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Granular matter is a typical example of a new topic in statistical (phenomenology) mechanics. Reconsidering
granular matter from the physical point of view, several new aspects have been clarified, although granular matter
has been studied by engineers for a long (period of) time. This review examines three topics: (1) pattern dynamics
of sand ripples and dunes, (2) mathematical structure of a fluidized bed, and (3) convection and turbulence in a
vibrating bed. Investigating these topics, it is found that the dynamics of granular matter exhibits many typical
nonlinear phenomena, for example, formations of pattern, localized states, and turbulence.
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1. Introduction

Granular matter is the general name that refers to sets
of fine particles. How fine are they? This depends upon
the situation. In volcanic activity, a kind of avalanche
can sometimes occur. This avalanche is a mixture of
rocks, ash and hot air. Under such circumstances, even
large rocks can be regarded as ’fine’ particles compared
with the size of the whole avalanche. On the other hand,
cigarette smoke can be regarded as a mixture of air and
very ‘fine’ particles whose diameter is about 100 A. Thus,
we can consider many objects to be granular matter.
(Even the galaxy can be treated as a set of ‘fine’ particles,
i.e., stars!)

In this review, however, we consider only particles
whose diameter ranges from 1 yum to 1 cm. Each par-
ticle itself is a macroscopic body from the conventional
point of view. We can compute motion of an individual
particle by standard classical mechanics. In contrast, we
know very little about how a set of fine particles behaves.

Sand is a typical example of granular matter which
we consider in this article. Imagine you are on a sand
beach. When we try to grasp sand, it flows out through
our fingers. A castle constructed by a little boy on the
beach easily vanishes once a wave comes along. Beside
the castle, we may find sand ripples (that wind and waves
produce) on the beach. In contrast to these images,
sand sometimes threatens our lives, e.g. when we are
in a desert. A large dune can cover whole towns, or a
deadly sand storm can kill off many life forms. How can
we describe such a wide range of phenomena? At the
moment we have no answer.

Granular matter has been studied in many fields such
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as chemical engineering, mechanical engineering, physics
of earthquakes, and civil engineering. Granular matter
can be a form of industrial materials, a method for trans-
porting material, and the foundation of a construction.
In spite of such a wide range of applications, due to lack
of our knowledge, we frequently have difficulty in making
use of granular matter.

The aim of engineers is to reproduce phenomena or to
control phenomena, while our aim is to construct a sta-
tistical or fluid mechanics of the cooperative dynamics
of powder. We also aim to determine the mathemati-
cal structure behind various kinds of powder behavior.
Although these aims are not directly related to engineer-
ing questions, we hope they can be the first step toward
understanding of the fundamental properties of granular
matter which is needed by engineers.!)

In this review we will collect some typical examples
of the dynamics of granular matter. We have neither
enough space nor the ability to review general aspects of
granular matter. The most drastic phenomenon related
to granular matter is probably fluidization. This review
examines three examples of fluidization, which all have
different mechanisms. Fluidization can be seen in a wide
range of phenomena, as shown later. Fluidization can
also be the first step to understanding the dynamics of
powder because we can compare fluidized granular mat-
ter with normal fluid, which also has a wide range of
applications in engineering.

In §2, the dynamics of dunes and ripples are considered
as the first example. Section 3 explains nonlinear waves
and related topics in fluidized granular matter. Con-
vection and turbulent flow in a vibrating bed of powder
are considered in §4. Conclusions and summary will be
found in §5.

2. Dynamics of Dunes and Ripples

On a windy day, a person who visits a sand beach
would find a clear stripe pattern which consists of the
undulation of the sand surface (Fig. 1(a)). Ripples on
the sand surface emerge and disappear, depending on
the strength of the wind, and generate various spatio-
temporal patterns. The spatial scale of a ripple is on
the order of 10 cm, and the temporal scale of its birth



398 Jpn. J. Appl. Phys. Vol. 34 (1995) Pt. 1, No. 2A

and death is about a few hours. A ripple is a dissipative
structure which the external force, wind, produces on
the surface of the sand and it also can be thought of as
a surface wave of granular matter.

On the other hand, although we rarely have a chance
to see one, a dune is another example of a dissipative
structure on the sand surface (Fig. 1(b)). The wave-
length of a dune is typically on the order of 10 m to
several hundred meters. The shape and the dynamics of
dunes have much more variety than those of ripples. For
example, a barchan dune is a kind of isolated dune which
has the shape of a crescent. It moves in the leeward di-
rection with its shape and size maintained as in a soliton
and damages roads, buildings and gardens in its path of
motion. Starfish shaped dunes known as stardunes are
generated in deserts when the wind direction temporally
varies. They can reach up to a kilometer in horizon-
tal size and up to several hundred meters in height and
move very slowly. The temporal scale of dune formation
is from one year to tens of thousands of years. Thus,
in spite of simple appearance of the elementary dynam-
ical process of sand, the cooperative dynamics of sand
presents us with various patterns of dunes, depending
upon wind strength, grain size, grain mass, and grain
nonuniformity. The variety of the dynamics of dunes
and ripples is no less rich than that observed in thermal

convection or liquid crystal convection.?)

Fig. 1. (a) Ripple pattern. (Photographed by HN, at Gulf Moro,
west coast, USA) Length of shoes is 25.5 cm. (b) Baruchan dune
at California, USA (From Pye and Tsoar?)). The straight line
from upper right corner is a road.
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How can we deal with the variety that dunes and rip-
ples show? In order to describe its complexity, is it
necessary for us to know all the detailed information of
the system, e.g., local velocity field and boundary con-
ditions, as is required for solving problems in fluid me-
chanics? Can we use a phenomenological equation as is
frequently the case in statistical physics? Can we under-
stand the essence of the system without treating seriously
the discreteness of the system? So far great efforts have
been made to explain the formation dynamics of dunes
and ripples. Among them the most outstanding is the
comprehensive research carried out by Bagnold based on
extensive observations and experiments.?) However, his
argument concerning the pattern formation process of
ripples and dunes is rather qualitative. Kawamura took
an analytical approach?® to explaining the ripple forma-
tion, using a stability analysis. Recently some simula-
tions have been performed to reproduce the ripple and
dune formation.>®) Among them, the simulations made
by Anderson et al. using the cellular automata rule show
some good agreement with experimental facts. Our ap-
proach shown below is the simplest one which connects
the previous theoretical approaches and more recent nu-
merical method.?>1?) Its main purpose is to quantita-
tively clarify the the ripple and dune pattern formation
scenario.

Before going into the details of our model the basic
dynamics of wind-blown sand will be introduced. Bag-
nold® categorized the dynamics of the sand surface into
three types (1) creep: sand particle moves with rolling,
(2) saltation: sand particle jumps out from the surface
for some reason and falls back onto the surface down-
wind, (3) suspension: strong wind makes sand fly over
a long period. Among the above, (3) is ignorable when
we consider dunes and ripples because the spatial scale
of the motion of a suspension is too large. Here, (1) and
(2) constitute the main processes in producing dunes and
ripples. When wind exceeds the critical velocity, creep
starts. Particles creep, collide with obstacles, and are
launched (i.e., saltation). A sand particle to which wind
has given additional moment along the wind direction
during saltation will, when it lands on the sand surface,
hit other particles and eject them (or itself) into the air.
Meanwhile, sand grains continue to move along the sur-
face by the creep process. Thus the chain process of both
saltation and creep generates ripples and dunes.

Next let us model the dynamics of the system. One
of the conventional ways, in which the system is treated
as a multiphase flow, requires us to construct a set of
equations of conserved variables. However, with this
approach, not only analytical calculation, but also nu-
merical simulation is considered to be difficult. This is
because the system has a rapidly changing boundary con-
dition, the dynamics of which is decided by the dynamics
of the system.

For such a case, for simplicity, we ignore the detailed
information of the system, such as the turbulent nature
of the wind near the surface, and begin by constructing
the simplest phenomenological model. At the same time,
we include the discrete nature of the dynamics, that is,
we realize the dynamics where neighboring particles may
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separate from each other after a saltation step. Actual
modeling is based on a two-dimensional coupled map lat-
tice (CML) model.>'?) In the CML model each lattice
point represents a large area compared with individual
particles. The state variable at each lattice point, the
deviation of the surface height from the whole spatial
average, is the local average in the territory of each lat-
tice point.

First we assume that flight distance L during a salta-
tion step depends upon one of two physical variables:

I) the deviation of surface height from the spatial av-
erage hy,(z,vy), or,

II) the spatial derivative of it Vh,(z,y),

where (z,y) is the take-off position and n is the time
step. I) is the case of ripple formation and II) is the
dune formation case. For both cases L is independent of
the topography of the landing point, so that the model
is regarded as a kind of mean field approximation. The
two forms of L, (x,y) used are:

model I (ripple formation): Ly (z,y) = Lo + bhn(z,y),
model IT (dune formation):

L,(z,y) = Lo — V' (tanh(V h,(z,y)) + 1 + ).

Here the control parameter, Lg, is the average dis-
tance of flight, which is a monotonic increasing function
of wind strength. b and &’ are constants and 1> ¢ > 0.
In model I, flight distance increases as the height of the
take-off point increases. In model II, flight distance de-
pends upon whether the take-off point is on the wind-
ward side of the dune or not. This is because the scale
of the dune is much larger than that of saltation; when
the starting point is on the windward side of the dune,
the particle collides with the slope on the same side, in-
dependent of the height of the take-off position.” On the
other hand, for the particles on the lee side, the probabil-
ity of take-off is small because the wind force is weak and
the probability of being ejected by other jumping grains

Fig. 2. Ripple patterns reproduced by model I. The brightness
is proportional to height.
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are also small. Thus effective flight length is shorter
than that in the case of the windward grains. Model
I assumes that the flight distance is compatible with the
characteristic length of the geometry (i.e., ripple wave-
length), and model IT assumes that the flight distance is
smaller than the geometrical scale. To model the creep,
anisotropy caused by the wind is ignored and only the
effect of gravity is taken into account. In other words the
creep is replaced by the simple diffusion process. These
are all our models. Here saltation and creep are the only
elementary dynamical processes introduced.

Starting from the initial conditions of an almost flat
surface with small roughness, the system evolves with
alternating saltation and creep steps. This extremely
simplified model can reproduce various phenomena. Fig-
ure 2 shows ripples reproduced by model I, and the pat-

_tern generated by model II is shown in Fig. 3 (for details,

see refs. 11 and 12). For both figures, the wind direction
is from left to right. The darkness of the gray indicates
height. In Fig. 2, dislocations seen in the stripes of the
ripples move in several ways, for example drift and os-
cillation. Moreover, the whole structure drifts along the
wind direction, i.e., from left to right. The stripe pattern
can be observed only when Ly exceeds threshold value
L. when the diffusion constant of creep takes a constant
value. This means that wind has to be strong enough for
the appearance of the ripple pattern.

On the other hand, in Fig. 3, we can observe dunes
shaped similar to baruchan. Dunes move along the wind
direction, retaining these shapes. Many other patterns
can be observed in model IT by changing the parameters.
Moreover, we'l:12) performed linear stability analysis of
models I and II, and found answers to the two funda-
mental questions:

1) mechanism of appearance of ripples: why ripples
appear only when the wind blows strongly enough.

2) variety of dune shapes: why a simple elementary
process can results in many kinds of shapes.

Fig. 3. Baruchan dune reproduced by model II. The darkness is
proportional to height.
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Linear stability analysis, however, can explain only
small parts of the rich variety of spatiotemporal patterns.
The most interesting phenomena are sure to be beyond
simple linear stability analysis.

Among interesting problems beyond linear stability
analysis, solitary motion of barchan dunes and motion
of dislocations in ripples are important. These can be
treated using the weakly nonlinear analysis explained in
the next section. Other than this method, considering
a mapping of z, 11 = zp, + L(hn(z,9), Vhn(z,y)) that
represents particle motion due to saltation, we notice
that the mapping induces folding of the sand surface be-
cause the mapping z, — z,1 changes as a function of
time. The folding results in violent mixture which seems
to be incompatible with coherent structures like ripples
and dunes. It is interesting to study the relationship be-
tween the coherent structure of the whole system and
the chaotic dynamics of each element.

When we further take discreteness of the particles
into account (see §4), we can recognize its importance.
The discreteness allows surface particles to move inde-
pendently of the particles under the surface. Saltation
can easily cause neighboring particles to separate from
each other. Thus individual surface particles move closer
or far them away from one another from time to time.
In contrast to the surface particles, the particles in the
lower layers retain their positions and behave like solids.
This is because particles in the lower layer are trapped
in many local minimum points caused by static friction.
However, one should remember that a particle in the
lower layer can move freely once it has eventually reached
the surface.

If we try to explain the behavior of the system simply
by using the fluid dynamical description, we will not suc-
ceed, nor we can explain the coherent motion of numer-
ous sand grains only by using the particle description.

Hopefully, we can find a new method to describe these
complicated systems.

3. Mathematical Structure of Fluidized Bed

In this section, we briefly summarize recent develop-
ments in the understanding of fluidization of granular
particles mainly from the theoretical side. The most
attractive aspect of fluidization is flow-induced phase
change in which the collection of particles, a kind of solid
material without flow, changes its properties completely
to a kind of mixture consisting of flow and particles due
to an imposed flow. We can regard patterns in sand rip-
ples and dunes as a problem of surface waves in solid-gas
mixtures as in the previous section. On the other hand,
the bulk flow in a mixture'® of solid-gas also exhibits a
fascinating behavior.!% %) In experiments, we prepare a
vessel containing granular particles and impose gas flow
from the bottom of it. In this simple experiment, the fol-
lowing phase changes take place. First, we observe uni-
formly fluidized bed, a uniform and homogeneous state
of the solid-gas mixture, when the imposed velocity of
gas is fairly low. Second, bubbles appear (see Fig. 4)
after the uniformly fluidized bed becomes unstable when
the imposed velocity exceeds a critical value. As the im-
posed velocity increases, bubbles become as large as the

H. HAYAKAWA et al.

Fig. 4. Bubbles in an experiment on a fluidized bed. The diam-
eter of bubbles is a few centimeters. The depth and the width
of the container are 1 cm and 20 cm, respectively. The height of
granular collection is about 50 cm without flow, the mean diam-
eter of particles is about 100 pm, the injected speed of gas is a
few cm/s. (This photograph is from Profs. Mori and Yamazaki,
Nagoya Univ.).

width of the vessel (slugging), and moreover the phase
changes to a turbulent state. Finally we obtain a suspen-
sion state in which the concentration of granular particles
is small. In dilute suspensions, the distribution of parti-
cles is, again, uniform and homogeneous. We can note a
similarity between bubbling in this problem and the boil-
ing of water, and a similarity between nonuniform sus-
pension in this system and combustion processes.!617)
The collection of granular particles, however, does not
have any equilibrium state and the above phase changes
are typical features of nonequibrium dynamics of phase
transitions in open systems.

We note that the problem of fluidized beds has an
essentially different feature when we compare it with
other problems such as the convections of water and
liquid crystals. This means, horizontal motions of con-
vection roll arrays are investigated in the convections of
water and liquid crystals, on the other hand, vertical mo-
tions of bubbles are considered in the fluidized bed. Of
course, as will be shown, the problem of fluidized bed
can also be reduced to a horizontal problem in some spe-
cial cases. However, interesting features in fluidization
can be understood in the space including the vertical co-
ordinate. Therefore, many theorists have analyzed one-
dimensional models to capture the essence of fluidization.
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Bubbling obtained from the three-dimensional simulation by Ichiki and Hayakawa.l®) The fluid is air (its shear

viscosity is p = 1.7 x 10~ poisse and the mass density is py=11x 10~3 g/cm?), and the particle is assumed to be a
hard-core particle which are constrained in two-dimensional space (the density p, = 2.5 g/cm?, the radius a = 103
cm) affected by the gravitational force (the gravitational acceleration is g = 9.8x10% cm/s?). We assume the periodic
boundary condition for all directions. The injected gas speed is 0.3Ug where Uy = 2a2(p, — pf)g/(9p) ~ 3.28 cm/s
is the equilibrium falling velocity of one particle. The time interval between these configurations is 5.0 x 10~ s.

How do we describe fluidization mathematically? At
present, we do not have any definite answer to this im-
portant question. We shall introduce some typical ap-
proaches to this problem and summarize characteristics
of them. These approaches start from various space-time
scales, microscopic models and macroscopic phenomeno-
logical models. We note that a microscopic approach is
not always superior to a macroscopic approach.

At the most microscopic level, we need to solve the mo-
tion of granular particles, taking into account the effects
of the fluid field at each numerical step. This moving
boundary problem is difficult to solve using a computer
and successful in limited cases. Ichiki and Hayakawa'®)
have introduced a dynamical model in which flow is as-
sumed to be described by the Stokes flow. This model is
regarded as an extension of the Stokesian dynamics for
colloid particles.?®) The Stokes approximation for fluid
is valid when we discuss fairly small particles (its radius
is on the order of 10~3 cm).ls) From their simulation,
they have reproduced bubbling (Fig. 5) and slugging
(Fig. 6) as observed in experiments. We observe that
convection 1s necessary to produce bubbles in which par-
ticles move upward through the center of bubbles. On
the other hand, convection does not occur in slugs in
which particles sedimentate. Their simulation also sug-
gests the importance of the boundary condition in pro-
ducing bubbles. Although we observe realistic bubbles
when we introduce fixed particles at the bottom of the
container, we do not observe any stable convection, nor
as a result, any stable bubbles when we impose the pe-
riodic boundary condition. It is clear that this problem
is closely related to the sedimentation problem, which is

Fig. 6. Slugging obtained from the three-dimensional simulation
by Ichiki and Hayakawa.l?) The data for fluid and particles are
the same as those in Fig. 5. We assume the periodic boundary
condition for all directions. The volume fraction of particles is
about 0.35. The time interval between these configurations is
2.0x 1072 s.
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a fundamental many-body problem interacting through
long-range hydrodynamic force.21"2%) Another interest-
ing discovery resulting from their simulation is the uni-
versality of the concept of powder turbulence proposed
by Taguchi,?® originally for vibrating beds. See ref. 19
for the details of their analysis.

A modern and popular approach is the simulation by
the distinct element method (DEM).2628) The DEM is
also a powerful tool to describe vibrating beds, as in the
next section. In this approach, the particles are replaced
by a mechanical model which consists of springs, dash-
pots and sliders, and their magnitudes are determined
by empirical methods. In their simulation, fluid motion
and the mutual friction between fluid and particles obey
a phenomenological model. They have succeeded in sim-
ulating hundreds of thousands of particles and reproduc-
ing realistic motion of particles. It is, however, difficult
to understand the physical structure of powder turbu-
lence, such as the onset of turbulence and the physical
insight of fluidization, from the simulation based on the
DEM method.

Conventionally, we often use a two-fluid model,'* 15
the fluid of granular material and the real fluid, to de-
scribe compound systems of granular particles and fluids.
This model has an advantage in elucidating the macro-
scopic pattern formation by using bifurcation analysis
and stability analysis of hydrodynamics. On the other
hand, it is not easy to decide which model is suitable for
this problem, the role of granular particles is not clear
in this model, and the model itself contains some empir-
ical parameters. We may partially resolve an important
question concerning the ambiguity of relevant models for
a fluidized bed since Batchelor?® have ascertained what
the relevant terms are. We recognize that a suitable two-
fluid model for slow motion relative to its sound velocity
should consist of two parts. One is mass conservation
and another is the momentum conservation. Of course,
we can assume the incompressibility of fluids. In the
equations of momentum conservation, important terms
are the mutual friction, the effective pressure for each
phase and viscous terms in particle phase except for the
gravitational effects. We may neglect the viscous effects
from real fluid and assume that the fluid is Newtonian.
We also note that this two-fluid model actually corre-
sponds to the DEM model?6-28) in which the solid phase
pressure and the viscous terms in the two-fluid model
correspond to the elastic collision due to springs and the
inelastic collision from dashpots and sliders in DEM. The
direct simulation of this kind of two-fluid models can also
produce realistic motion of granular flow!'® 3%) (see Fig.
739) supplemented with empirical laws.

It is easy to discuss the linear stability of a uniformly
fluidized bed. The equation for the two-fluid model has a
trivial solution in which the velocity of the particle phase
is zero, the velocity of fluid phase is constant in the ver-
tical component, and the volume fraction of particles is
uniform and constant. When we linearize the two-fluid
model around this trivial solution, the growth rate of
the plane wave becomes positive when the destabilized
effects from the mutual friction exceed the stabilized ef-
fects from the elastic collision among particles. Thus a

H. HAYAKAWA et al.

Fig. 7. Bubbling obtained from two-dimensional simulation
based on a two-fluid model by Komatsu.39) The arrows repre-
sent the velocity field of granular particles. The dense region of
granular particles is dark-shaded in this figure.

uniformly fluidized bed becomes unstable, resulting in
the appearance of the negative diffusion constant in the
vertical direction. This unstable mode propagates from
the bottom to the top of the container with the increase
of its amplitude.

We need nonlinear analysis to understand interesting
behaviors of two-phase flow. In general, the nonlinear
analysis is complicated and difficult. It is possible, how-
ever, to capture the universal feature of the fluidization
when we restrict ourselves to weakly nonlinear regions.
In fact, several authors®-3%) have demonstrated that the
soliton described by the Korteweg-de Vries (KdV) equa-~
tion plays an important role, at least in one-dimensional
models, near the onset of the instability of the uniformly
fluidized bed. This picture has been confirmed from the
fact that the reduced equation can reproduce the nu-
merical solutions of two-field model quantitatively.31-3%)
A direct simulation of the two-fluid model shows the for-
mation of pseudosolitons which are similar to the solitons
of the KdV equation (see Fig. 8). Note that pseudosoli-
tons of this kind do not describe strong phase separation
between the granular phase and the fluid phase. Even
in one-dimensional models, at present, we do not know
how solitons change to phase-separated states.

In contrast to the one-dimensional case, we do not have
any consensus in weakly nonlinear analysis in a multidi-
mensional case. In this review, we describe a recent the-
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The spatiotemporal pattern obtained from the one-dimensional two-fluid model. This figure is plotted in the
frame of the propagating velocity of fluctuation obtained from the linear stability analysis. We impose the periodic
boundary condition in space. The initial condition is the sinusoidal wave whose period is the same as the space
size. As in the KdV equation, the wave is steepened by the nonlinear term, and the wave is separated into solitons
by the dispersive effects. The “mountain part” represents the region in which the gas volume fraction is large.

ory by Hayakawa.3%) Hayakawa derived a scalar equation  tant in the bubbly phase. In addition, Komatsu®®) has
in the weakly nonlinear region in multidimensional cases  demonstrated that there is no correlation between vol-
which reduces to the one-dimensional KdV equation at  ume fraction and the solid-phase velocity in the bubbly
the lowest order and contains the small contribution from  phase in contrast to the result of the weakly nonlinear
the dissipation in the vertical direction, the horizontal  analysis, where a strong correlation between them exists.
diffusion, and the nonlocal term in the horizontal coor-  This may suggest that we need an alternative approach
dinate. Using this reduced equation, when we discuss the  to understanding bubbling in fluidized beds.
linear stability of one soliton in the vertical space, we ob- In this section, we have summarized the present state
tain a simple horizontal amplitude equation. However, of understanding of fluidized beds while introducing the
the scalar equation is not sufficient for discussing the  work carried out by the present authors. Therefore, we
bubble formation, because this equation is irrotational. note that this review is far from being a complete and
The appearance of the amplitude equation in the hor-  fair summary of the present state of the investigation of
izontal plane is analogous to that in the Rayleigh Beard  fluidization. We merely hope that the readers will now
problem.?”) In the latter case, the sine wave in the verti-  understand how fascinating fluidization is. At the end

cal direction is important in the linear stability of the  of this section we stress the following. One of the most
uniform state. The amplitude equation in horizontal

space can be derived from the direct perturbation with
the solvability condition. As is well known, analysis of
this kind of amplitude equation is a hot subject in the
physics of pattern formation.®”) In our case, solitons play
an essential role in the vicinity of the critical point of uni-
formly fluidized beds. Therefore, we expect that essential
progress in this problem will be made by comparing it
with convection problem.

This kind of weakly nonlinear approach, of course, has
a severe limitation. As mentioned above, our simula-
tion!®3%) have suggested that the convection is impor-

remarkable characteristics in fluidization is the coexis-
tence of various space-time scales in fluidized beds. We
have introduced the most microscopic approach by Ichiki
and Hayakawa,!®) DEM approach, two-fluid model, psu-
dosoliton equation, and the amplitude equation in a
weakly nonlinear region, where the space-time scales are
coarsened according to the order of the approaches. At
present, there are some missing links between different
scales. In particular, an important problem is that of
connecting the microscopic model and two-fluid model.
In addition, the bubbling and slugging cannot be under-
stood by weakly nonlinear analysis at present. There-
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fore we need some conceptual changes to understand this
problem.

4. Convection and Turbulence in the Vibrating Bed of
Powder

In this section, we consider, pure granular systems
which consist of only granular particles. Problems we
dealt with in previous two sections correspond to difficult
ones in fluid mechanics, i.e., instability of surface and in-
stability of multiphase flow. Both of these problems have
been investigated and are recent topics in fluid mechan-
ics. Thus, it is natural that surface and multiphase flow
in granular matter are difficult to analyze because granu-
lar matter does not have any established basic equation.
Can we expect that the pure granular system, which con-
sists of only granular particles, is easier than the former
two examples? The answer is ‘No’. Contrary to our
expectation, the problem of the pure granular system
is even more difficult. The above two cases have phe-
nomenological descriptions although one of them is nu-
merical and the other is analytical. In contrast to them,
the pure granular system has no phenomenological de-
scription except in some special cases. The only possible
method that has been applied to the pure granular sys-
tem is a molecular dynamics method. In spite of: such
limitations on the approach for the pure granular system,
we can obtain many interesting results using molecular
dynamics calculation.

In this review, we study the dynamics of granular mat-
ter. It is easy to imagine the meaning of the term ‘dy-
namics’ in fluid mechanics because fluid usually has mo-
mentum and flows. (e.g., the complicated flow pattern
of cigarette smoke).

Granular matter like salt and sand, however, usually
does not move without external forces. In §2 and §3, the
gas flow coexists with the powder and causes granular
flow. For a pure granular system, we need other meth-
ods to induce granular flow, e.g., gravitational force and
shear force. In this section, we employ only vibrational
force to produce a collection of fluidized powders because
a vibrating bed of powder is easily treated both numeri-
cally and experimentally.

Figure 9 shows a schematic of an experiment with a vi-
brating bed of powder. A vessel of horizontal size about
10 cm x 10 cm and depth of a few centimeters is filled
with granular matter, typically glass beads whose diam-
eter is less than 1 mm. A speaker shakes the vessel ver-
tically. Such a simple setup can exhibit many interesting
features as seen below.?* 1) The experiment for a vibrat-
ing bed is so simple that Faraday had already studied it
more than one hundred and sixty years ago*') and found
a dynamical phase transition in which the bed is fluidized
as the strength of the vibration increases. In modern ex-
periments with a vibrating bed, the control parameter
turns out to be an acceleration amplitude I', which is,
e.g., I' = bwi when vertical vibration has the time de-
pendence bcoswyt. When I' exceeds the gravity acceler-
ation g, convection starts in the bed (Fig. 10). Convec-
tion usually consists of two convecti on cells, and it flows
downwards along the side wall and upwards in the cen-
ter. Furthermore, the upward flow results in heaping on
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Fig. 9. Schematics of experiment on vibrating bed of powder.

(a) (b)

Fig. 10. Convection due to vibration. (MRI, provided by Prof.
H. M. Jaeger). (a) Initial stage (b) Later stage. Downward flow
along the side wall can be seen.

the surface of the bed. Thus the simple vertical vibration
causes convection and heaping. Faraday carried out an
experiment in three dimensions, but recent experiments
can be carried out in two dimensions.*?)

Although this phenomenon has been known since long
ago, it is impossible to study theoretically due to lack
of an appropriate mathematical model. Recent experi-
ments, however, have attracted the attention of physi-
cists, and some of them have succeeded in reproducing
convection with soft-core potential molecular dynamics
study.*®44) This scheme has been named the ‘distinct
element method’ (DEM, see also §3) by powder engi-
neers. Recently convection has been reproduced us-
ing hard-core molecular dynamics*®> %) and hard-core
Monte-Carlo simulation.*”)

From the numerical point of view, convection is easily
reproducible. For example, using DEM, the number of
particles necessary to reproduce convection is about one
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hundred. Since the collision of hard spheres is known to
be a chaotic process, we can expect that the convection
is caused by cooperative dynamics of a simple chaotic
process. This situation is similar to the ripple and dune
model, where coherent structure appears due to collab-
oration of chaotic microscopic elements (see §2). There
may be some universal framework which can explain the
dynamics of granular matter.

In spite of the ease of reproduction, the physics of con-
vection has not yet been clarified. For example, we do
not have any clear explanation of the physical origin of
the convection. As mentioned, the instability starts only
when I exceeds g. At that time, the motion of powder
can be essentially a free fall, and the vessel loses con-
tact with the granular particle. This will be an origin of
instability. However, we cannot explain why instability
causes convection. It is clear that the friction between
side wall and particle is an important cause of convec-
tion. When the friction between wall and particles is less
than the friction among particles, DEM produces inverse
convection: i.e., upwards along the wall and downwards
in the center. This behavior is also observed in hard-
core molecular dynamics simulation.*®) Without the side
walls, convection disappears in DEM.*®) In experiments,
no convection occurs in a horizontally periodic cell.?4%)

This situation differs from thermal convection in nor-
mal fluid, where the driving force is buoyancy. Although
we call the motion in a vibrating bed a convection, the
similarity between powder convection and fluid convec-
tion is limited to their appearance. In the vibrating bed
of powder, convection is caused by internal horizontal
stress. Horizontal flow induced by the horizontal stress
must go upwards somewhere because the horizontal size
of the cell is finite. When the internal friction among
particles is less than the friction between wall and par-
ticles, the horizontal flow goes upwards at the center.
Otherwise, the horizontal flow goes upwards along the
side wall. In the thermal convection of fluid, buoyancy
induces the convection, and the existence of the side wall
is not essential. Actually, it is unclear how many prop-
erties the vibrating bed of powder shares with the fluid.
In particular, in the vibrating bed without side wall we
found turbulence?® 30-52) similar to that observed in flu-
idized beds.

Figure 11 shows how fluidization proceeds as I in-
creases. When I slightly exceeds the critical value I,
the fluidized phase appears near the surface. A solid
region still remains under the fluidized region. As I" in-
creases, the depth of the fluidized region increases, and
finally the whole bed is fluidized. In this fluidized region,
we observe convection if there are side walls. Without
side walls, the fluidized region resembles turbulence.

In order to compare the fluidized vibrating beds with
the fluid turbulence, we first review some of the char-
acteristics of the fluid turbulence. First, we consider
sheared turbulence and convection turbulence. Sheared
turbulence is generated by external shear force. Experi-
mentally, we observe it when fluid passes through obsta-
cles like grids, plates, cylinders, and spheres. Examples
in nature include the tides and wind. From the statis-
tical point of view, two important characteristics of the
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Fig. 11. Process of fluidization.
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Fig. 12. Power spectrum for fluid region. Lower curve is for lower

layer, and upper curve is for layer near surface. Straight line
indicates k—3/3 dependence.

sheared turbulence are:

(1) Spatial energy spectrum depends upon wave num-
ber k as k~%/3 (Kolmogorov law®?)).

(2) Spatial derivatives of velocity have a probability
distribution function (PDF) which deviates from Gaus-
sian.

Next let us consider convective turbulence which can
be observed in thermal convection when the temperature
difference between the hot heat bath and cool heat bath
is large enough. PDFs of both velocity and temperature
are Gaussian for a relatively small temperature differ-
ence even after turbulence occurs, but they deviate from
Gaussian when the temperature difference increases fur-
ther.?*) This is called the soft-to-hard turbulence transi-
tion.

We observe similar behavior in the fluid phase in the
vibrating bed of powder mentioned above. First, the
spatial power spectrum of displacement vectors exhibits
k—53/3.25) As shown in Fig. 12 the power spectrum flat-
tens for the larger wave number region. This flattening
of the Kolmogorov spectrum near the surface is also ob-
served in the fluid.?%)

One might think that observing the Kolmogorov spec-
trum in granular matter is strange since granular matter
is not fluid. Kolmogorov, however, did not explicitly use
properties of fluid to derive his theory. We have already
confirmed that granular matter satisfies the basic re-
quirement assumed by Kolmogorov.?® This Kolmogorov
scaling was also observed by Ichiki and Hayakawa'?) in
a fluidized bed.

Furthermore, it is rather surprising that the E—5/3
spectrum can appear in a solid phase where the parti-
cles do not flow. Figure 13 shows the powder spectrum
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layer, and upper curve is for layer near surface. Straight line
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for the solid region. No qualitative changes are observed.
Thus, we can conclude that Kolmogorov theory is more
universal than previously believed and is valid for a sys-
tem without flow.

If both the solid region and fluid region have the
same power spectrum, what is the difference between
the solid and the fluid region? A difference appears in
PDFs.52:%6) Solid phase and fluid phase have different
PDFs of displacement vectors: Gaussian in solid phase
and non-Gaussian (power distribution) in fluid phase.
This is coincident with the soft-to-hard turbulence tran-
sition observed in thermal convection turbulence when
we increase Rayleigh number. That is, solid region cor-
responds to soft turbulence and the fluid region corre-
sponds to the hard turbulence. Figure 14(a) shows the
PDF in the fluid region. It is a power distribution. Fig-
ure 14(b) shows the PDF when solid and fluid regions
coexist. The from of the PDF is independent of whether
a solid region exists below the fluid region. Deviation of
PDF the from Gaussian has been observed recently ex-
perimentally.®”) In a vibrating bed with very high I', the
velocity distribution differs from Gaussian. These results
suggest that granular matter in a fluidized vibrating bed
behaves like fluid, but does not obey the Navier-Stokes
equation at all.

In addition to the above progress in numerical treat-
ment, magnetic resonance imaging (MRI) technology has
recently been applied to vibrating beds of powder.5859)
Most difficulty in experimentation comes from the fact
that we cannot observe the inside of a three dimensional
bed. When we employ a two-dimensional setup, we can
observe granular flow, but the effect of the front and rear
plate may not be ignored. MRI allows us to see the in-
side of a three-dimensional bed dynamically. Jaeger®®)
succeeded in observing convection in vibrating bed in a
three-dimensional setup, and confirmed that convection
inside resembles outside. Development along this direc-
tion can be expected.

In concluding this section, we can say that even a pure
granular system exhibits complicated features. When
vibrating, a granular bed shows several nontrivial phe-
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Fig. 14. (a) PDF of displacement vector (time averaged velocity)
in fluid region. Solid line indicates power distribution. (b) PDF
in coexistence phase (solid and fluid region). + represents fluid
region and < represents solid region.

nomena such as convection and turbulence. In order to
understand the basic mechanism of a pure granular sys-
tem, numerical results should be compared with experi-
ments in detail, although their comparison has remained
at qualitative levels. Quantitative comparison will make
clear the basic mechanism of a vibrating bed of powder.

Another direction of development is to construct a
phenomenological treatment similar to those for fluidized
bed and sand dune/ripple. For this purpose, we have to
understand the connection between microscopic chaotic
elements and macroscopic coherent structure.

5. Summary and Conclusion

In this article, we have reviewed three topics of flu-
idization of granular matter: dynamics of sand ripples
and dunes, mathematical structure of a fluidized bed,
and convection and turbulence in a vibrating bed. Al-
though we have no universal framework for dealing with
all of them, we find some common aspects among them
in spite of apparent differences.

First, from the phenomenological point of view, statis-
tical mechanical methods in the weakly nonlinear region
seem to be valid for both dynamics of dune/ripple and
fluidized bed. In particular, we are of the impression
that a solitary localized mode is important for the weak
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nonlinear region of granular matter. This is a new field
of physics because a conventional system of fluid has its
basis in the sinusoidal spatial pattern in the weak non-
linear region.

Second, turbulent nature universally appears in both
a fluidized bed and vibrating bed. In both cases, we find
two typical turbulent properties: Kolmogorov spectrum
and non-Gaussian PDFs. These findings facilitate not
only understanding of granular matter but also that of
fluid turbulence.

Third, we can conclude in general that an essential
aspect of the dynamics of granular matter is the cooper-
ative dynamics of microscopic chaotic elements. In the
sand dune/ripple problem, the chaotic element is the
lattice point of the map, and individual particles are
chaotic elements in both the fluidized bed and vibrating
bed. Since our understanding of cooperative dynamics of
chaotic elements is still at the point of developing topics
in statistical physics, we are far from fully understanding
the dynamics of powder.

Thus, at the moment, we cannot say that we can make
a contribution to powder engineering. However, we have
been stimulated by the work of powder engineers, and
look forward to meeting the readers on some occasions.
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