity media the accumulation of solute immediately upstream of
the next downstream cylinder reduces surface flux. Further, for high
porosity media solute transport at the location of solute accumulation
is retarded by the low flow velocity there, resulting in a strong advec-
tive interaction (SAI) between adjacent cylinders. For low porosity
media the flow velocity at the location of solute accumulation trans-
ports solute more effectively compared to high porosity media. The
enhanced flow velocity in regions of accumulation is a result of two
factors: (1) the location of solute accumulation is far from stagnation
points (defined by u� = 0) located on the cylinder surface and (2)
low porosity media show higher mean interstitial velocity than high
porosity media for the same superficial velocity. This advective trans-
port limits interactions between adjacent cylinders, resulting in a weak
advective interaction (WAI) between them.

Evidence for the interactions described above is also reflected by
the axial and transverse variations of concentration c∗ in space at var-
ious Pe values (Figures 3c, 3d). We examine these profiles along the
particular paths shown by red dashed lines in Figure 3b (Pe = 0.01)
within the simulated fluid domains. We note that the definition of
c∗ results in negative correlation between c∗ and c (i.e., an increase
in c∗ corresponds to a decrease in c). An exponential concentration
variation with position is observed in the transverse direction (i.e.,
y direction) for all cases (left panels in Figures 3c, 3d). At the pore
center corresponding to (y − d/2)/by = 1, the concentration gradient
vanishes due to the symmetry of the porous medium. A significant
increase in surface concentration gradient is produced with increasing
Pe that ultimately increases diffusion on the midstream surfaces of
cylinders. From the axial (x-direction) variation of c∗ it is evident that,
for low-porosity media, up- and down-stream regions are relatively
unaffected by advection due to the WAI between adjacent cylinders
(middle and right panels in Figures 3c). In contrast, high-porosity me-
dia show reduced diffusion rates with increasing Pe in both the up- and
down-stream directions because of a SAI between cylinders (middle
and right panels in Figures 3d).

Figures 3a and 3b show that the mean location of PAZs gradually
moves toward θ = π/2 and θ = 3π/2 with increasing Pe. Simi-
lar observations can be made from the surface flux distributions in
Figures 2c and 2d, where the locations of flux maxima do not move
with further increase in Pe after moving to θ = π/2 and 3π/2. The
diminishing effect of bulk flow on jd redistribution with increasing
Pe and the termination of flux maxima locations indicates that the
effect of bulk flow gradually saturates. The minimum Pe correspond-
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Figure 4. Contour of (a) strain rate λ∗ and (b) vorticity ω∗ for flow through
square array of cylinders with different porosity (θ f = 0, Pe = 100).

ing to this saturation is called Pesat , a parameter that we quantify
in the next sub-section. Here, we seek to understand what factors
influence the locations of flux maxima after saturation. To do this
we calculated two components of fluid deformation: (i) strain rate
λ = 1/2(∂u�

x /∂y + ∂u�
y /∂x) describing the rate of fluid element

stretching and (ii) vorticity ω = 1/2(∂u�
x /∂y − ∂u�

y /∂x) describing
the rotation rate of fluid elements. Figures 4a, 4b show the contours of
λ∗ and ω∗ for horizontal flow through a square array with Pe > Pesat ,
where “∗” indicates normalization by a maximum value. We observe
that the locations of maximum λ∗ and ω∗ occur at θ = π/2 and
θ = 3π/2, corresponding to the same locations of flux maxima ob-
served earlier (see Figures 2a, 2b).

While the maxima of λ∗ and ω∗ coincide with flux maxima for hor-
izontal flow through cylinder arrays, these results alone do not guaran-
tee their correlation for other mean flow orientations and microstruc-
tures. To test whether this correlation of extrema holds generally we
varied the mean flow orientation θ f and simulated concentration and
flux fields with Pe above Pesat . The contours of jd , λ∗, and ω∗ are
shown in Figures 5a–5c respectively for three different mean flow ori-
entations. In all three cases the locations of global maxima in diffusive
flux coincide with those of fluid deformation. The variations of j∗d , λ∗,
and ω∗ are also shown on the solid surface as a function of angular po-

sition θr for five different mean flow orientations (Figures 5d–5f). The
angular position θr is defined relative to the mean flow orientation θ f

such that the stagnation point is always at θr = θ−θ f = 0. We observe
that the distribution of surface diffusive flux in Figure 5d is symmet-
ric about the mean flow direction for horizontal flow (θ f = 0), but it
becomes asymmetric for other flow inclinations excluding θ f = π/4.
For θ f = π/4 the distribution becomes symmetric again due to the
symmetry of the microstructure about us. Similar symmetries are ex-
hibited by the global maxima of λ∗

s and ω∗
s in Figures 5e, 5f with

coincidence of the location of maximum values.
Aside from varying mean flow orientation, we also varied the ar-

rangement of cylinders in the array in order to test whether the locations
of global maxima for diffusive flux coincide with those of fluid defor-
mation when microstructure is changed. To do this we simulated mass
transfer in rectangular arrays of cylinders where the distance between
neighboring cylinders was different in the x and y directions. Such mi-
crostructure allows the location of maximum fluid deformation to be
different from the location of minimum separation between adjacent
solid surfaces, unlike cylinders arranged in square arrays where these
locations coincide. The contours of jd , λ∗, and ω∗ are shown for two
different array arrangements in Figure 6 subjected to flows with two
different mean orientations (θ f = 0 and π/2). These contours show
that for horizontal flow (θ f = 0) the locations of maximum jd , λ∗, and
ω∗ are θ = π/2 and 3π/2. Changing the flow direction from θ f = 0 to
θ f = π/2, the locations of maximum jd , λ∗, and ω∗ changes to θ = 0
and θ = π, while the angular locations of minimum separation be-
tween nearest-neighbor cylinders remain at θ = π/2 and 3π/2. These
results further confirm our conclusion that the locations of global max-
ima for diffusive flux are determined by those of fluid deformations.52

While this conclusion is valid for regular arrays of cylinders, we note
that further study is needed to confirm this conclusion for arbitrary
microstructures.

Pore-scale transport regime map and mass transfer coefficient.—
In this section, we present a pore-scale transport regime map that cor-
relates microscopic solute transport mechanisms with external flow
conditions given by Pe and porous medium microstructure given by
porosity ε. We subsequently use this map to interpret the variations of
Sherwood number with Pe and ε. The spatial variations of each solute
concentration field are quantified using the volume-averaged variance
of c∗, defined as Var(c∗) = (1/Vf ) ∫ (c∗ − 〈c∗〉)2dVf . A contour map
of Var(c∗) versus Pe and ε in Figure 7a was constructed using 75 dif-
ferent simulations with various ε and Pe values by using the piecewise

Figure 5. Contour of dimensionless (a) diffusive flux, (b) strain rate, and (c) vorticity at different θ f (Pe = 420, ε = 0.446). Variation with θr = θ − θ f on solid
surfaces of dimensionless (d) diffusive flux, (e) strain rate, and (f) vorticity.
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Figure 6. Contour of (a) diffusive flux, (b) strain rate, and (c) vorticity for Pe = 420 and two mean flow direction (θ f = 0 and π/2) in rectangular array of
cylinders. The arrows at the middle of each sub-figure indicate mean flow direction. The first two columns show results for L/H = 1.5 (ε = 0.631) and the second
two columns show results for L/H = 2.5 (ε = 0.778).

cubic Hermite interpolating polynomial (PCHIP) scheme to preserve
the monotonicity and shape of the data.

For a specified porosity, Var(c∗) shows non-monotonic variation
with Pe. For low Pe transport is diffusion dominated, and thus Var(c∗)
is independent of bulk flow conditions in that regime. The minimum
Pe where Var(c∗) decreases 2.5% from its value at Pe = 0 we define as
the boundary for this diffusion-dominated regime, denoted as Pedi f f .
For Pe > Pedi f f , Var(c∗) initially decreases due to the redistribution
of local flux vectors, and it eventually reaches a minimum value as
redistribution terminates. In this regime solute transport is strongly
dependent on both porosity and Péclet number. The particular Péclet
number Pesat corresponding to the minimum value of Var(c∗) (also
called the saturation Péclet number) was thus calculated to determine
the boundary of this transport regime for each porosity ε. For Pe >
Pesat advection is the dominant transport mechanism, and, while the
locations of flux extrema remain fixed with increasing Pe, the flux at
extreme locations shows greater variation from the mean flux jd,s. The
obtained values of Pedi f f and Pesat for different ε are listed in Table II.

We use the values of Pedi f f and Pesat calculated from Figure 7a
to identify boundaries for the different regimes of solute transport in
the Pe − ε plane that are marked as the diffusion and saturation lines
in Figure 7b, respectively. These lines divide the Pe − ε plane into
three regimes: (i) a diffusion dominated regime for Pe < Pedi f f , (ii)
a transition regime for Pedi f f < Pe < Pesat where jd undergoes re-

distribution, and (iii) an advection dominated regime for Pe > Pesat

where jd shows increased variation from the mean but has negligible
redistribution. This map reveals that, for low porosity media, advection
causes the redistribution of flux until extrema approach their terminal
locations with increasing Pe. Based on the interaction classifications
discussed in the preceding sub-section, we deduce that such a trans-
formation with increasing Pe at low porosity results in a transition
from strong diffusive (SDI) to weak advective (WAI) interactions. On
the contrary, for high porosity media the transition with increasing
Pe from weak diffusive (WDI) to strong advective (SAI) interactions
causes there to be no apparent transition between diffusion and ad-
vection dominated transport regimes. As a result, Pesat coincides with
Pedi f f for high porosity media, as shown in Table II.

Next, we present results for the scaling of Sherwood number (i.e.,
the non-dimensional mass transfer coefficient) with Péclet number and

Table II. Values of Pedi f f and Pesat for square array of cylinders
at different porosities.

ε 0.446 0.546 0.678 0.788 0.874

Pedi f f 2.01 2.01 2.01 2.01 2.01
Pesat 42.01 19.01 16.01 13.01 2.01

Figure 7. (a) Contour plot of variance Var(c∗ ) of local nondimensional concentration c∗ and (b) the corresponding transport regime map on the Pe − ε plane. (c)
Variation of 〈〈Sh〉〉 with Pe for different porosity values.
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porosity of the cylindrical porous media already discussed. We use the
regime map to explain the observed variations in Sherwood number
with Pe. The overall Sherwood number 〈Sh〉 is calculated from each
simulated concentration field as 〈Sh〉 = 〈hm〉d/D, where the overall
mass transfer coefficient 〈hm〉 is calculated using the film theory of
mass transport 〈 jd,s〉 = 〈hm〉(cs − 〈c〉). The variation of Sh with Pe is
shown in Figure 7c for various porosity values. 〈Sh〉 varies with Pe in
different ways depending on the prevailing transport mechanisms. In
the diffusion-dominated regime (Pe ≤ Pedi f f ), 〈Sh〉 remains constant
with Pe, and in the limit of Pe → 0 Sherwood number is minimum and
non-zero. In the transition regime (Pedi f f < Pe < Pesat , marked by
the shaded area in Figure 7c) a dramatic rise in 〈Sh〉 is observed with
increasing Pe due to the redistribution of local diffusive flux. In the
advection dominated regime (Pe > Pesat ) a slower increase in 〈Sh〉 is
observed with increasing Pe. The 〈Sh〉−Pe variations in Figure 7c thus
show that 〈Sh〉 does not follow a power law with Pe. Rather a power law
respectively under- or over-predicts mass transfer coefficients in the
limits of low and high Pe. Further, our results show that high porosity
media produce lower values of 〈Sh〉 at the same Pe values. This trend
of 〈Sh〉 variation agrees with experimental observations.53 Thus, low
porosity media are preferred as porous substrates for heterogenous
electrochemical reactions over high porosity media on the basis of
mass transfer consideration alone. On the contrary, low porosity media
possess low hydraulic permeability54–56 and high tortuosity for ion
transport.57–59 Such competing effects, together with pore-scale mass
transfer, should be considered to design optimized RFB electrodes.

Conclusions

In this article we introduce theory to study pore-scale mass trans-
port where heterogeneous redox reactions convert solute molecules
between oxidation states. Such processes should be facile to enable
efficient cycling of electrochemical energy storage devices, including
redox flow batteries (RFBs). While prior RFB studies were restricted
to measuring mass transfer coefficients under different flow conditions
and with different electrode microstructures, microscopic understand-
ing of the effect of electrode microstructure on surface flux in RFBs
has not been established. In the broader chemical engineering literature
mathematical models that capture the inherently transient effects of
electrolyte charging and discharging do not exist. The auxiliary prob-
lem introduced here shows that transient effects can be captured by
a time-independent mass conservation equation with linear boundary
conditions with minimal loss in generality in the pseudo-steady limit.
The decomposition of pore concentrations c(r, t ) into time-dependent
surface concentration cs(t ) and a time-independent pore concentration
ch(r) results in a Dirichlet-type BC that automatically satisfies actual
BCs arising from fast reaction kinetics and stoichiometry when ac-
tive species have identical diffusivity and the electromigration flux of
active species transport is negligible. The auxiliary problem decou-
ples the conjugate problem into uncoupled problems for individual
active species and, thus, provides an efficient numerical method to
study redox-active solute transport with heterogeneous reactions. We
also show that the auxiliary problem can be applied readily to periodic
microstructures by invoking periodic boundary conditions for the con-
centration field, a condition whose validity depends on the magnitudes
of Péclet, Sherwood, and Fourier numbers.

We solved the auxiliary problem numerically for crossflow through
a regular array of circular cylinders using the finite-difference and
finite-volume methods. Primary results showed that advection causes
local diffusive flux fields to redistribute spatially, a process that gradu-
ally terminates with increasing Péclet number. The termination of this
redistribution process is guided by the locations of maximum fluid
deformation components (i.e., strain rate λ and vorticity ω). Investi-
gation of local concentration fields reveals that adjacent solid surfaces
in the array experience diffusive interactions for low Pe, and this in-
teraction is weakened as porosity increases. With increasing Pe for the
same microstructure, the interaction between solid cylinders switches
to advective-dominated after the termination of redistribution, a pro-
cess that results from the downstream accumulation of solute.

Furthermore, the limits of Pe for diffusion- (Pedi f f ) and advection-
dominated (Pesat ) convection mechanisms are identified using the spa-
tial variance of solute concentration. For Pe < Pedi f f solute trans-
port is diffusion dominated and is followed by a transition regime
Pedi f f < Pe < Pesat where flux redistribution occurs. At high Pe
(Pe > Pesat ) advection dominates solute transport throughout the in-
terstitial fluid volume. We use a transport regime map to synthesize
these concepts together by plotting the obtained values of Pedi f f and
Pesat on a Pe−ε plane that correlates the micro-transport mechanisms
with flow conditions and the microstructure of porous media. This map
shows that for low porosity media the pore-scale transport mechanism
changes from diffusion dominated to advection dominated with sub-
stantial redistribution of local diffusive flux. During this change the
interaction between adjacent cylinders changes from strong diffusive-
to weak-advective interaction (SDI to WAI) as well. For high porosity
media the transport mechanism changes without substantial redistri-
bution, where weak diffusive interaction changes gradually to strong
advective interaction (WDI to SAI).

The overall Sherwood number 〈Sh〉 is finally calculated and its de-
pendence on Pe and porosity is investigated. The results show that 〈Sh〉
does not increase continuously with Pe, and it attains an asymptotic
non-zero value for Pe → 0. The regime map is used to rationalize the
dependence of 〈Sh〉 on Pe. Three different mechanisms result in three
distinct variations with Pe with a significant increase of 〈Sh〉 in the
transition regime. Thus, the empirical correlation of Sh using power-
law functions of Reynolds/Péclet number, as is common practice in the
RFB literature, fails to capture the variations of 〈Sh〉 that arise from the
transition between diffusion- and advection-dominated regimes. The
creation of transport regime maps based on concentration field vari-
ance can be used as a tool to interpret the variations of 〈Sh〉 with Pe
and microstructure. Thus, these analytical tools, together with the aux-
iliary problem posed, can provide guidelines for the optimal design
of efficient porous substrates for electrochemical reactions, includ-
ing redox flow batteries. For example, based on mass transfer alone,
low porosity media are shown to produce three to four-fold increased
〈Sh〉 with porosity decreasing from 87% to 45%. However, due to the
competing effects of decreasing permeability and increasing tortuos-
ity with decreasing porosity, further investigation is required to assess
the multi-functional performance of arbitrary porous microstructures
beyond two-dimensional circular cylinders. We also note that the ef-
fect of finite reaction kinetics can be included by considering spatial
and temporal variations of the interface overpotential.
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Appendix A: Simplified Analysis of RFB Cycling Dynamics

Here we present the solution procedure for the simplified analysis of RFB cycling
dynamics. We consider a fluid circuit that recirculates electrolyte at a constant volumetric
flow rate V̇ between tank and electrode of volumes Vr and Vt respectively, as shown in
Figure A1. Building on our previous numerical modeling of coupled transport between
RFB tanks and reactors,60–63 here we derive a closed form analytical model for the average
concentration within both compartments during cycling.

The obtained MCEs are shown in Equation 2 in terms of average concentrations of
species i in the reactor 〈c〉i,r and tank 〈c〉i,t . Considering that the volume of the reactor
and the tank are constant in time, Eq. 2 can be simplified to:

d

dt

(〈c〉i,r
) = δr〈c〉i,t − δr〈c〉i,r + γi [A2a]

d

dt

(〈c〉i,t
) = δt 〈c〉i,r − δt 〈c〉i,t [A2b]

Here, γi is expressed as γi = (Isi )/(Vr F ). δr = V̇ /Vr and δt = V̇ /Vt are the inverse of
mean residence times of the electrolyte flow inside reactor and tank respectively. Solving
Eqs. A2a, A2b using Laplace transformation with initial conditions as 〈c〉i,r (t = 0) =
〈c〉0

i,r and 〈c〉i,t (t = 0) = 〈c〉0
i,t provides the solution in the Laplace domain, where s is the
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Figure A1. Fluid circuit connecting electrode and tank to recirculate elec-
trolyte in an RFB.

Laplace transformed variable related to time coordinate t : L( f (t )) = f̄ (s).

s〈c〉i,r (s) − 〈c〉0
i,r = δr〈c〉i,t (s) − δr ci,r (s) + γi/s [A3a]

s〈c〉i,t (s) − 〈c〉0
i.t = δt 〈c〉i,r (s) − δt 〈c〉i,t (s) [A3b]

We obtained the Laplace transformed solution for 〈c〉i,r (s) and 〈c〉i,t (s) by solving the
above algebraic equations:

ce
i (s) = (s + δt )

s (s + δ)
〈c〉0

i,r + δr

s (s + δ)
〈c〉0

i.t + (s + δt )

s2 (s + δ)
γi [A4a]

ct
i (s) = δt

s (s + δ)
〈c〉0

i,r + (s + δe )

s (s + δ)
〈c〉0

i.t + δt

s2 (s + δ)
γi [A4b]

Here, δ is expressed as δ = ( 1
Vt

+ 1
Vr

)V̇ = τ−1, where τ is the harmonic mean residence
time of the electrolyte flow. To obtain expressions for average concentrations as a function
of time, the inverse Laplace transformation was performed after partial factorization of
each term to yield the following:

〈c〉i,r (t ) = 〈c〉0
i,r

[
vr + vt e

−t/τ] + 〈c〉0
i,t

[
vt

(
1 − e−t/τ)]

+ Isi

F

[
t

Vr + Vt
+ vt

2

V̇

(
1 − e−t/τ)] [A5a]

〈c〉i,t (t ) = 〈c〉0
i,r

[
vr

(
1 − e−t/τ)] + 〈c〉0

i.t

[
vt + vr e−t/τ]

+ Isi

F

1

(Vr + Vt )

[
t + τ

(
1 − e−t/τ)] [A5b]

where vr and vt are the fractions of total electrolyte volume in the reactor and tank,
respectively: vr = Vr/(Vr + Vt ) and vt = Vt /(Vr + Vt ).

Appendix B: Model Verification and Validation

To verify the numerical implementation of the present theory we analyzed convergence
with mesh size, global mass conservation, and the stability of the obtained interstitial
velocity fields for flow over cylinder arrays. For flow over a circular cylinder array with
Pe = 105 and ε = 0.446, 〈Sh〉 approaches a fixed value with increasing number of
finite volumes simulated Ngrid with a variation of approximately 0.05% observed for
Ngrid ≥ 106 (Figure B1). To minimize computational effort Ngrid = 106 cells (103 in each
axial direction) was used for all square arrays for cases with Pe < 300. For higher Pe and
for rectangular arrays a finer mesh was used to ensure numerical stability. Three types of
cases were subsequently simulated for further verification: (i) horizontal flow (θ f = 0)
through a square array, (ii) horizontal flow (θ f = 0) through a rectangular array, and (iii)
inclined flow (0 ≤ θ f ≤ π/4) through a square array. The contour plots of streamlines and
iso-concentration lines of three representative cases with highest Pe and lowest porosity
were inspected for the appearance of sub-grid fluctuations (Figure B1). All the contour
lines obtained appear smooth, confirming the stability of simulated flow and concentration
fields. For each case studied, we calculated the total solution volume and individual redox-
active species mass residuals by integrating local residual values over the entire interstitial
fluid volume. For all cases studied the volume of solution was conserved within 10−15%
and the mass of redox-active species was conserved within 10−11%, which are respectively
normalized by the advected flow rates of solution volume and active species mass along
the mean flow direction.

Validation of the model was performed using analytical solutions for flow between
reacting parallel plates with constant surface concentration (Figure B1). To minimize en-
trance effects plate lengths were taken as one order of magnitude larger than the gap
between them (i.e., L/H = 10). To enable validation of the presently implemented model,
a 3% gap between plates was used. A case with Pe = 100 (based on inter-plate dis-
tance, Hd ) was numerically solved using the proposed model. The transverse velocity
distribution along a vertical line at x = 0 inside the duct (Figure B1) shows a maxi-
mum 0.001% deviation at y/Hd = 0, confirming that the theoretical velocity distribution
for Poiseuille flow is reproduced numerically. Further, the pressure difference along the
duct deviates from analytical theory by less than 1%. The interstitial concentration profile
(Figure B1) shows a maximum deviation from the analytical solution that is less than
0.5% at y = 0.

Figure B1. (a) Variation of 〈Sh〉 with number of finite volumes (Ngrid ) for θ f = 0, Pe = 105, and ε = 0.446. (b) Contour plot of stream function ψ (upper row)
and concentration c∗ (lower row) for: (left panel) horizontal flow through a square array (θ f = 0, Pe = 840, ε = 0.446), (middle panel) inclined flow through a
square array (θ f = π/4, Pe = 840, ε = 0.446), and (right panel) horizontal flow through a rectangular array (θ f = 0, Pe = 420, ε = 0.778) of circular cylinders.
(c) Geometry for flow through reacting parallel plates. Comparison of (d) velocity and (e) concentration profile along the y axis at x = 0 with analytical solutions.
u in sub-figure (d) is the mean velocity for the cross-section located at x = 0.
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List of Symbols

Bold case represents vector quantities and 〈〉 represents either a
volume- or area- averaged quantity.
a volumetric surface area of electrode, m2/m3

A area vector, m2

b characteristic pore dimension, m
bx, by minimum pore dimensions in x and y directions, m
c concentration, mol/m3

ch time-independent contribution to c, mol/m3

d diameter of solid cylinder, m
D Fickian diffusion coefficient, m2/s
e− electron
Ecell half-cell potential, V
F Faraday’s constant, C/mol
Fo Fourier number, (Dt/b2)
〈hm〉 mass transfer coefficient, m/s
H height of unit cell, m
Hd gap between parallel plates, m
I electric current, A
j diffusive flux vector, mol/m2s
L length of unit cell, m
Lr macroscopic length of reactor electrode, m
mj mobility of species j, m2/s-V
n normal unit vector
ne number of electrons transferred
N molar flux, mol/m2s
Ngrid number of finite volumes in entire unit cell
Pe Péclet number
r position vector, m
R gas constant, J/mol-K
R combination of lattice vectors, m
Re Reynolds number
s tangential direction
si coefficient of chemical stoichiometry of species i
〈Sh〉 overall Sherwood number
t time, s
t j transference number of species j
T absolute temperature, K
us superficial velocity vector, m/s
u� molar-volume averaged interstitial fluid velocity, m/s
v fraction of total electrolyte volume in an RFB component
V̄ partial molar volume, m3/mol
V volume, m3

V̇ volumetric flow rate of electrolyte, m3/s
z oxidation state

Greek

α tank-to-reactor volume ratio
� circulation, m2/s
δ inverse of mean residence time, 1/s
ε porosity of porous media
η overpotential at solid/solution interface, V
θ angular position variable, radians
λ strain rate, 1/s
σ temporal rate of cs variation, mol/m3-s
τ harmonic mean residence time for electrolyte flow, s
φ electric potential, V
ψ stream function, m2/s
ω vorticity, 1/s

Superscripts

0 initial/standard value
d diffusive quantity
m microscopic quantity
∗ non-dimensional quantity

Subscripts

d diffusive quantity
di f f diffusion limit
e electrolyte (liquid) phase
eq equilibrium quantity
f fluid quantity
i ith species
max maximum value
O oxidized species
r reactor/electrode quantity
R reduced species
s surface/solid-phase quantity
sat saturation limit
t tank quantity
‖ stream wise quantity
⊥ transverse quantity
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