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Electron-Lattice Interaction in Nonmetallic Materials:
Configuration Coordinate Diagram and Lattice Relaxation™
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Electron-lattice interactions in nonmetallic materials are reexamined in the many-electron scheme. The differ-
ence in the stable atomic configuration between two electronic states is the origin of the electron-lattice interac-
tion. We show the relationship among the adiabatic potentials, one electron (hole) energy and the lattice elastic
energy, paying attention to the electron-hole symmetry. Correct configuration coordinate diagrams for deep-level
defects in semiconductors are presented which can be used even when the number of carriers changes due to crea-
tion and recombination. Radiative and nonradiative carrier capture and recombination processes at deep-level
defects are described consistently with particular attention to the charge of a defect, the thermal and the optical
depths of a bound carrier, the correlation between successive electron and hole captures, and the energy dissipa-

tion to the lattice through the interaction mode.
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1. Introduction

In condensed matter, a crystalline structure is real-
ized when the electrons and the atoms are in the
ground state — the absolute minimum of the total
energy. If we optically excite valence electrons in non-
metallic materials, the balance of interatomic forces
mediated by electrons is disturbed and the configura-
tion of atoms is then rearranged. This phenomenon,
called photoinduced lattice relaxation, is a kind of
photostructural change and manifests itself in various
ways in nonmetallic solids.'™ Some examples are the
lattice relaxation by a localized excitation of an impu-
rity center,” the photostructural changes of organic
and amorphous®” semiconductors, and the F-H defect
pair creation by a self-trapped exciton in alkali
halides.® During the lattice relaxation a part of the elec-
tronic energy is transformed into the kinetic energy of
the atoms.

It has long been considered that such strong elec-
tron-lattice interaction is realized only in ionic materi-
als, but is almost absent in covalent semiconductors.
Recent experimental studies have shown that this is
not true. If the electronic excitation is spatially local-
ized due to a point defect, impurity, or due to self-trap-
ping as the secondary process, and if the change of the
electronic charge distribution is sufficiently large, then
the surrounding atoms are affected by the induced
force and are displaced significantly, as has been found
in some deep-level defects in covalent semiconduc-
tors."®% The electronic excitation thus induces atomic
displacements, and sometimes results in metastability
of the atomic configurations, photostructural changes,
defect reactions, and so on. The strong electron-lattice
interaction is now one of the most attractive topics in
the physics of nonmetallic materials.?

When we discuss various electronic and atomic proc-
esses in condensed matter, it is convenient to introduce

*This is a revised, updated and translated version of the original
paper which appeared in Oyo Buturi 57 (1988) 1877 [in Japanese].

electron-lattice interaction, configuration coordinate diagram, deep level, lattice relaxation, multiphonon

the configuration coordinate diagram (CCD), in which
the adiabatic potential of the system is presented as a
function of the atomic configuration. The CCD was
first introduced for localized electron systems, where
the adiabatic potential is given by the sum of the elec-
tronic energy and the lattice potential energy.® Recent-
ly the CCD has also been used for deep-level defects
(impurity) in semiconductors, and succeeded in explain-
ing, for example, a large Stokes shift in the optical spec-
tra, the difference between the thermal and the optical
depths of a trapped carrier, the metastability and the
photostructural change. A deep-level defect in semicon-
ductors can capture and emit electrons and holes. The
adiabatic potentials at such defects, however, cannot
be given by a sum of carrier energy and the lattice
potential energy, because the carrier number is not con-
served due to recombination. In 1982 the author
presented a consistent way of describing the deep-level
defects in terms of CCD.? Unfortunately, the correct
CCD has scarcely been used in the literature. An incor-
rect CCD leads to misunderstanding of the phenomen-
on and impedes developments in semiconductor
physics.

The purpose of the present review is to show the true
meanings of the electron-lattice interaction and the
configuration coordinate diagram in nonmetallic materi-
als. In §2 the electron-lattice interaction in condensed
matter is reconsidered in the many-electron scheme,
which helps us to understand the true meanings of the
CCD. In §3 we discuss the lattice relaxation process
after an electronic transition and the energy dissipation
into the atomic energy in terms of the interaction
mode. Section 4 is devoted to the presentation of the
correct configuration coordinate diagrams for deep-
level defects which can be consistently used even when
the number of carriers changes. The dynamics of non-
radiative multiphonon recombinations is discussed
with particular attention to the charge of a defect, the
thermal and the optical depths of a bound carrier and
the correlation between successive electron and hole
captures.
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2. Electron-Lattice Interaction

When we discuss electronic and atomic properties of
condensed matter we usually start with one of the fol-
lowing three schemes depending on the typical energy
of the phenomenon.

(A) all electrons+all nuclei,

(B) all valence electrons+all ions,

(C) several electrons and holes +lattice.

Scheme (C), which is essentially the one-electron
scheme, 1is popular in semiconductor physics.
However, we start here with a more basic scheme (B),
which we call the many-electron scheme in this paper,
to clarify the electron-lattice interaction used in
scheme (C), and to find the correct CCD that can consis-
tently describe the processes with carrier number
change.

In condensed matter valence electrons (~10%) and
ions (~10%) interact with each other. Let us consider a
system which consists of n electrons (i=1, 2,---, n)
and N ions (j=1, 2,---, N). The latter include impu-
rity atoms if any. The Hamiltonian of the system is
formally written as

H=H.(ry, rs,* ")+ Valri, r2,- -+, R1, Ra," ")
+Hi(R1, Rs, -+ ), (2.1)
where
2
Hi(ry, 72, )=3 5 AVl e, (2.18)
Hi(R1, Ry, )= 2—+ Vi(R1, Ry,-+-).  (2.1b)

]

Here 7; and p; are, respectively, the position and the
momentum of the i-th electron with mass m. E;and P;
are those of the j-th ion with mass M;. The set of these
variables will be abbreviated to {r}=(ri, rs, -+, ra),
{R}=(Ri, R,, -+, Ry) and so on. The terms V., Vg
and Vi denote, respectively, the interactions of elec-
tron-electron, electron-ion and ion-ion. We will not go
into the details of their explicit forms. Hereafter we
call ions ‘“‘atoms’’, which will not cause any confusion.

Because M; is much larger than m, the adiabatic ap-
proximation can be applied to separate the electronic
motion and the atomic motion. First, we fix the atomic
configuration {R} and solve the Schrodinger equation
of the electrons formally as

[H({r )+ Val{r}, {(RDIF & ({r})
=E({R}NE, m{r}).

Here ¥, (z)({r}) is the I-th eigenstate with the energy
E;({R}) for the fixed atomic configuration {R}. The
adiabatic potential U,({R}) for the I-th electronic state
is given by

URN)=E({R}N+Vi({R}), - (2.3)

which is schematically shown in Fig. 1. The adiabatic
potentials are numbered by [ in the order of increasing
energy. It should be noted that within the same (I-th)
branch of the adiabatic potential the electronic wave
function W;,{R}({r b changes continuously with the

(2.2)
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Fig. 1. A schematic illustration of adiabatic potentials for nonmetal-
lic condensed matter. Note that the abscissa {R} is considered to
be 3N dimensional.

atomic configuration {R} changes.

Let us focus on the minimum points of the adiabatic
potentials. They are different for different electronic
states (1) because the stable configurations are deter-
mined through the interaction between electrons and
atoms. Suppose that electrons are in the ground state
and the atomic configuration is the minimum {R}; of
the ground state. If we optically excite the electrons
from the ground state to an excited state, the configura-
tion {R}; does mnot change during the transition
(Franck-Condon principle). In the excited state,
however, the configuration {R}g becomes unstable and
the atoms will move to a new minimum position {R}e
where Un({R}) takes a minimum value. This differ-
ence in the equilibrium configuration between two elec-
tronic states is the origin of the electron-lattice interac-
tion in condensed matter. Its strength can be estimated
by the following quantities:

(a) the atomic displacement

{R}ex_ {R}g,
(b) the lattice relaxation energy

Uex({R}g)——Uex({R}ex) or Ug({R_}ex)_Ug({R}g)y
(2.4Db)

(2.4a)

(c) the derivative of the adiabatic potential, i.e.,
the generalized force

( 0 Uex> ( U, )
- or
OR; |1z, OR; )&,

In some cases these three quantities are related to each
other in a simple way as will be shown in §3. In general,
however, the configuration {R}., and the wave func-
tion Ve (m)_({r}) of the relaxed excited state can be
predicted only with extremely complicated ab initio cal-
culation. The generalized force depends on the excited
state (I). In the next section we will first define the
strength of the electron-lattice interaction in a way
which does not depend on [ as is usually done, and then
apply it to the individual excited state.

(2.4¢)

2.1 Perfect crystal
2.1.1 Ground state

For a macroscopic and electrically neutral system,
the atomic configuration {R}, of the ground state has a
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translational symmetry and forms a crystal structure.
Because of the kinetic energy, atoms can vibrate
around equilibrium positions, B_f]-. As long as the dis-
placements AR;=R,—R; remain small enough, one can
use the harmonic approximation for U,({R}). The quad-
ratic form can be diagonalized by transforming {AR;}
into the normal modes {Q.) of the lattice vibrations,
as follows.

AR Y] Quo exp (ik-R;), (2.5)
k,o

U,({AR;})= Ug({czk,g}>=const.(=o>+-;— 5] wheQk,

(2.6)

Wy | 10y )= 3 (Phot oo Qi) =By, (2.7
Here, k represents the wave vector, ¢ the branch index
and wy the angular frequency. The normal modes are
classified into the acoustic modes (0 =ac) and the opti-
cal modes (0 =op). Thus, in the ground state, the inter-
action between n valence electrons and N ions results
in the lattice vibrations Hy,. There is no electron-lattice
interaction in the ground state which is our reference
state; in fact, the quantities (2.4.a)—(2.4.c) vanish if the
suffix (ex) is replaced by (g).
2.1.2  Polaron

Before we discuss the excited states of a perfect
crystal, it is informative to look at a polaron which is an
electron (or a hole) in the conduction (valence) band
accompanied by lattice distortion it induces. 10 This is a
typical and familiar example of the electron-lattice
interaction in condensed matter. However, it is not a
problem of the excited states of n electrons but a prob-
lem of the ground state of n+1 (n—1) electrons. If an
electron is added to (removed from) a crystal, the sta-
ble atomic configuration {R}2™ ({R}27) of the ground
state of this n+1 (n—1) electron system differs from
{R}? of n electrons. This difference is the origin of the
electron-lattice interaction in a polaron system.
Although our attention is directed to the n+1 electron
system (Wya({r)} and {R}?™) we implicitly refer to
the configuration {R}? of the n electron system, in
which the lattice vibrations are defined. Let us denote
7. as the position of an extra electron and approximate
the electronic states as

U= | m () | WE my . (2.8)

Instead of the one-electron eigenstate ¢; (z3(r.), we usu-
ally employ a localized Wannier state ¢z, (re)=
a(re—Rj), which is obtained as a linear combination of
the Bloch states of the conduction band. The effective
Hamiltonian of a polaron in this subspace is given by

HeL:he+VeL+HL>
p? 1 W
he=3 %, Hi=7 3 (PL.tuwl.QLo).
k,o

3 (2.9)

Here m¥ is the effective mass of a conduction electron.
The form of the electron-lattice interaction V. with
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respect to the normal mode Q) can be obtained by the
method of eq. (2.4.c). Replacing the discrete variable
[=R, by the continuous variable r., we obtain the defor-
mation-potential-type interaction for the acoustic
modes Qkac, and the Frohlich-type interaction for the
optical modes Q.o in ionic materials.')

VeL - Z Ai,UQ]E,U exXp (lk 'Te)a
k,o

9 1/2
AR ae= ( ——) Egk,

NM,

2mwie? [ 1 1)1/2
Afp=|———=]| k7L 2.10
fiop [ 1% (500 & (2.10)

Here E§is the deformation potential of the conduction
band, w,, the optical phonon frequency, €, and €~ are
the static and high-frequency dielectric constants.

What is the minimum point {R};*" of the atomic
configuration for a polaron? The polaron problem has
been intensively studied for many years.“’) It has been
shown that polarons are classified into two types: large
(radius) polarons accompanied by few phonons and
small (radius) polarons with large lattice distortion
(self-trapped electrons).>*1%1? The type is qualitative-
ly determined by three parameters: the electron kinetic
energy B, the lattice relaxation energy for the optical
modes, E Tk, and that for the acoustic modes, E iz, for
an electron completely localized at a lattice site. If
ER+EIR<B, it becomes a large polaron, while for
ER+EIx=B, it becomes a small polaron. The transi-
tion between large polaron and small polaron is shown
to depend strongly on the force range related with the
k-dependence of the interaction coefficients A%, (eq.
(2.10)) and on the dimensionality of the system.!?¥
2.1.3 Ezxcited state

Let us return to the n electron system. The first elec-
tronic excited state of nonmetallic solids is a pair of an
electron in the conduction band and a hole in the va-
lence band. Sometimes they are bound to form an exci-
ton. The sudden appearance of an electron-hole pair
causes the imbalance of the interatomic force, and
displaces atoms to the new equilibrium position {R}ex.
The difference between the minimum positions
{R}ex—{R}, can be attributed to the appearance of an
electron-hole pair. If we approximate this one-pair ex-
cited state as

[0 3> = d(re, T)D 1 T2 (R,

where r. and r, are, respectively, the position of an elec-
tron in the conduction band and a hole in the valence
band, the effective Hamiltonian in the subspace of one-
pair excitation is formed as

(2.11)

Har=hetha+ Vo + Vo + Vi +Hy, (2.12)
2 2
De Ph
he: 5 hy= 5
2m¥ M omF
62
Va=—7—"—""7, (2.12a)
47Tew |Te— 11l
1
Hi=7 > (Pl twisQko), (2.12b)

2 k,o
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Va=— Z Ai,ﬂQk,a exp (ik ’Te)7
k,o
VL= — 2 A} Qo €XP (ik-ry).
k,o

(Ai,op - ‘lé,op)

This is nothing but scheme (C) shown in §2.1, where
the system is composed of an electron, a hole and the
lattice vibrations (phonons). The interaction of alln—1
electrons in the valence band is incorporated into the
lattice potential energy ((1/2) Sk. wioQ%,).

(2.12¢)

2.2 Localized centers

If the translational symmetry of a crystal is broken
by a defect (impurity, vacancy,: - ), electronic states
can be spatially localized around the defect.
2.2.1 Trapping of a conduction electron

Let us discuss trapping and detrapping processes of
a conduction electron by a point-defect in semiconduc-
tors. This is an n+1 electron problem. An extra elec-
tron occupies a localized state at the defect or a free
state in the conduction band. If trapping and detrap-
ping of an electron have little effect on the rest of the n
electrons in the valence band, we can introduce the
effective Hamiltonian for an extra electron (r.) and the
lattice; .

HeLzhe+ VeL+HL- (213)

The Schrodinger equation for one electron state
é1.(ry(7e) at the configuration {R} is given by

[Re(re, pe) + Ver(re, {R D)1 a3 (re) =ei({R})1,ir3(re),

2

ha(re, pe) =t Vau(r), (2.14)
21,
where Vi(r.) is a defect potential. Unless an electron
is very deeply localized, 7, and Ve.(r., {R}) can be ap-
proximated, respectively, by m¥ and eq. (2.10) of a
polaron in the relevant perfect crystal. The number of
localized states depends on the potential Vie(r.) and
the configuration {R}. The dependence of &({R}) on

[Case 1] Vgee(r) <0

g ((AR;})

(@) (®

Fig. 2. (a) One-electron energy 61({ARJ~}) and (b) adiabatic poten-
tials U,({AR;}) as a function of the atomic coordinates {AR;} for a
neutral point defect which attracts a conduction electron (Viget (1)
<0). The hatching represents a continuous spectrum of a free elec-
tron.
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{R} is strong for localized states while is infinitesimally
small for extended states (Fig. 2(a)). The adiabatic
potential is given by
Ur({RY)=a({R})+U({R). (2.15)
Here, U2({R}) with a tilde is the adiabatic potential for
the ground state of the n electrons with a defect. The
presence of a defect (impurity, vacancy, - - -) displaces
surrounding host atoms. The displacement from the
crystal point {R },— {R}? should be treated as static
distortion. Without extra electrons, atoms vibrate
around the minimum {R }4s,, and Uz({R}) in the har-
monic approximation can be written as a quadratic
form in the displacements AR;=R;—(R;)%:s, which
can be diagonalized with the normal modes ({@x},

{QeD).

N 1 N
UM{R})=const. +5 > Ge Qe (2.16)
k,o

Some of these normalized modes may be localized
modes at the defect.

Figure 2(b) shows an example of the adiabatic poten-
tials. As a result of the electron-lattice interaction the
energy depth of a localized electron depends on {AR;}.
The optical depth (ionization energy) E % is larger than
the thermal depth E&. If the lattice distorts such that
the depth becomes zero ({AR;} ={AR;}.), a nonradia-
tive electron transition is possible.'® This process will
be discussed thoroughly in §4.

2.2.2 Trapping of a valence hole

The trapping process of a valence hole by a point-
defect is an n—1 electron problem. If a defect potential
is repulsive for electrons, localized state(s) splits off
from the valence band (Fig. 3(a)). In the ground state a
localized state is empty, while in the excited state it is
occupied by an electron. The adiabatic potential for the
[th state is given by

N
C: Vg (1) >0 \\
[Case I} Ve £, (AR}

Fig. 3. (a) One-electron energy &‘l({AR]-}) and (b) adiabatic poten-
tials U,({AR;}) as a function of the atomic coordinates {AR;} fora
neutral point defect which attracts a valence hole (Vye(r)>0). The
hatching represents a continuous spectrum of a free hole.
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Ur'({RY)=Er'({R})+Ti({R})
=E;({R})—a({R})+Vi({R})
=—g({RN+U:({R}),

where g,({R}) is the one-electron energy at the configu-
ration {R} (Fig. 3(a)). If UX({R}) is considered to be
the potential energy of the lattice vibrations, —e&;({R})
can be regarded as a hole energy. In this case we can
introduce the effective Hamiltonian for a hole and the
lattice.

(2.17)

Hy,=hy+ Vi +Hiy, (2.18)

A similar argument can be developed for a valence hole
(ry) for its trapping and detrapping if we replace the
suffix (e) by (h) in eq. (2.14) in the previous section.
2.2.3 Several localized electrons

If we discuss electronic transitions of several local-
ized electrons at a defect, there are three methods to
discuss the electron-lattice interaction.

The first one is to introduce an effective Hamiltonian
which consists of several localized electrons (the num-
ber n’<n) and the lattice vibrations, into which the
rest of n electrons are incorporated. The Hamiltonian
can be written as

He=H,({r})+Va{r}, {RD+H.({R}), (2.19)
H({r})= 3 3+ Vaul ()4 Val(r}), - (2.192)

n’

Val{r}, {R)=—>]

ko i=

(R =5 3 (Pl +3. ko)
Here, Vai({r}’) denotes the defect potential and
V.({r}’) the electron-electron interaction. If all the lo-
calized states are related to the conduction band, that
is, they can be expressed by a linear combination of the
Wannier states of the conduction band, 7. can be
replaced by the electron effective mass mF and the
form of the electron-lattice interaction of a polaron (eq.
(2.10)) can be employed.'®
The second way is to formally expand the adiabatic
potentials of the ezcited states with respect to the lat-
tice distortion {AR;} or the normal modes {Qj,} which
are defined in the ground state.

Ay o Qo exp (ik-r;), (2.19Db)
1

(2.19¢)

ouU,
UHAR ) =UHAR=0)+ 5 25 R]_){mgARﬁ =
= [Jl({o})—l—z a%ﬁ,a@k,a—'_ Tty '
ke for l—ex. (2.20)

The second term expresses the electron-lattice interac-
tion. The coefficient a%, and U;({0}) are regarded as
parameters, with which one can calculate the [-th adia-
batic potential and fit it to the experimental data,
paying attention to the point symmetry of the system.
This is usually done in the Jahn-Teller system.®

The third way is to perform an ab initio calculation,
which directly gives us the adiabatic potentials.

Y. SHINOZUKA

3. Lattice Relaxation

In this section we discuss the lattice relaxation proc-
ess after an electronic transition at defects. We con-
sider a simple case where the adiabatic potentials of the
ground state and an excited state have the same curva-
ture but have different minima

Ug({Qk}):egw% g} wiQ}, (3.1a)

Uali@) =cu—Na@ety TetQh,  (.10)
where @ is the lattice coordinate of the normal mode
with a frequency w; defined in the ground state (we will
omit the tilde hereafter). The suffix k includes wave
vector k, the branch index ¢ and also localized modes
(if any). The minima of two adiabatic potentials are
separated by {Qi=ar/wi} (eq. (2.4.a)). The lattice
relaxation energies (eq. (2.4.b)) for the excited and the
ground states are both given by

Eir=2; al/2u},

k

(3.2)

and the generalized forces (eq. (2.4.¢)) are ax and —ax.

Let us introduce an orthogonal transformation from
{wr@Qc} to {@Q:} in which one of the modes is chosen to
be

1

Q== Z Q. (3.3)

Ql k

The adiabatic potentials are then expressed as
1
U(Q)=et T O (3.49)
1
~ 1
Uex(Ql):eex_QlQl-i_E Z le (34b)
i

The electron-lattice interaction appears only through
the @Q; mode, which is called the interaction mode.''”
The distance between two minima of the adiabatic
potentials is @, the lattice relaxation energy is Q3%/2
and the generalized forces are Q; and —Q;. Since the
other )y modes do not affect the electronic energy, it is
sufficient to express the adiabatic potentials only in the
@ direction (Fig. 4). The interaction mode is defined

U,({%DH

f=ex

0, o)

ORI (7% B (%

Fig. 4. A simple example of adiabatic potentials for the ground and
excited states.
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between two electronic states (conﬁgurations) and is
not a normal mode. It depends on the difference in the
electronic charge distributions between two states. At
a point defect with cubic symmetry, for example, it
looks like a breathing mode for two totally symmetric
states.

Let us suppose that electrons are in the ground state
and atoms are at rest ({Qx=0}, {Q;=0}) and at t=0
electrons are excited optically. Just after the excitation
the lattice starts to vibrate around the new equilibrium
Qx starting from Q.=0 (Franck-Condon principle).

Q:(t)=0Qx(1 —cos wit). (3.5)

The trajectory {Qi(t)} is a Lissajous figure in 3N
dimensional {Q:} space. While in {@Q,} space,
Ql(t)=LZaka(1—cos wkt). (36)
Q%
If there is dispersion in the phonon frequencies {ws},
the interaction mode shows a damping oscillation be-
cause of the dephasing among cos wit, provided that all
amplitudes Q; are on the order of 1/3N. The oscillation
is damped in a period 7~27/&, where w; is the
average frequency. During the lattice relaxation, a part
of the electronic excitation energy (e—¢g) has
changed into the atomic energy, namely, the energy

1 .. 1 _, af
Ba== Q== Y= 3.7
LR 9 Ql 2 4 w}zca ( )

is dissipated to the extended lattice vibrations (pho-
nons) (whence the name ““lattice relaxation energy’’ fol-
lows), and the same amount of elastic energy Up(=Fig)
is stored as a local strain around the defect if referred
to {R}, of the ground state. It should be noted that
each normal mode Q) just vibrates within the harmonic
approximation, as if no dissipation occurs. The lattice
relaxation energy divided by the average phonon
energy Ay is called Huan-Rhys factor S=FEyr/hw,®
which represents the average number of phonons creat-
ed during the relaxation.'®

If there is a local mode Qioe, and a10c Qoo is 0on the order
of 1, the oscillation is continued after t=7

Ql(t)zé alochoc(l_COS wloct)- (38)

During a period 0 <t <7, a part of the lattice relaxation
energy
L, 1 ai
Eix 2 ke Wi
is dissipated. After that, the remaining energy
Ern—FE{ris gradually dissipated due to the anharmonic-
ity in U, ({Qx}), which is neglected in eq. (3.1b). ,

If an optical emission takes place at t =T, sufficient-
ly after the lattice relaxation has been completed
(7wa>7), the emitted photon has an energy e.,—e;—
(Err+UL). Again the lattice shows a damping oscilla-
tion ‘

, (3.9)

Qx(t)=% ; arQ cos wi(t—Traa). (3.10)
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The stored lattice strain energy U.L(=Eyz) is dissipated
into the lattice vibrations over the crystal.

4. Configuration Coordinate Diagram for Deep-
Level Defects

Recently a variety of deep-level defects in covalent
semiconductors have been found to show large lattice
relaxation. Depending on the electronic occupation of
localized states, the lattice distorts and the energy
level of a localized state moves up and down in the band
gap. If the energy shift is sufficiently large, nonradia-
tive recombination is possible by successive capture of
an electron and a hole. To discuss various electronic
and atomic processes at deep-level defects, it is
convenient to introduce the configuration coordinate
diagram (CCD). In the literature, however, the correct
diagram has seldom been used. In this section we will
explain the meaning of the CCD for deep-level defects
and show how to calculate and present the correct dia-
gram.

We are familiar with the one-electron energy scheme
in semiconductor physics. In a perfect crystal one elec-
tron state ¢ () and its energy &, are defined with a
wave vector k and a band index s. In Fig. 5 the energy
of a conduction electron increases upwards and that of
a valence hole increases downwards. The abscissa is
sometimes supposed to be spatial coordinates. We can
put several electrons and holes at a time in this figure
and add some localized electrons and holes at defects.
Electronic processes in semiconductors can be de-
scribed with this scheme, except for the electron-
lattice interaction.

When the electron-lattice interaction is strong, elec-
tronic states ¥({r}) depend on the atomic configura-
tion {R}. When an electron or a hole is localized at a
defect, it couples with several lattice distortions {AR; }’
around the defect. One-electron state ¢1,{Anj}'(r) and its
energy &({AR;}’) can be calculated in principle with a
suitable method. There are some localized bound
states in addition to continuous free states of the con-
duction and the valence bands (Fig. 6). The energy of
localized states depend strongly on {AR;}’, while
those of the other extended states do not.'®

One is likely to calculate adiabatic potentials simply
by adding the lattice elastic energy to this one-electron
energy, similarly to eq. (2.15),

Z %
I Z /// 7% g
g —.—Shallow donor E
é Energy gap — Deep-level =
?3; JMIOW acceptor )
S D NN = g
NS Hole 2

Spatial coordinates

Fig. 5. One-electron energy scheme for a nonmetallic material. We
can put several electrons and holes in it at a time.
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[Case I] Vyer(r) <O
&, ((AR;}')

[Case ] Vg (1) >0
g ({AR;})
2

c.b. O %‘ /

AN
S
v.b. &\

(@) ()

Fig. 6. An example of one-electron energy & ({AR;}’) for a point
defect ((a) Viee(r)<0 and (b) Viet(r)>0) as a function of local dis-
tortions {AR;}’.

U({AR;})=e({AR;})+ U:({AR;})

=e(lAR}Y)+5 Sut@h, ()
and put an electron and a hole, with the understanding
that —,({AR;}’) in the valence band represents the
energy of a hole. This type of adiabatic potential (Fig.
7) can be found in much of the literature, including a
pioneering paper by Henry and Lang.'” If we confine
ourselves to capture and emission of a conduction elec-
tron and neglect the valence band (hence a hole), this
figure works in part, as has been seen in §2.2.1 (Fig. 2).
Via deep levels, however, capture and emission are pos-
sible for both an electron in the conduction band and a
hole in the valence band. Equation (4.1) and Fig. 7
cause serious inconsistencies if we put an electron and
a hole at the same time. This is seen as follows.

In Fig. 7, where should we put a hole? Is the direction
of a hole energy in the valence band opposite to that of
an electron? Since the energy refers to the electron, the
electron-hole symmetry is broken. In which direction
does the lattice relax if a hole is captured? Can we put
several electrons and holes at one time in Fig. 7 as have
done in Fig. 57

P

%, U({AR;))
Conduction band
V7,

Bound state

\

0 (8R))

Fig. 7. An incorrect CCD for a deep-level defect in semiconduc-
tors.
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Then is it valid to calculate the adiabatic potentials
as a sum of the energy of an electron in the conduction
band, that of a hole in the valence band and the lattice
elastic energy?

0 (AR =e({AR) )+ a({AR) )+ 5 i}

(4.2)

where & ({AR;}")=c({AR;}’) and e&({AR;})=
—e({AR;}’). However, this also does not work, for
the following reason. The number of electrons and
holes is not conserved if electron-hole recombination oc-
curs at a deep-level defect, and then it slips out of the
scheme. In addition, it is unclear as to whether we
should relate a localized state in the band gap to an elec-
tron or hole.

4.1 Correct diagram

We should return to the starting point of the elect-
ron-lattice interaction discussed in §2. Consider a neu-
tral defect which attracts conduction electrons (Vaee(r)
<0: case I), or a neutral defect which attracts valence
holes (Vaes(r)>0: case II). At least three electronic
states for each case must be considered.®»*

[case I] (Vau(r)<0)

(a) The ground state (g.s.): All n electrons occupy
the valence band. There are no electrons or holes. The
defect is neutral.

(b) One free electron + one free hole state
(f.e.+1.h.): one electron occupies a free state in the con-
duction band and n—1 electrons occupy the valence
band; i.e., one free hole is in the valence band. The
defect is neutral. This has a double-continuum spec-
trum due to the free motions of an electron and a hole.
The lowest energy is E; larger than that of (g.s.) where
E, is"the band gap energy.

(c) One trapped electron + one free hole state
(t.e.+£f.h.): The defect is occupied by an electron and
charged —e. n—1 electrons occupy the valence band;
i.e., one free hole is in the valence band. This has a sin-
gle-continuum spectrum due to the free motion of a
hole.

[case II] (Vaet(r)>0)

(a) The ground state (g.s.): All n electrons occupy
the valence band including a localized state in the gap.
There are no electrons or holes. The defect is neutral.

(b) Onme free electron + one free hole state
(f.e.+1f.h.): one electron occupies a free state in the con-
duction band and n—1 electrons occupy n—2 free
states in the valence band and a localized state in the
gap; i.e., one free hole is in the valence band. The
defect is meutral. This has a double-continuum spec-
trum due to the free motions of an electron and a hole.
The lowest energy is E, larger than that of (g.s.).

(c’) One free electron + one trapped hole state
(f.e.+t.h.): an electron occupies a free state in the con-
duction band and n—1 electrons occupy free states of
the valence band. A localized state which comes from
the valence band is empty; i.e., the defect is occupied
by a hole and charged +e. This has a single-continuum
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spectrum due to the free motion of an electron.

As has been discussed in §2, the adiabatic potential is
the energy of all electrons and atoms except for the ki-
netic energy of atoms.

U({RN=E({R}+Vi({R}), (4.3)

where E({R}) is the total energy of all electrons and
Vi({R}) is the potential energy of all atoms for a
configuration {R}. Fortunately, complicated many-
body calculations are not necessary for the present
problem. In the ground state where there is neither
electron nor hole, this sum is nothing but the lattice
elastic energy. With a suitable choice of the origins of
the coordinates and the energy, it is given by??

U (ARD=U.(QD) =5 DuiQt (44
Then for an excited state where one-electron state
Boce(Te) With one-electron energy co.({AR;}’) is occu-
pied and @unoce(Tn) With eueec({AR;}’) is empty with
respect to the ground state, the adiabatic potential is
given by??

Uex({Qk)} :5occ({ARj}l)_Eunocc({ARj}’)+ Ug.s.({Qk}),
for ex=(f.e.+f.h.), (t.e.+£.h.), (f.e.+t.h.). (4.5)

Here we neglect the Coulomb interaction between an
electron and a hole for simplicity.

Usually the {AR;}’ dependence of &({AR;}’) for a
free state can be neglected; then the adiabatic potential
for (f.e. +f.h.) is a parabola which is shifted U, ({Q:})
by the amount of AE.+AE,+E,. Here, AE.(>0) and
AE,(>0) are the kinetic energies of a free electron and
a free hole.

When a localized state is occupied by an electron in
case I or by a hole in case II, it couples with the lattice
distortion {AR;}’ around the defect. The other distor-
tions far from the defect can be neglected unless self-
trapping of a carrier at a host site is considered. The
interaction mode @ can be introduced from {AR;}’
with a suitable transformation, in terms of which the
adiabatic potentials are expressed as

1
Ug.s.(Ql) 25 Q%, (463')
Ute+e0(QU)=AE.+AE,+FE, +“;— Q3 (4.6b)
[Jt.e.+f.h.(Ql)zeocc(Ql)—l_AEh_{_% Q?, [case | (4.6¢)

1
(];'.e.+t.h.(Q1) :Eg +AEe_8unocc(Ql) +E Q%, [ca.se II] .

(4.6¢")

In egs. (4.6.c) and (4.6.c’) one-electron energy £(Q,) is
measured from the top of the valence band.

Figures 8(a) and 8(b) show typical examples of the
adiabatic potentials for a neutral defect. At a first
glance, the diagram (Fig. 8(a)) seems to be almost the
same as that of Fig. 7, except for the continuum spec-
trum of a free hole. However, any point in the correct
diagram represents a total electronic state for a fixed
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configuration {R}, as is shown in the inserts in Fig. 8.
It does not merely represent a one-electron state (an
electron or a hole) as in Fig. 5. The following must be
emphasized:

(1) The energy always increases upwards. The
direction of an excitation is upwards and that of relaxa-
tion is downwards. In case I, for example, a point with
energy AFy larger than the minimum of the adiabatic
potential for (t.e. +f.h.) state represents a state where
an electron is bound to a defect with a binding energy
E¢ and a free hole moves with a kinetic energy AE;.

(2) Any optical electronic transition occurs vertical-
ly from the minimum of the adiabatic potential of the
initial state, except for hot luminescence. In case I, a
transition from (t.e.+f.h.) to (f.e. +f.h.) corresponds
to an electron emission with the optical ionization
energy (optical depth) EP. That from (g.s.) to
(t.e.+£.h.) corresponds to a hole emission with the opti-
cal ionization energy (optical depth) E® as if a hole is
trapped by the defect in (g.s.). After an optical transi-
tion the lattice relaxation energy Eig is dissipated into
the lattice: EP+EP=FE,+2FR.

(3) A nonradiative transition can occur if the lattice
distorts so as to reach a crossing point of the adiabatic
potentials. A nonradiative capture of an electron (hole)
starts from free electron (hole) states with a continuum
energy spectrum to a localized state. We can discuss
successive captures of an electron and a hole and their
correlation in one scheme.

(4) The lattice relaxation occurs after an electron
capture and also after a hole capture. In case I, after an
electron (hole) capture the coordinate Q:(t) vibrates
around Q,(Q,=0) with damping, and an energy equal to
the thermal depth E®(E{) is dissipated into phonons
over the crystal (multiphonon process: the average pho-
non number is E ®/haw; (E#/ho:): ERX+Ef=E,.

(5) If we confine ourselves to capture and emission
processes of a single carrier, we extract a part of the
diagram (surrounded by a dotted line in Fig. 8). This part
is the same as Fig. 2(b) or 3(b). For an electron capture
and emission, a hole remains in a free state, so we can
disregard a hole. In Fig. 8(a), delete ““f.h.”’, the single
hatching which represents its continuum spectrum,
and (g.s.). This gives us Fig. 2(b).

So far we have neglected the Coulomb interaction be-
tween electron and hole. If it is taken into account, we
must add two states:

(f.ex.): free exciton states with a single-continuum
spectrum; the lowest adiabatic potential is located
Es=mXm¥e/2ei*(mF+ms) below  that  of
(f.e.+f.h.), where Eg is the exciton binding energy.

(t.ex.): atrapped exciton state; the adiabatic poten-
tial is located ~FEs below that of (t.e.+f.h.) or
(f.e.+t.h.).

The transition from (t.e. +f.h.) or (f.e.+t.h.) to (g.s.)
is a capture by a charged defect.

4.2 CCD for a charged defect
Usually a deep-level defect shows many charged

states. The CCD at a charged defect can be obtained in
a similar way. For example at the EL2 center in GaAs,
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[Case I] Vge(r) <0

AE Y

4 ARy,

[Case ] Vg (r)>0

7

0]
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N

Fig. 8. An example of the correct diagram for a point defect ((a) Viy(r)<0 and (b) Vie(r)>0). The single hatching
represents a continuous spectrum of a free electron or a free hole. The inserts shows, respectively, the electronic
configurations of (g.s.), (f.e. +f.h.) and (t.e. +£f.h.) or (f.e. +t.h). Note that the energy scale is reduced, and the direc-

tions of the hatchings are coordinated.

the replacement of three electronic states in Fig. 8(a)

(f.e.+£.h.) — EL2"+f.e.+£f.h
(t.e.+f.h.) — EL2%+f.h.
(g.s.) = EL2%

gives a qualitatively correct CCD for EL2.%® The quan-
titative energy positions between three states are ob-
tained by experimental measurements of two quanti-
ties among four: the optical ionization energy (optical
depth) E®, E and the thermal depth E® E{* for an
electron and a hole. The interaction mode ¢ is defined
between the minima of EL2* and EL2° configurations
and the origin Q;=0 refers.to EL2". The absolute
value of Q; cannot be obtained by energy spectrosco-
. pies except for ENDOR; hence, it usually remains a
conceptual quantity. When the absolute atomic dis-
placements at and around the defect with respect to
the crystalline positions are large, the forms of the elec-
tron lattice interaction and the elastic energy of the per-
fect crystal cannot be used; the first-principle calcula-
tions are necessary, as in the predicted metastable

configuration of EL2 in GaAs.**

4.3 CCD with many carriers and CCD for multiple
charged defects

In real semiconductors the number of carriers is not
limited to one. When there are n. electrons in the con-
duction band and ny holes in the valence band, the adia-
batic potentials for the defect in Fig. 8 can be obtained
by piling up those of (g.s.) and (t.e.+fh.) or
(f.e.+t.h.) with a sequence of the band gap energy E,
(Fig. 9). The interaction mode @ is determined only by
the charge distribution at the defect and is not affected
by the number of free carriers. It is readily seen that if
electrons (holes) are the majority carrier, the defect
usuaily binds an electron (a hole) and the lattice configu-
ration is Q:=Q:(Q:=0). Once a minority carrier is cap-
tured, the transient lattice vibration influences a suc-
cessive opposite carrier capture process and reduces
the activation energy. Hence, the minority carrier cap-
ture is usually a thermal activated process, while the
majority capture is accelerated.*?"?

If a defect shows three types of charged states, for
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Fig. 9. An example of the correct diagram for a point defect
(V4e:(r)<0) with many carriers.

example EL2°, EL2% and EL2*" in GaAs, at least six
electronic states must be considered: for example,

(2f.e.+2f.h.) — EL2"*+2f.e. +2f.1h.
(t.e.+f.e.+2fh.) — EL2"+f.e. +2f.h.
(f.e.+fh.) — EL2**+f.e. +fh.
(2t.e.+2f.h.) = EL2°42f.h.
(t.e.+£fh.) — EL2%+f.h.

(g.s.) = EL2% ™. (4.8)

The adiabatic potentials should be presented in two
configurational coordinate space @+ and Q++,+. Here
the interaction mode Q+, (Q+ +,+) is defined in the direc-
tion between two minima of EL2" and EL2° (EL2*™
and EL27).

5. Couclusions

We have discussed the electron-lattice interactions
in nonmetallic materials in the many-electron scheme.
In semiconductor physics various electronic processes
have been discussed within the one-electron scheme. If
one is concerned with deep levels and strong lattice
relaxation, however, one cannot describe the entire
process self-consistently without the many-electron
scheme.

Recently a variety of strong electron-lattice interac-
tion phenomena have been found in covalent semicon-
ductors, in which such phenomena were once consi-
dered to be absent. The reason for this can be ex-
plained as follows. The effective mass m ™ of a carrier in
covalent semiconductors is small and the strength of
the electron-lattice interaction with the optical modes
is weak (E 1% ~0). Hence, carrier self-trapping does not
occur because the carrier kinetic energy B(oc1/m™) is
larger than EfR+FEi% (see §2.1.2). At a donor (acc-
eptor) impurity, because of the large dielectric con-
stant £« the long-range Coulomb potential is not strong
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enough to localize a carrier completely even if it cooper-
ates with the electron-lattice interaction. Then donor
(acceptor) impurity states are shallow without noticea-
ble lattice relaxation, although the latent lattice relaxa-
tion energy F {& is on the order of 1 eV. Only when the
cooperation of the defect potential and the electron-
lattice interaction wins the carrier kinetic energy B and
localizes a carrier sufficiently does the latent lattice
relaxation energy E $% manifest itself. This mechanism
is called extrinsic self-trapping.”*'¥ Thus large lattice
relaxation is realized only at deep states, while it is ab-
sent in shallow states.

Randomness also helps to localize a carrier and
induce a large lattice relaxation. The problem in amor-
phous systems is that we do not know the electronic
quasi-ground and excited states, and the corresponding
atomic configurations. This may be the main reason
why amorphous semiconductor physics faces a dead-
lock.>” In particular, very little -is known on the
mechanism of photostructural changes and carrier self-
trapping, and the character of impurity and defect
states. In §4 we have assumed that atomic distortions
induce only one type of localized state in the gap which
comes from either the conduction band or the valence
band, because the character of localized states is usu-
ally determined by the sign of the defect potential
Vaet(r). In covalent amorphous semiconductors,
however, both types of localized states may appear at
the same time if a bond length is enlarged, because the
valence (conduction) band is constructed of (anti-)bond-
ing orbitals. Then it is possible that the CCD is qualita-
tively different from those in Fig. 8.2

We have shown in the present paper that the elec-
tron-lattice interaction in condensed matter is a
response to the eléctronic excitation. It is not restrict-
ed to phenomena in the vicinity of perfect crystals,
such as the polaron problem, but is one aspect of strong
and complicated interactions between many electrons
and ions. Thus it will play an important role in future
semiconductor technology in two respects. First, the
electronic excitation can induce large atomic displace-
ments and thus is a promising technique for realizing
new structures and new materials which cannot be
attained by the thermal process from the electronic
ground state. Secondly, suppose we succeed in fabricat-
ing nanometer-scale semiconductor devices, where car-
riers are confined to a small region. The coupling be-
tween electrons and atoms there may differ from that
in perfect crystals. Then the electron-lattice interac-
tion might manifest itself so strongly that electronic
states and atomic configurations are entangled with
each other and cannot be discussed separately. We
hope that the present article will help to unify two
areas (atomic structure and electronic state) of con-
densed-matter physics and create a new stage of materi-
als science.?
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