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The origin of the appearance of the morphotropic phase boundary in the perovskite-type oxide solid solution systems and the
increase in the dielectric susceptibilities in the vicinity of the boundary is theoretically clarified on the basis of a Landau-type
free energy function. The dielectric susceptibilities are concretely expressed in terms of the model parameters, and found to
diverge at the morphotropic phase boundary within the present model.
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1. Introduction

Oxide ferroelectrics belonging to the BaTiO3 family of-
ten form complete solid solution systems. Some of them
show several different phases according to the change in con-
centration of the end members. The solid solution system
which will be discussed in the present paper is similar to the
PbZrO3–PbTiO3 system,1) which has a morphotropic phase
boundary in the temperature-composition phase diagram, that
is, the boundary between rhombohedral and tetragonal ferro-
electric phases. It is well known that the solid solution with
a composition lying in the vicinity of the morphotropic phase
boundary has large dielectric and piezoelectric constants.

The aim of the present paper is to show the origin of
such large physical quantities based on a simple Landau-
Devonshire theory. In §2 we present the free energy function,
and in §3 we derive the expressions of dielectric susceptibili-
ties. The discussion will be presented in the last section.

2. The Landau-Devonshire Free Energy2,3)

Oxide ferroelectrics commonly exhibit a first order tran-
sition from the paraelectric cubic phase to the ferroelectric
phases with lower symmetries. However, at temperatures
much lower than the transition temperature whether the tran-
sition is of the first order or the second order is not impor-
tant for a discussion of their physical properties. With this in
mind, and to clarify the essence of the morphotropic phase
transition in a simple way, we will write the free energy only
in terms of the polarization components (the primary order
parameters) truncated at the fourth order, as
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whereα is temperature-dependent, given asα = a(T − T0).
It has been clarified that forβ1 > β2 andβ1 + 2β2 > 0

the cubic-rhombohedral transition of the second order oc-
curs, while forβ2 > β1 > 0 the cubic-tetragonal transi-
tion of the second order also occurs.4) The phase diagram in
the α − β2/β1 plane is shown in Fig. 1, where the vertical
dotted line corresponds to the morphotropic phase boundary.
The transition between the rhombohedral and the tetragonal
phases must be of the first order due to symmetry reason.

Now, let us substitute in eq. (1)β1 = β2 = β, valid on
the morphotropic phase boundary, and then the free energy

3. Dielectric Constant

In this section let us derive the dielectric constants based on
the free energy eq. (1). By adopting a golden rule, we obtain
the Hessian, which in the present case is the 3× 3 matrix
composed of the second derivatives of the free energy by the
order parameters: f11 f12 f13

f21 f22 f23

f31 f32 f33


0

, (3)

where fi j = ∂2 f/∂pi ∂pj and the symbol 0 shown outside
of the matrix implies that the equilibrium values of the order
parameters have to be substituted.

Solving a set of simultaneous linear equations with coef-
ficients given by the above Hessian for given conditions, we
can obtain the dielectric constants in the rhombohedral and

becomes
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It should be remarked that on the morphotropic phase bound-
ary the free energy is isotropic, that is to say, the equal en-
ergy planes are the surfaces of spheres in a three-dimensional
space. Physically this implies that no energy barrier exists
between the rhombohedral and the tetragonal phases (the or-
thorhombic phase is now excluded from the consideration),
or that both phases are “soft” enough for the transition to the
other phase. As will be clarified in the next section, this fea-
ture is manifested as an increase in the dielectric constant.

Fig. 1. Theα−β2/β1 phase diagram. C, T and R indicate the cubic, tetrag-
onal and rhombohedral phases, respectively.
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Fig. 2. Theβ2/β1-dependences of the dielectric susceptibilities. The ordi-
nate shows|a|χ (but notχ itself).

phase boundary.

4. Discussions

In the present paper we have clarified the reason why the
morphotropic phase boundary appears in the phase diagram
of the oxide perovskite ferroelectric solid solution systems. It
is seen that either the rhombohedral phase or the tetragonal
phase is stabilized according to the relative dominance of the
two fourth order terms in the free energy function. The diver-
gence of the dielectric susceptibilities has the same origin as
the appearance of the morphotropic phase boundary, i.e., the
stability of one phase is lost at the boundary.

So far, however, we have only discussed the essence of the
phenomena with a very simplified free energy. Therefore, to
avoid misunderstandings due to the simplified explanations
and also to indicate the plan of future research based on a
more complete analysis, several comments are in order.

4.1 The composition dependence ofβ1 andβ2

The parametersβ1 andβ2 may depend on composition, and
therefore the morphotropic phase boundary must be the func-
tion of the composition. Huanet al. have reported on theoret-
ical work regarding the morphotropic boundary.5) However,
they related the boundary directly with the composition and,
as a result, it seems that they overlooked the relationship be-
tween model parameters,β1 andβ2, and the appearance of the
boundary. Needless to say, it is important to correlate quan-
titatively the values of model parameters,β1 andβ2, with the
composition.

4.2 The effect of the sixth-order terms in the polarization
components

When the free energy function is isotropic (see eq. (2)), we
cannot specify the phase of the system. For symmetry the
tetragonal-rhombohedral phase transition must be of the first
order, and therefore there must be some potential barrier be-
tween two phases. This barrier is due to higher order terms. In
reality, an actual ferroelectric system is not free from the con-
tribution of the sixth-order terms in polarization components,
which is written as
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the tetragonal phases. For the tetragonal phase, the ferroelec-
tric axis is taken as thec-axis (indicated as 3), and the dielec-
tric susceptibilities are obtained as

χ11 = χ22 = β1

(β1− β2)α
,

χ33 = −1

2α
. (4)

It is easily seen that on the morphotropic phase boundary
specified withβ1 = β2 the transversal dielectric susceptibili-
tiesχ11 andχ22 diverge at all temperatures.

On the other hand, for the rhombohedral phase the Hessian
becomes  A B B

B A B
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where

A = α + (3β1+ 2β2)r
2,

B = 2β2r
2, (6)

with
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Then, we have to rotate the crystal axes to take the orthogonal
crystal coordinate system conventional for the rhombohedral
phase as
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where the ferroelectric axis is taken as the newc-axis (c′
above). For this new coordinate system, we obtain the di-
electric susceptibilities as

χ11 = χ22 = − β1+ 2β2

α(β1− β2)
,

χ33 = − 1

2α
. (9)

It should be noted that in this case, too, the transversal dielec-
tric susceptibilities diverge on the morphotropic phase bound-
ary at all temperatures.

The dielectric susceptibilities in each phase are shown in
Fig. 2 as the functions ofβ2/β1.

In actual ceramics, an averaging process may be required
to estimate the values of the dielectric susceptibilities of prac-
tical importance, because there are various grain orientations.
There are several methods for obtaining the average, but here
we only take the weighted mean, as

χ = 1

3
(χ33+ 2χ11). (10)

This is also shown with dotted lines in Fig. 2. It is seen
thatχ diverges at all temperatures on the morphotropic phase
boundary and obeys a rule similar to the Curie-Weiss law as
the function ofβ2/β1. This is the origin of an increase in
the dielectric susceptibility in the vicinity of the morphotropic
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This is usually anisotropic, giving rise to the potential barrier
mentioned above, unless the relation

γ1 = γ2 = γ3

2
(12)

is satisfied. In general, the sixth-order terms make the
morphotropic phase boundary deviate from the vertical (see
Fig. 1), even if it is plotted as a function ofβ2/β1.

The sixth-order terms have another effect. Namely, the
divergence of the dielectric susceptibilities is suppressed,
though they should become quite large at the morphotropic
phase boundary as long as the boundary lies in the vicinity of
the lineβ2/β1 = 1.

4.3 The cases of the first order transition from the paraelec-
tric cubic phase

This is the case whereβ1 andβ2 lie in the regionsβ1 < 0
and/or β1 + 2β2 < 0. It should be noted that the isotropy of
the free energy function is not directly related to the sign ofβ1

and/or β2, because the isotropy is just due toβ1 = β2. How-
ever, in this case the sixth-order terms are indispensable to
stabilize the tetragonal and the orthorhobic phases, and there-
fore they may have a stronger effect on the suppression of the

divergence of the dielectric susceptibilities.

4.4 Piezoelectric constants
To discuss the increase in the piezoelectric constant, we

have to write the free energy function in terms of strain com-
ponents as well as polarization components, as has been done
earlier.6)

As has been clarified so far, the appearance of the mor-
photropic phase boundary and the increase of the dielectric
susceptibilities are the result of the relative balance of the
contribution to the free energy from two fourth order terms.
This can be used as one of the general guiding principles in
the search for materials with large dielectric susceptibilities.
Theoretical analyses along this line are now in progress.
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