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Ultrasonic Atomic Force Microscope with Overtone Excitation of Cantilever
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We propose a novel atomic force microscope (AFM) combined with ultrasonic frequency vibration of a cantilever
excited at its support. This method enables both topography and elasticity imaging of stiff samples such as metals
and ceramics, without a need for bonding a transducer to the sample. When the sample surface is contacted with
a tip attached to the cantilever, the cantilever vibration mode is changed according to the sample properties. It is
theoretically predicted that the amplitude and resonant frequency of vibration at higher-order modes are useful
parameters for elasticity evaluation of stiff samples. A preliminary experimental verification of this principle is
presented using a glass-fiber-reinforced plastic sample. Clear elastic contrast was successfully obtained using a
soft cantilever only when it was vibrated at MHz frequency higher-order modes.
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1. Introduction

The detection of ultrasonic frequency vibration in
atomic force microscopy (AFM)" has been proposed and
demonstrated, in which a sample is vibrated at frequen-
cies much higher than the first resonant frequency of the
cantilever.>®) These ultrasonic methods are attractive
in material characterization because they can be used to
evaluate the elasticity of stiff samples and to detect sub-
surface defects,*® which are not possible by the force
curves!® and force modulation mode'™'® using a soft
cantilever. Although the force modulation mode using a
very stiff cantilever (> 1000 N/m) can be used to evalu-
ate a stiff sample such as fiber-reinforced plastics,'® such
a stiff cantilever is usually not acceptable in the contact
mode since it easily damages a soft sample.

However, the reported ultrasonic methods face seri-
ous problems in their application to large, heavy or ir-
regularly shaped samples, because such samples cannot
be sufficiently or uniformly vibrated by a usual ultra-
sonic vibrator. It is also difficult to apply the ultrasonic
methods to samples in an ultraclean environment, be-
cause they are easily contaminated by bonding agents
for the vibrator. Since such samples are very important
for application in microelectronics, micromachines and
biology, we propose an alternative method that solves
the above problems by avoiding bonding of a transducer
to the sample, while maintaining the advantages of ultra-
sonic vibration.”® In the proposed method, the sample
can simply be placed on a sample stage of AFM, without
the need for any bonding. In this paper, we present the-
oretical considerations and a preliminary experimental
verification using a glass-fiber-reinforced plastic sample.

2. Principle

The principle of the proposed method is illustrated in
Fig. 1. Figure 1(a) shows a cantilever vibration mode
in AFM at low frequencies. Since the cantilever is soft,
stiff samples such as metals, inorganic materials and ce-
ramics do not deform and hence the stiffness of the sam-
ple cannot be evaluated. In Fig. 1(b) we propose an
ultrasonic AFM, where higher-order mode vibration is
excited on the cantilever by applying a vibrating force
to its support. In this case the sample is deformed ac-

cording to its stiffness. At the same time, parameters of
the cantilever vibration, such as the resonant frequencies
of higher-order modes, as well as the vibration amplitude
at resonant frequencies, vary depending on the stiffness
of the sample (these points are detailed in §3). Conse-
quently, the stiffness of the sample can be evaluated by
monitoring the cantilever vibration.

Figure 2 shows an implementation developed using a
contact-mode AFM. In addition to usual functions of
AFM,?V a high-frequency vibrator attached to the sup-
port of a cantilever is driven in the high-frequency range
of 0.1 to 10 MHz. Resultant vibration of the cantilever
is detected by a photodiode and processed by a lock-
in amplifier. We employ two detection schemes, defined
as linear and nonlinear schemes.?®) In the linear detec-
tion scheme, the high-frequency signal is measured by
the lock-in amplifier. Here, analysis of the measurement
result is fairly simple because a linear model can be used,
as shown in §3. However, a high-frequency photodiode
and electronics of at least up to 1 Mz are required.

In the nonlinear detection scheme, the high-frequency
signal is amplitude-modulated by a low-frequency gener-
ator around 1 to 10kHz. Instead of the high-frequency
signal, the low-frequency signal is employed as the ref-
erence of the lock-in amplifier. The advantage of this
scheme is that we can use commercial AFM, since we
do not directly measure the high-frequency signal out of
the electronic bandwidth of commercial AFM (DC ~ less

Cantilever A Cantilever d
Sample Sample
(a) (b)
Fig. 1. Principle of the ultrasonic AFM enabling elastic imaging

of large samples. (a) Vibration mode in AFM (Below the fun-
damental resonance) Sample does not deform and thus the elas-
ticity cannot be evaluated, (b) Ultrasonic AFM (Higher-order
mode vibration). Effective stiffness of cantilever is enhanced to
deform the sample. Thus sample elasticity can be evaluated.
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than 200kHz). Moreover, the use of the low-frequency
signal is favorable for achieving a high signal to noise
(S/N) ratio. However, the analysis is not so simple be-
cause the nonlinear tip-sample contact force must be con-
sidered to account for the generation of low-frequency
vibration of the cantilever.

Since this method directly vibrates the cantilever, it
is similar to the noncontact mode*¥ and the tapping
mode; however, the use of higher-order modes is unique
to our method. Also, in contrast to the tapping mode,
we can use very low amplitude vibration (< 0.1nm) so
that we can easily control the contact force to a very
low level (< 0.1nN). Finally, it is emphasized that there
is no problem in the inspection of large samples (e.g.,
VLSI wafers) and irregularly shaped samples (e.g., tur-
bine blades and magnetic recording heads), since trans-
ducer bonding to the sample is not required.

3.

3.1 Resonant frequency

In this section we show the advantages of employing
higher-order modes. First, we show that the resonant
frequency of higher-order modes is a useful parameter
for stiffness evaluation of samples. For this purpose we
calculated the resonant frequency of a cantilever by using
an analytical model. The equation of two-dimensional
(2D) deflection vibration of a cantilever in the z-z plane
is given as

Analysis of Cantilever Vibration

8%z N Eh* 8%z (1)
atz " 12p Ozt
where E is Young’s modulus, p is density and h is thick-

ness of the cantilever.'® The origin and z and z coordi-
nates are taken as shown in Fig. 2. A-solution of eq. (1)
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Implementation of the principle with linear and nonlinear detection schemes.

can be assumed to take the form of

z = Csin(wt + §)P(x) (2)

with
&(x) = (sina + sinh ) (

a o
cos —x — cosh —z

L L)

L« "
+ (cosa + cosh @) (sm 7T sinh Ez) , (3)

where w is the angular frequency, L is the length of can-
12pw? L*

tilever and
o= (—Eh—) : 4

The parameter « is determined from boundary condi-
tions.*® ') With solutions (2) and (3), the boundary con-
dition for fixed cantilever at z = 0, i.e., #(0) = 0 and
d®(0)/dz = 0, is always satisfied. If we further assume
that the cantilever is supported at z = L by a linear
spring with stiffness s, the boundary condition is

F(L) = sz(L),

where F OM/8x is the force and M
(Ewh®/12)(8%z/82z?) is the bending moment'® where w
is the width of the cantilever. From egs. (2) and (5) we
obtain

(5)

k 8*®

30z° (©)
where k = FEw/4(h/L)? is the stiffness (spring constant)
of the cantilever. Substituting eq. (3) into eq. (6), we
obtain the frequency equation

;; o’ P(a)

(L) = s&(L),

Q(e), (7)
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where P(a) and Q(«a) are defined as
P(a) =1+ cosacosha,
Q(a) = cos asinh & — sin acosh a. (8)

Once eq. (7) is solved for a, the resonant frequency is
obtained using eq. (4). For a very stiff sample (s > k),
eq. (7) approaches Q(a) = 0, which is the frequency
equation of a supported cantilever, derived from the
boundary condition $(L) = 0 and $"(L) = 0. Alterna-
tively, for a very soft sample (s < k), eq. (7) approaches
P(c) = 0, which is the frequency equation of a free can-
tilever derived from the boundary conditions @"(L) = 0
and P¥(E) =0.25.18)

Equation (7) was numerically solved, assuming a typ-
ical silicon nitride cantilever with F = 144 GPa, p =
3.15 x 10*kg/m®, h = 0.8 um and L = 200 um. The res-
onant frequencies of the first (n = 1) through the fifth
(n = 5) modes are plotted in Fig. 3 as a function of the
stiffness ratio v defined as k/s in the range of 10~° and
102,

It is noted that the resonant frequency decreases as «y
increases only in a limited range. The most important
finding is that this range differs among different modes.
For example, the resonant frequency of the first mode
(n = 1) remains constant at a value similar value to
that of a supported cantilever in the range of «y less than
1072, The resonant frequency of the first mode shows
substantial decrease in the range of 1072 to 10°, following
the decrease in stiffness of the sample, and then reaches
an almost constant value of a free cantilever in the range
above 10°. On the other hand, the resonant frequency
of the fourth mode (n = 4) remains almost constant in
the range less than 10~*, shows substantial decrease in
the range of 107* to 1072, and then reaches an almost
constant value above 1072,

Consequently, the resonant frequency of the first mode
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Fig. 3.
stiffness of sample.

Relationship between cantilever resonant frequency and
The stiffness of sample is normalized by
cantilever stiffness k.
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is useful for characterizing soft samples (y = 1072 to
10°), whereas those of the higher-order modes are suit-
able for stiff samples (v = 107* to 1072). Therefore we
want to stress that complementary use of higher-order
modes in addition to lower-order modes enables, for the
first time, stiffness evaluation of a wide range of materi-
als from, for example, ceramics to organic molecules.

3.2 Deformation of sample

Next, we show that a stiff sample can be deformed
even when a soft cantilever is vibrated at higher-order
modes, although the sample is not deformed at lower-
order modes. Since the stiffness of the sample can be
evaluated by measuring the cantilever vibration when
the sample is deformed, this point is important for es-
tablishing the principle of our method.

For this purpose the vibration mode of the can-
tilever was analyzed using three-dimensional (3D) finite-
element analysis method (FEM).'” We assumed that the
width of the cantilever w is 20 um, Poissons ratio is 0.248,
and other parameters are identical with those for the 2D
cantilever described in §3.1, which resulted in the can-
tilever stiffness k of 0.045 N/m. The boundary condition
was also that one end was fixed and the other end was
supported by a spring representing the tip-sample con-
tact stiffness. The spring was simulated by a rectangular

Fix T

n=3

n=4

n=5

Fig. 4. First- and higher-order vibration modes of a cantilever
fixed at one end (right side) and supported by a spring (left
side). The spring is simulated by a rectangular column of elastic
material whose top surface is fixed.
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column (4 x 4 x 2.8 um) of elastic material located on the
upper face of the left edge of the cantilever, as shown at
the top of Fig. 4. Deformation of this rectangular column
represents the deformation of the sample induced by the
tip. The Young’s modulus of 12.5 MPa, Poisson’s ratio
of 0.248 and density of 3.15 x 10 kg/m’ were assumed
for this column, which resulted in the tip-sample contact
stiffness s of 53.3N/m. For this cantilever and contact
stiffness, the stiffness ratio v is 8.4 x 107*, satisfying the
condition of a soft cantilever, s > k.

As a result of eigenvalue analysis, vibration modes of
n = 1 to 5 are illustrated in Fig. 4, where n represents the
order of the vibration mode. It is clearly seen that the
rectangular column representing stiffness of the sample
negligibly deforms in modes of n = 1 and 2. Conse-
quently, a small variation in the sample stiffness would
not bring a significant difference in the cantilever vibra-
tion amplitude. On the other hand, the sample is signifi-
cantly compressed in the mode of n = 4, and is stretched
in the mode of n = 5. In this situation, a small variation
in the sample stiffness is expected to change the mag-
nitude of sample deformation. At the same time, this
variation changes the cantilever vibration amplitude, and
this change, in turn, can be detected by the laser probe.

In other words, a cantilever softer than the tip-sample
contact stiffness is effectively stiffened in the higher-order
mode, and can be used to evaluate the sample elastic
property. The reason for this stiffening may be explained
by the inertia of the cantilever/tip as well as the forma-
tion of a node along the cantilever axis. The distance
between the tip and the closest node is much less than
the original cantilever length, resulting in effective short-
ening of the cantilever.

4. TImages of Fiber Composite

In this section we show the advantages of the ultra-
sonic AFM by applying it to a glass-fiber-reinforced plas-
tic (PEEK; polyether ether ketone) sample. We assume
that the effective elasticity £~ (determined from Young’s
modulus and Poisson’s ratio) of the glass and PEEK is
50 GPa and 5 GPa, respectively, and that the contact ra-
dius A is 10nm for both. Then the contact stiffness s,
evaluated as 25~ A,'® is 1000 N/m and 100 N/m, respec-
tively. This sample was imaged using a cantilever with
stiffness k of 0.045 N/m identical to those described in
§3 for 3D FEM calculation. The stiffness ratio - is then
4.5 x 107% and 4.5 x 10~* for the glass and PEEK, re-
spectively. '

The cantilever support was vibrated using a PZT bi-
morph transducer in the frequency range between 1kllz
and 2 MHz. In the linear detection scheme, the first res-
onant frequency of the free cantilever was observed at
22.2kHz and the second at 133.7kHz. When the tip
contacted either the PEEK resin or the glass fiber at
a contact force of 1nN, the first resonant frequency in-
creased to 96.9 kHz. Clearly the two materials could not
be distinguished on the basis of the first resonant fre-
quency. These measured frequencies are plotted in Fig. 3
against the stiffness ratio, and agree with the calculated
frequency curves for n = 1 and n = 2. The resonant
frequency of higher-order modes was above 200kHz and
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Fig. 5. Observed signals. Top trace: amplitude-modulated
high-frequency signal for driving the ultrasonic vibrator attached
to the cantilever support, Middle trace: Cantilever deflection sig-
nal, Bottom trace: Cantilever torsion signal.

could not be detected in the present electronic band-
width, and hence detailed verification of the resonant
frequency characteristics predicted in Fig. 3 is left for
future study.

We applied the nonlinear detection scheme at fre-
quencies above 200kHz in the present work. We vi-
brated the cantilever support using a high-frequency sig-
nal at 1.01 MHz, the fourth resonant frequency of the
cantilever, whose amplitude was modulated by a low-
frequency signal at 6kIlz as shown by the top trace in
Fig. 5. Then the cantilever deflection vibration at the
modulation frequency was observed as shown by the mid-
dle trace in Fig. 5. The down-going signal represents the
upward deflection of the cantilever. The upper half of
the waveform shows a plateau rather than a sine wave.
This plateau indicates that the nonlinear response is very
small when the vibration amplitude is less than a certain
threshold, as described in previous communications.®®

The cantilever torsion vibration was also slightly ex-
cited as a result of crosstalk from deflection, as shown by
the bottom trace of Fig. 5, although this crosstalk is neg-
ligible compared to the deflection. This is an important
characteristic for precise measurement of elasticity, since
the existence of the crosstalk indicates that the direction
of the tip sample contact force is not perfectly aligned
along the z direction.

Figure 6(a) shows a topography image of a 20 x 20 um
area, with the maximum height difference of 1316 nm.
Although a glass fiber of about 5 um diameter partially
buried in the PEEK matrix was clearly identified, ma-
terial diserimination between the glass and PEEK was
not possible. However, clear contrast was obtained in
the ultrasonic image between the components, as shown
in Fig. 6(b). Figure 7 is a magnified view of Fig. 6 in-
cluding a boundary region between glass and PEEK. It
was found that the upper right side of the glass fiber is
covered with a 10 to 20-nm-thick layer of some mate-
rial, from careful examination of the topography image
in Fig. 7(a). Correspondingly, the ultrasonic image in
Fig. 7(b) of the layered area shows brightness between
brightnesses on the glass fiber and on the PEEK. This
observation suggests that the layer consists of the PEEK,
adhered to the glass fiber, probably showing a good affin-
ity between the glass fiber and the PEEK. Thus it is ex-
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Fig. 6.
pography, (b) Ultrasonic image by nonlinear detection.
frequency: 1.01 MHz, Amplitude modulation: 6 kHz

Images of a glass-fiber-reinforced plastic (PEEK). (a) To-
High

(a) (b)

Fig. 7. Magnified view of Fig. 6 including the boundary region of
glass and plastic. (a) Topography, (b) Ultrasonic image by non-
linear detection. High frequency: 1.01 MHz, Amplitude modu-
lation: 6 kHz

pected that the ultrasonic AFM can evaluate the stiffness
of a thin layer on the order of a few tens of nanometers.

Finally we make a brief comparison with the conven-
tional low-frequency force modulation image of the iden-
tical area taken at a modulation frequency of 6kHz, as
shown in Fig. 8. Figure 8(a) is obtained by vibrating
the cantilever, whereas Fig. 8(b) is obtained by vibrat-
ing the sample. In contrast to the ultrasonic images, it
is difficult to distinguish the glass from the PEEK, since
the brightness change in the two areas is very small, as
expected from the analysis described in §3. Another in-
teresting point is that two scratches were observed at an
abrupt height variation near the boundary between glass
fiber and PEEK, which were not observed in the ultra-
sonic images. Another advantage of the ultrasonic AFM
is that it is relatively free from such scratches, though at
present we do not know the reason for it.

5. Conclusions

We proposed and verified a novel AFM that can dis-
criminate elasticity of stiff samples. The advantage of the
present method over the previous AFM using ultrasonic
vibration is that bonding a transducer to the sample is
not needed, and limitations of the size and shape of the
sample are eliminated. Problems due to contamination
by bonding agents are also avoided. It was shown for the

K. YAMANAKA and S. NAKANO 3791

(a) (b)

Fig. 8. Force modulation images at 6kHz. (a) Cantilever vibra-
tion method, (b) Sample vibration method.

first time that the higher-order modes play a complemen-
tary role to the lower-order modes in the evaluation of
a wide range of materials. As an example of possible
application of this unique feature, the elasticity of the
interfacial area of biological macromolecules and the mi-
crostructure of ceramic implants could be investigated.
Although the elasticity of macromolecules and ceramics
differ by orders of magnitude, it is possible to evaluate
both by complementary use of lower- and higher- order
mode vibrations (see Fig. 3). Such a measurement could
provide important information on the affinity of an im-
plant material to biological tissues.

Although the present experiment was mostly restricted
to the nonlinear detection scheme, linear detection will
be fully realized either by using a cantilever of lower
resonant frequency or by improving the high-frequency
bandwidth of the detection electronics. Furthermore, an-
other nonlinear detection scheme by frequency mixing is
also worth investigating, in which a vibration is applied
to the sample with a frequency slightly different from
that of the cantilever support and the cantilever vibra-
tion is detected with a frequency equal to the difference
between the frequencies of the sample and the cantilever
support. Advantages of this scheme are that the vibra-
tion amplitude can be kept constant, and that the phase
measurement is easier than in the amplitude modulation
method.
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