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Abstract
The modern economic growth paradigm relies heavily on natural endowments. Renewable energy
as a permanent energy source has the potential to reduce the ecological footprint (EF). We adopt
the Vector Autoregressive model to examine the impact of renewable energy consumption on the
energy EF and use the quantile regression method to test the heterogeneity and asymmetry
between energy EF and photovoltaic, wind energy, and biomass energy. The results show that
renewable energy has a long-term negative impact on the EF, and for every 1% increase in
renewable energy consumption, the energy EF will decrease by 2.91%. The contribution of
renewable energy consumption to reducing the EF is 1.34% on average. There is no two-way
Granger causality between renewable energy consumption and energy EF. The reduction effect of
wind energy consumption on the energy EF varies the most, followed by biomass energy and
photovoltaic. In addition, under different energy EF distribution conditions, the impact of
photovoltaic or wind energy or biomass energy consumption on the energy EF is different.

1. Introduction

Environmental degradation is one of the major problems facing the world, with adverse effects on people, air
quality, ozone layer destruction, economy, biodiversity, and natural resources (Rahman 2020). On the other
hand, Nathaniel (2021) argues that energy, food, water, and infrastructure pose hazards to ecosystems,
thereby triggering ecological stress, and leading to adverse effects on the environment. To do this, countries
need to reduce carbon emissions, energy consumption, and other activities to control air, water, and land
pollution. However, numerous agreements in this area still fail to control environmental pollution on a
global scale, as they have not shown any real and significant improvement in CO2 emissions and other
pollution (Gokmenoglu et al 2021). According to Solarin and Bello (2018), CO2 is seen as a measure of
environmental degradation. In contrast, some scholars believe that ecological footprint (EF) is an important
indicator of environmental degradation (Al-Mulali et al 2015).

The EF is a concept and method proposed by William and Wackernagel in the 1990s to measure and
evaluate sustainable development degrees based on biophysical quantities (Wackernagel and Rees 1996). EF
is defined as the ‘biologically productive and mutually exclusive areas necessary to continuously provide for
people’s resource supplies and the absorption of their wastes’, which represents the influence scale of a
specific population on the environment and the environment demand raised by persistent existence under
the established technical conditions and consumption level (Wackernagel and Yount 1998). Hassan et al
(2019a) explained that EF used the land and water to produce resources that were ultimately consumed by
humans and to eliminate the waste produced. When calculating EF, various resources and energy
consumption are converted into cropland, grazing land, forest land, fishing grounds, built-up land, and
energy land. With the deepening of research, many scholars began to study EF of energy, transportation,
aquaculture, industry, agriculture, tourism, and other specific industries and sectors. Energy ecological
footprint (EEF) is the forest absorbing greenhouse gases emitted by fossil energy combustion (Liu et al 2019).
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China has enjoyed rapid economic growth over the past 20 yr, with an annual GDP growth rate of 8.7%
on average. With the massive burning of fossil energy to meet economic development and consumer
demand, China’s carbon emissions have surpassed the United States and become the world’s largest carbon
emitter since 2007, which makes China face increasing pressure from the international community to reduce
carbon emissions. Economic growth-oriented human activities seem to pose a threat to existing ecosystems
(Bekun et al 2019a). Despite the efforts of policymakers and environmental advocates, China’s CO2

emissions rose by more than 11.9 billion tonnes in 2021, accounting for 33% of the global total. Rising
carbon emissions and proportions increase the EEF. At the same time, the International Energy Agency
identified in its report that carbon-intensive energy resources and economic growth efforts contributed to
increasing a country’s EEF. According to Global Footprint Network, China’s EEF is 3.91 billion hectares in
2018, accounting for 70.6% of China’s total EF.

To reduce atmospheric pressure, the Chinese government has taken some direct and indirect measures,
such as adjusting the industrial structure, optimizing energy structure, improving energy efficiency,
promoting the construction of carbon market, and increasing forest carbon sink. Through these measures,
China has achieved positive results in key areas such as control of greenhouse gas emissions, formulation of
strategic plans, institutional and mechanism building, social awareness enhancement, and capacity building.
In 2020, the Chinese government promises to peak CO2 emissions by 2030 and strives to achieve carbon
neutralization by 2060. The proposal of carbon peak and carbon neutrality goals has led China into the era of
climate economy and opened a green and low-carbon society. A thorough green revolution means a
comprehensive reformation in the fields of economy, energy consumption, and infrastructure. In 2020,
China has started the preparation of the National Strategy for Adaptation to Climate Change 2035,
researching and putting forward the task requirements of improving the ability of the natural, economic, and
social fields to adapt to climate change. As can be seen from the discussion above, climate quality
management has been given top priority, while land and water quality management has been neglected by
the government. This can be seen in the rate at which water-induced diseases in specific areas are exacerbated
(Biswas and Tortajada 2019). The continued increase in deforestation, flooding, and soil erosion shows that
water and land management policies are inadequate to restore natural habitats and that the lack of synergies
between economic and environmental policies increases environmental vulnerability (Tyler and Fajber
2009). Through the intertwining of water, energy, land, and economic policies, governments can kill two
birds with one stone, one is to achieve economic growth, and the other is to restore the environment.

The given ecosystem scenario means that China needs cleaner energy and sustainable economic growth.
However, China is one of the world’s largest fossil energy consumers and relies heavily on non-renewable
energy resources for economic activity. Thus, to deal with the negative impact of energy solutions, China
must vigorously develop non-fossil energy, and the widespread use of renewable energy such as solar, wind,
and biomass can play a vital role. The literature argues that renewable energy solutions are superior to fossil
energy because they place less pressure on the environment (Sarkodie and Strezov 2019) without distorting
the growth process (Destek and Sinha 2020). Another possible solution to improve the environment is to
reduce the marginal consumption of energy at the production stage to minimize the harmful impact of
energy on environmental quality (Bekun et al 2019b). In both cases, the government must strengthen
research and development. Otherwise, the widespread and sustained use of fossil energy is likely to continue
to pose long-term challenges such as import dependence, price volatility, low costs, and persistent ecological
imbalances (Zafar et al 2019).

Therefore, renewable energy should be seen as a determinant of EEF to test its environmental viability in
decision-making. In addition, by examining the impact of different types of renewable energy on EEF, we can
get which renewable energy has the greatest impact on EEF at present. Except for per capita income and
renewable energy, we have also introduced economic development, population size, scientific research funds,
and energy structure as determinants of EEF. In terms of sustainable growth, these factors can play a key role
in the long run (Kumar and Stauvermann 2019). The literature supports their role in curbing long-term CO2

emissions or EEF growth (Chen et al 2019). In this study, we examine the impact of renewable energy,
economic development, population size, per capita income, scientific research funds, and energy structure
on China’s EEF from 2000 to 2019 in a simplified way.

This paper raises the following questions: (a) does renewable energy consumption including
photovoltaic, wind, and biomass reduce the EEF? (b) How much EEF will be reduced or increased by the
increase of unit renewable energy consumption? (c) Does renewable energy consumption have a feedback
effect on the EEF? (d) Do photovoltaic, wind, and biomass energy have an impact on the EEF and the
magnitude of the impact under the horizontal distribution of different EEF.

To answer the above questions, we adopt vector autoregression (VAR) to study the impacts of renewable
energy consumption, economic development, population size, per capita income, scientific research funds,
and energy structure on the EEF. Then, we use the Granger causality to test the feedback effect of renewable
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energy consumption on the EEF. Finally, we use quantile regression to examine heterogeneous and
asymmetric relationships among photovoltaic, wind energy, biomass energy, and EEF. By studying EEF and
sustainable development, the importance of rational utilization of resources is revealed, which provides a
theoretical basis for local governments to seek a win–win situation between environmental protection and
sustainable economic development. The results will not only enrich the relevant literature on the fringe but
also help provide recommendations for making sustainable and coordinated development policies.

The main contributions of this paper are the followings. Firstly, we find that there is a long-term
cointegration relationship between renewable energy consumption and EEF, and for every 1% increase in
renewable energy consumption, the EEF will decrease by 2.91%. The negative effect gradually weakens with
time, but there is no two-way Granger causality between them. Secondly, we find that the contribution of
renewable energy consumption to the reduction of the EEF first increases and then decreases with an average
contribution of 1.34%. Finally, we find the heterogeneity and asymmetry in the EEF of different types of
renewable energy. The reduction effect of photovoltaic, wind energy and biomass energy consumption on
the EEF varies in descending order: wind energy, biomass energy, and photovoltaics. In addition, under
different EEF distribution conditions, the impact of photovoltaic or wind energy or biomass energy
consumption on the EEF is different.

This paper is organized as follows: section 2 presents the literature review. Section 3 introduces methods
and data sources. Section 4 is results and discussions. Section 5 is conclusions and recommendations.

2. Literature review

In national and regional sustainable development studies, the relationship between EF and its influencing
factors such as economic growth, urbanization level, per capita income, and population size is often
analyzed. Most scholars have found that there is a significant linear positive correlation between economic
growth and EF. For example, Çakmak and Acar (2022) found that economic growth of 1% will increase EF
by 0.0283%. Zeraibi et al (2021) found economic growth would increase the EF. Hassan et al (2019b)
revealed that economic growth increased the EF, leading to environmental degradation, but there was no
causal relationship between them. In another study, a U-shaped relationship between economic growth and
EF was found, suggesting that increasing income levels would promote EF growth (Ahmed et al 2022).

Wu and Bai (2022) estimated the ecological sustainability of China’s resource-based cities at different
scales in the process of urbanization and found that most of the resource-based cities in urbanization were in
an ecological deficit state, but this result can only show that the ecological pressure on cities was even greater
in the process of urbanization. While the results of Cui et al (2022) showed that the urbanization level
increased the EF, further clarifying their relationship. The higher the urbanization level was, the higher the
human capital required to improve environmental quality (Chen et al 2021), that is, the urbanization level
affected EF and hindered sustainable development (Gupta et al 2022). However, whether urbanization level
drives or hinders EF’s growth also needs to consider the country’s income level. Generally speaking, a high
urbanization level in high-income countries will reduce EF’s growth (Ali et al 2021). Feng and Wu (2011)
observed that the relationship between EF and per capita income showed an inverted U-shaped relationship
in the long run, which was confirmed by the research of Al-Mulali et al (2015).

In the long run, population size has a very significant impact on the EF. Air, water, and land quality may
become more polluted as the population size increases (Sharma et al 2020). Technological innovation is also
a factor that cannot be ignored. For example, Zeraibi et al (2021) confirmed that technological innovation
will reduce the EF, and there was a two-way causal relationship between them (Kongbuamai et al 2020),
while Ke et al (2020) found that industrial structure, energy structure, and energy efficiency played a
mediating role among them. However, a recent study focusing on China found that only when the economy
developed to a certain level, technological innovation would affect the EEF (Li et al 2022).

Of course, energy structure, renewable energy, and EEF are more closely related. Among them, the energy
structure has the greatest impact on the EF (Zou 2010), that is, the energy consumption structure dominated
by coal is not conducive to sustainable development, reducing crude oil consumption, increasing natural gas,
and the proportion of renewable energy consumption, adjusting the energy structure is an effective measure
for China to reduce the EF and the impact on the human environment. Shahzad et al (2021) found that fossil
energy consumption significantly increased the EF of the United States when examining the links between
economic complexity, fossil energy, and EF. In addition, Yousaf et al (2022) have confirmed the negative
impact of fossil energy consumption on the EF when analyzing influencing factors of EF.

The literature is replete with studies of the overall impact of energy consumption on carbon emissions
(Afridi et al 2019). Considering the need for sustainable economic growth, with the widespread use of
non-renewable energy sources found to have higher carbon intensity, most countries have begun to focus on
clean and renewable energy sources (Zaidi et al 2018). Here, it is undeniable that renewable energy
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consumption may also contribute to environmental pollution (Bulut 2017), for example, hydropower energy
consumption Granger-causes CO2 emissions (Bildirici et al 2016). However, renewable energy is less harmful
to climate change and more cost-effective than non-renewable energy (Chen et al 2019). In this regard, using
evidence from China, Long et al (2015) found that coal energy as a non-renewable energy source
significantly increased the country’s pollution levels. The study recommended increasing the use of
hydro-based and nuclear-based electricity in the long run. Similarly, Inglesi-Lotz and Dogan (2018) showed
in their research that the use of renewable energy was relatively more eco-friendly in the long run.

There are more and more studies on the impact of renewable energy consumption on the EF, but as the
number of studies increases, the conclusions on the relationship between them become more diverse. Pata
(2021) and Liu et al (2022) found that renewable energy consumption reduced EF. Ansari et al (2021) also
found that renewable energy harms the EF. Abid et al (2022) confirmed that renewable energy can promote
economic growth while improving the environment, and with the increase in urbanization rate, the negative
effect of renewable energy consumption on the EF first weakened and then strengthened. Divided into
different types of renewable energy, some scholars have empirically analyzed the reduction effect of solar and
biomass energy on the EF (Hadj 2021, Sharif et al 2021). However, not all scholars’ conclusions confirm
renewable energy consumption will reduce EF. Kongbuamai et al (2021) found that renewable energy’s
growth also led to EF’s growth, which contradicted the previous research results. The opposite result was
most likely caused by the different periods and geographical scope of research. In addition, others argue that
the relationship between them is minimal. When Pata and Samour (2022) explored the role of nuclear energy
and renewable energy consumption on the EF, they found that nuclear energy improved environmental
quality, but renewable energy had no long-term impact on environmental conditions, and the study of
Çakmak and Acar (2022) also showed that renewable energy consumption has no significant impact on
the EF.

3. Methods

3.1. Data
Energy land is an important component in EF accounting. Although there is no ecological productive land
reserved for energy land in traditional EF accounting, with the urgency of CO2 reduction and the increasing
attention paid to the carbon sequestration effect of forests on CO2, the approach of using the forest area
required to absorb national or regional CO2 emissions as a sustainable reference standard for energy land has
been used in most studies. Moreover, according to the Living Planet Report 2020, the contribution rate of
energy land to the national EF is 60%, which indirectly indicates that EEF is a feasible indicator to
quantitatively characterize the change in national energy consumption.

3.1.1. Carbon absorption capacity of each ecologically productive land
The productive land with CO2 absorption capacity is divided into cropland, grazing land, forest land, fishing
grounds, and energy land. The essence of energy land is still forest land, but in most studies, no energy land
is reserved to absorb CO2. This paper also assumes that the area of energy land is 0. According to the
calculation results of the global average net primary productivity (NPP) of each productive land by
Venetoulis and Talberth (2010), as shown in table 1, there are significant differences in the NPP of different
productive lands. All kinds of land area data come from the Food and Agriculture Organization of the United
Nations, as shown in table 2. (www.fao.org/faostat/en/#data/RL/visualize)

Referring to the method of estimating the comprehensive carbon absorption capacity, the CO2

absorption capacity of various productive lands is characterized by the carbon absorption rate, which is
uniformly expressed as NPP:

NPP=

∑4
i=1Ai ×NPPi∑4

i=1Ai

(1)

NPP represents the carbon absorption capacity of comprehensive productive land, Ai represents the area
of various types of productive land, NPPi represents the global average NPP of various types of productive
land. Table 3 shows the carbon absorption capacity of China’s comprehensive productive land from 2000 to
2019.

3.1.2. Energy carbon emissions
The carbon emission coefficient refers to the amount of carbon corresponding to the heat released by fossil
energy combustion. The net calorific value and carbon emission coefficient are shown in table 4. The
calculation formula of carbon emission from various fossil energy combustion is as follows:
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Table 1. Net primary productivity of lands.

Cropland Forest land Grazing land Fishing grounds Energy land

NPP (tC hm−2·a) 4.243 6.583 4.835 5.344 6.583

Table 2. Ecological productive area in 2000–2019.

Type of land (108hm2) 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Cropland 1.3592 1.3571 1.3540 1.3603 1.3644 1.3663 1.3606 1.3589 1.3594 1.3606
Forest land 41.58 41.53 41.48 41.43 41.37 41.32 41.27 41.22 41.17 41.11
Grazing land 17.82 17.831 17.85 17.86 17.92 17.92 17.93 17.94 17.95 17.95
Fishing grounds 4.2993 4.3009 4.3035 4.2968 4.1844 4.1836 4.1861 4.1863 4.4017 4.4009
Energy land 0 0 0 0 0 0 0 0 0 0

Type of land (108hm2) 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Cropland 1.3611 1.3698 1.3788 1.3810 1.3819 1.3820 1.3828 1.3877 1.3854 1.3833
Forest land 41.06 41.02 40.97 40.93 40.88 40.84 40.80 40.74 40.69 40.63
Grazing land 17.96 17.99 18.00 18.01 18.02 18.02 18.01 18.01 18.10 18.13
Fishing grounds 4.3987 4.3943 4.2716 4.2736 4.2722 4.2752 4.2654 4.2693 4.2684 4.2686
Energy land 0 0 0 0 0 0 0 0 0 0

Table 3. Carbon absorption capacity of the integrated productive land from 2000 to 2019.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Carbon absorption capacity (C hm−2·a) 5.9734 5.9728 5.9721 5.9713 5.9707 5.9702 5.9697 5.9690 5.9663 5.9657

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Carbon absorption capacity (tC hm−2·a) 5.9651 5.9640 5.9643 5.9636 5.9630 5.9625 5.9624 5.9617 5.9597 5.9586

Table 4. Calorific value coefficients of various fossil energy.

Type of energy Net calorific value (TJ/103t) Carbon emission coefficient (t/TJ)

Row coal 26.7 26.8
Coke 28.2 29.2
Crude oil 42.3 20.0
Gasoline 44.3 18.9
Kerosene 44.1 19.5
Diesel oil 43.0 20.2
Fuel oil 40.4 21.1
PLG 47.3 17.2
Natural gas 48.0 15.3

Note: Date comes from《IPCC Guidelines for National Greenhouse Gas Inventories 2006》.

Gec = Cce ×Hce ×Cdce (2)

Gec represents carbon emission after certain fossil energy combustion, t; Cce represents certain fossil
energy consumption, t; Hce represents the net calorific value of certain fossil energy, TJ/103t; Cdce represents
the carbon emission coefficient of certain fossil energy, t/TJ.

3.1.3. EEF
Given the carbon emissions of various energy and the carbon sink productivity of comprehensive productive
land, this paper uses the formula (3) to calculate the EF of various energy:

EEF=
CO2

NPP
. (3)

Besides, the data on per capita disposable income of residents, renewable energy consumption, economic
development, population size, scientific research funds, and energy structure are all from the National Bureau
of Statistics and IEA. To reduce the scale of variables to alleviate the impact of heteroscedasticity and make
the characteristics of indicator variables easier to observe, all operations in this paper are performed after the
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Table 5. Variable names and related descriptions.

Variable name Symbol Data source Logarithmic symbol

Energy ecological footprint EEF Calculation LNEEF、Zscore (EEF)
Renewable energy consumption RE IEA LNRE
Economic development GDP National Bureau of Statistics LNGDP、Zscore (GDP)
Population size SIZE National Bureau of Statistics LNSIZE、Zscore (SIZE)
Per capita disposable income of residents INC National Bureau of Statistics LNINC、Zscore (INC)
R&D expenditure as a percentage of GDP RD National Bureau of Statistics LNRD、Zscore (RD)
Energy structure STR National Bureau of Statistics LNSTR、Zscore (STR)
Photovoltaic PV IEA LNPV、Zscore (PV)
Biomass energy BIO IEA LNBIO、Zscore (BIO)
Wind energy WIND IEA LNWIND、Zscore (WIND)

logarithmic transformation of the original data. Considering that there are 0 in the photovoltaic data, all the
data are standardized by Z-score when doing quantile regression, specific variables are shown in table 5.

3.2. Model
3.2.1. VAR
VAR has gradually become a commonly used econometric model since it was proposed by Sims in 1980. The
idea of the VAR model is to use endogenous variables lag for regression to obtain the dynamic relationship
between endogenous variables. It is often used to deal with multiple interrelated and mutually restrictive
time series data. A VAR model that obeys the order of P is expressed as follows:

yt = A1yt−1 + · · ·+Apyt−p +Bxt + εt, t= 1,2 . . . ,n (4)

yt is a k-dimensional endogenous variable, xt is a d-dimensional exogenous variable, p is the lag order, t is
the samples number, B is the estimated coefficient, εt is the error term. The above formula can be expressed
as the following formula (4) in matrix form, that is, VAR(p)model containing k time series consists of k
equations:

y1t
y2t
...
ykt

= A1


y1t−1

y2t−1

...
ykt−1

+A2


y1t−2

y2t−2

...
ykt−2

+ · · ·+B


x1t
x2t
...
xdt

+


ε1t
ε2t
...
εkt

 . (5)

3.2.2. Quantile regression
The quantile regression method was first proposed by Koenker and Bassett (1978), which was based on the
median regression theory. The specific idea is to calculate any conditional quantile of the sample by making
the objective function be solved to minimize the sum of the absolute values of errors. The quantile regression
model expression is: 

yi = f(xi,β)+ εi

min
n∑

i=1

ρτ (yi − f(xi,β))
(6)

β is the regression coefficient, εi is the residual term, ρτ (u) = u(τ − I(u)), I(u) =

{
0,u⩾ 0

1,u< 0
, f
(
x, β̂

)
is

the optimal solution, representing the quantile estimation function of y under the condition of x, 0< τ < 1.
One of the prerequisites for the use of the least squares regression method is that the random errors obey

a normal distribution, however, the data in this paper are derived from real life and are complex, and it is
almost impossible to fully comply with the assumptions. In this case, the quantile regression estimation
method is more advantageous, using the weighted least absolute deviation method for estimation, which is
usually not affected by outliers and the results are more robust, but due to the difficulty of parameter
estimation, it can only deal with cross-sectional data initially, and its application is narrow. It was not until
Koenker and Park (1996) proposed an interior-point algorithm for computing nonlinear quantile regressions
that greatly reduced the difficulty of estimation, allowing this regression method to capture the entire
conditional distribution of the selected variables (Bildirici et al 2022). For this reason, quantile regression
was chosen to investigate the relationship between the effects of the independent and dependent variables.
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4. Results and discussions

The basic properties of the compiled data set are given in table 6. During the study period, as with renewable
energy consumption, EEF series showed significant standard deviations. This indicates significant differences
in the selected EEF and renewable energy consumption during the study period. In addition, because the
Jerque–Bera test rejects the null hypothesis of normal distribution at the 10% significance level, all the
sequences are distributed abnormally.

Owing to the long study period, it is required to confirm whether series are stationary at the level or first
difference. In this connection, group unit root tests are carried out. The augmented Dickey–Fuller (ADF)
tests given in table 7 reveal that all the series are stable at second differences at the 1% significance level,
which is a prerequisite for examining the long-run relationship. ADF tests of the original sequence at the
level and the first differences are shown in table A1.

Table 7 shows that all variables pass the stationarity test, so the VAR model can be established and the
optimal lag order of variables can be determined. In this paper, according to Akaike’s Information Criterion
(AIC) and Schwarz Criterion (SC) criteria, the optimal lag order of variables is determined to be 2 (table 8).
After the optimal lag order is determined, to avoid the phenomenon of false regression, the Johansen
cointegration test is conducted on all variables, and the results are shown in table 9.

Generally speaking, the first cointegration equation contains the most variables and can explain more
problems. According to the results of the Johansen cointegration test, there are seven cointegration equations
at the significance level of 5%, indicating that there is a long-term stable relationship between variables, to
construct the following cointegration equation:

LNEEF=− 6.9878LNGDP+ 10.7000LNINC− 1.3376LNRD− 2.9095LNRE (7)

+ 31.1236LNSIZE+ 7.3453LNST. (7)

The coefficient of LNRE is−2.9095, indicating that renewable energy consumption and EEF have a
negative cointegration relationship. For every 1% increase in renewable energy consumption, EEF will
decrease by 2.9095%. There is a certain substitution between renewable energy and fossil energy. Increasing
renewable energy consumption will inevitably reduce the demand and consumption of fossil energy, which
will have a certain negative impact on the EEF. The coefficient of LNGDP is−6.9878, indicating that there is
a negative cointegration relationship between economic development and EEF, and economic development
increases by 1%, EEF will decrease by 6.9878%. China’s industrial structure is mainly composed of three
major industries. The secondary industry mainly includes mining, manufacturing, electricity, gas and water
production, and supply and construction, which are most dependent on fossil energy. Since 2000, although
China’s GDP is on the rise, the overall contribution rate of the secondary industry shows a downward trend,
and the driving effect of the secondary industry on GDP is only 1% by 2020. Thus, GDP growth not only
reduces fossil energy consumption but also reduces EEF.

There is a positive cointegration relationship between per capita disposable income of residents and EEF
For every 1% increase in per capita disposable income of residents, EEF will increase by 10.7000%. The
increase in per capita disposable income of residents will stimulate people’s daily consumption and increase
the consumption expenditure on services such as food, clothing, housing, and transportation that are closely
related to oil and other energy sources, thereby promoting energy consumption, and increasing the EEF. EEF
and scientific research funds have a negative cointegration relationship. For every 1% increase in scientific
research funds, EEF will decrease by 1.3376%. The investment of scientific research funds is conducive to
strengthening scientific and technological progress and innovation, reducing the output consumption of unit
fossil energy, promoting the large-scale utilization of clean energy and its replacement of fossil energy,
thereby reducing EEF.

According to the coefficient of LNSIZE, the population size and EEF have a negative cointegration
relationship. For every 1% increase in the population size, EEF will increase by 31.1236%. The increase in
population size has promoted the rise in China’s total energy demand, and China’s energy structure is
dominated by fossil energy consumption such as coal and oil. Therefore, the increase in population size will
stimulate fossil energy consumption and increase EEF. The energy structure and EEF have a positive
cointegration relationship. For every 1% reduction in the energy structure, EEF will decrease by 7.3453%.
Energy structure refers to the proportion of coal in total energy consumption. From 2000 to 2020, China’s
energy structure has dropped from 68.5% to 56.8%, while coal still accounts for more than 50% of primary
energy, so the decline in energy structure will decrease EEF.

Table 10 shows the ADF test of the residual item. It can be seen that the residual item is stable at the 1%
significance level, so it can explain EEF, renewable energy consumption, economic development, per capita
disposable income of residents, scientific research funds, energy structure, and population size have a

7



Environ. Res.: Ecol. 2 (2023) 015003 Y Nan et al

Table 6. Data description.

LNEEF LNGDP LNINC LNRD LNRE LNSIZE LNSTR

Mean 10.8066 3.5387 9.3304 −4.1097 6.5508 11.8051 −0.3952
Median 10.8989 3.6254 9.3652 −4.0530 6.5848 11.8038 −0.3765
Maximum 11.2226 4.6105 10.3654 −3.7985 7.6429 11.8577 −0.3181
Minimum 10.0381 2.2563 8.1920 −4.6373 5.2969 11.7472 −0.5573
Std. Dev. 0.3923 0.7461 0.6827 0.2490 0.6894 0.0332 0.0686
Skewness −0.6503 −0.2558 −0.1407 −0.4236 −0.0517 0.0053 −0.9648
Kurtosis 2.0230 1.6979 1.6614 1.8817 1.6925 1.7636 2.7642
Jarque–Bera 8.8197 6.5241 6.2368 6.5610 5.7343 5.0957 12.5966
Probability 0.0122 0.0383 0.0442 0.0376 0.0569 0.0782 0.0018
Sum 864.5247 283.095 746.4307 −328.7795 524.0634 944.4082 −31.6124
Sum Sq. Dev. 12.1577 43.9766 36.8229 4.8989 37.5422 0.0868 0.3717

Table 7. ADF unit root test results.

Variable Test form (C,T,K) P-value Conclusion

D(LNEEF,2) (0,0,11) 0.0000 Stable∗∗∗

D(LNGDP,2) (0,0,11) 0.0000 Stable∗∗∗

D(LNINC,2) (0,0,11) 0.0000 Stable∗∗∗

D(LNRD,2) (0,0,11) 0.0000 Stable∗∗∗

D(LNRE,2) (0,0,11) 0.0000 Stable∗∗∗

D(LNSIZE,2) (0,0,11) 0.0000 Stable∗∗∗

D(LNSTR,2) (0,0,11) 0.0000 Stable∗∗∗

Table 8. Lag order selection criteria.

Lag LogL LR FPE AIC SC HQ

0 1054.9790 NA 0.0000 −27.5784 −27.3637 −27.4926
1 2108.6570 1885.5280 0.0000 −54.0173 −52.2999 −53.3309
2 2250.2060 227.2235∗ 7.44e-34∗ −56.45278∗ −53.23269∗ −55.16588∗

3 2275.9990 36.6542 0.0000 −55.8421 −51.1193 −53.9546
4 2295.9290 24.6497 0.0000 −55.0771 −48.8516 −52.5891

Table 9. Unrestricted cointegration rank test (trace).

Hypothesized No. of CE (s) Eigenvalue Trace statistic 0.05 critical value Prob.∗∗

None∗ 0.4310 184.3686 125.6154 0.0000
At most 1∗ 0.3872 140.9490 95.7537 0.0000
At most 2∗ 0.3758 103.2354 69.8189 0.0000
At most 3∗ 0.3212 66.9500 47.8561 0.0003
At most 4∗ 0.2331 37.1159 29.7971 0.0060
At most 5∗ 0.1245 16.6840 15.4947 0.0330
At most 6∗ 0.0803 6.4480 3.8415 0.0111

Table 10. Augmented Dickey–Fuller unit root test on resid.

t-Statistic Prob

ADF −8.5171 0.0000
Test critical values: 1%level −2.5989

5%level −1.9456
10%level −1.6137

long-term equilibrium relationship. In addition, according to the unit root distribution diagram (figure 1),
the values of the test results are all less than 1, and the moduli of all units and reciprocals fall within the unit
circle, so the established model is stable.

Table 11 shows the results of the Granger causality test. There is no two-way Granger causality between
economic development, renewable energy consumption, population size, scientific research funds, and EEF,
but there is a one-way Granger causality between per capita disposable income of residents, energy structure,
and EEF, that is, EEF is a Granger cause of per capita disposable income of residents and energy structure.

The impulse response function of one variable to another variable can intuitively reflect the trajectory of
the time and degree of impact of the variables in the model after the shock. After a stable time series model is

8



Environ. Res.: Ecol. 2 (2023) 015003 Y Nan et al

Figure 1. Test results of unit circle.

Table 11. Granger causality test.

Null hypothesis Prob Accept

LNGDP does not Granger Cause LNEEF 0.5957 Yes
LNEEF does not Granger Cause LNGDP 0.1148 Yes
LNINC does not Granger Cause LNEEF 0.9536 Yes
LNEEF does not Granger Cause LNINC 0.0173 No
LNRE does not Granger Cause LNEEF 0.3122 Yes
LNEEF does not Granger Cause LNRE 0.1646 Yes
LNSIZE does not Granger Cause LNEEF 0.9177 Yes
LNEEF does not Granger Cause LNSIZE 0.3991 Yes
LNSTR does not Granger Cause LNEEF 0.3312 Yes
LNEEF does not Granger Cause LNSTR 0.0114 No
LNRD does not Granger Cause LNEEF 0.1214 Yes
LNEEF does not Granger Cause LNRD 0.0536 Yes

impacted, the first few periods will be in a state of change, but in the long run, it will be in a relatively stable
state. To determine the changes of each variable to EEF, an impulse response analysis is performed.

Figure 2 is the impulse response function of each variable to EEF. When the population size, energy
structure, and scientific research funds are respectively impacted by one-unit standard deviation, the current
response value of EEF is 0, and then gradually increases, but the response degree gradually weakens. When a
positive standard deviation shock is given to the per capita disposable income of residents, the current
response value of EEF is 0, then gradually increases, and gradually weakens after reaching the peak in the fifth
period, but it is still a positive response. When a positive standard deviation shock is given to GDP, the
current response value of EEF is 0, then increases negatively, gradually decreases after reaching the peak in the
sixth period, and becomes a positive response in the tenth period. When a unit positive standard deviation
shock is given to renewable energy consumption, the current response value of EEF is 0, then increases
negatively, and gradually decreases after reaching the peak in the seventh period, but it is still negative, which
indicates that renewable energy consumption harms the EEF regardless of both short and long term.

Overall, population size, energy structure, and scientific research funds have had a positive impact on the
EEF for a long time. The positive impact of the per capita disposable income of residents on the EEF is
gradually weakening. Economic development harms the EEF in the short term but has a positive impact in
the long run. Renewable energy consumption has always harmed the EEF, but the long-term impact is
gradually weakening.

Variance decomposition is to further evaluate the importance of different structural shocks by analyzing
the contribution of each structural shock to the change of endogenous variables. By comparing the size of
different variables’ contribution percentages, the size of each variable effect can be estimated. At the same
time, according to the contribution percentage changing over time, determine the time lags effect of one
variable on another variable. Figure 3 shows that EEF has the largest contribution to itself, but it shows a
downward trend. Among the contributions of all independent variables to EEF, the population size has a
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Figure 2. Impulse response of different variables to EEF.

larger contribution, followed by energy structure, scientific research funds, renewable energy consumption,
per capita disposable income of residents, and GDP. The contribution of population size, energy structure,
and scientific research funds to EEF continues to increase, but the degree of contribution decreases in turn.
The contribution of renewable energy consumption to EEF first increases and then decreases, and the
average contribution rate of the first ten periods is 1.34%. The variance decomposition results are shown in
table A2 for details.

The different regression coefficients of different quantiles indicate that the explanatory variables have
different effects on the response variables at different levels, and we can obtain the influence of the
explanatory variables on the quantiles of the response variables. To clearly show the degree of influence of
each variable on different quantiles, the dependent variable is assumed to be a linear function of a conditional
distribution, and the influence of the corresponding quantiles is obtained through quantile regression.

Table 12 shows the model quality under the five quantiles of 0.1, 0.25, 0.5, 0.75, and 0.9. Under the same
control variables, the three types of renewable energy consumption are used to fitting the regression of the
EEF. Under different quantiles, the Pseudo R Squared of the fitted model is greater than 0.85, and the MAE is
about 0.1, which indicates that the fitting effect of the model is good. Parameter estimates at different
quantiles of photovoltaics, wind energy, and biomass energy are shown in tables A3–A5.

Table 13 shows the changes in the regression coefficients and their significant results on the variables
affecting the EEF under each quantile of the three renewable energy sources. The model estimation results
show that photovoltaic, wind energy, and biomass energy consumption coefficients are significantly negative
and gradually increase. Under the condition of controlling other conditions unchanged, when q= 0.1, EEF
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Figure 3. Variance decomposition of LNEF.

Table 12.Model qualitya, b, c.

Type Criteria q= 0.1 q= 0.25 q= 0.5 q= 0.75 q= 0.9

PV Pseudo R squared 0.9276 0.9305 0.9257 0.9143 0.9003
MAE 0.0985 0.0778 0.0671 0.0751 0.1062

WIND Pseudo R squared 0.9102 0.9096 0.9201 0.9065 0.8921
MAE 0.1310 0.1037 0.0722 0.0841 0.1093

BIO Pseudo R squared 0.9304 0.9299 0.9298 0.9095 0.8979
MAE 0.1045 0.0844 0.0635 0.0792 0.1096

Note:MAE is mean absolute error.
a Dependent Variables: Zscore(EEF).
b Model: [%1, (Intercept)].
c Method: simplex algorithm.

decreases by 0.4206, 1.3015, and 1.0072 units respectively for each unit increase in photovoltaic, wind energy,
and biomass energy consumption; when Q= 0.25, EEF decreases by 0.3596, 1.0199, and 1.0359 units for
each unit increase in photovoltaic, wind energy and biomass energy consumption; when Q= 0.5, EEF
decreases by 0.2362, 0.7749, and 0.9643 units for each unit increase in photovoltaic, wind energy and
biomass energy consumption; when Q= 0.75, EEF decreases by 0.2017, 0.5223 and, 0.5113 units for each
unit increase in photovoltaic, wind and biomass energy consumption; when Q= 0.9, EEF decreases by
0.1521, 0.4340, and 0.4904 units for each additional unit of photovoltaic, wind energy and biomass energy
consumption. With the increase of the EEF, the reduction effect of photovoltaic, wind energy, and biomass
energy consumption on the EEF is significantly reduced, but the impact degree is different. When EEF is
small, wind energy plays a greater role in reducing EEF, followed by biomass energy, and photovoltaics is the
smallest. With the increase of EEF, the reduction effect of wind energy on the EEF decreases rapidly, followed
by biomass energy. When EEF is large, the reduction effects of three renewable energy sources tend to be the
same, but biomass energy is the largest, followed by wind energy and photovoltaics.

To further explore the characteristics of each explanatory variable on the distribution of the EEF under
different renewable energy consumption, we draw the regression model estimation results under all
quantiles. Figures 4–6 show the estimated coefficients and confidence intervals of the six explanatory
variables and the intercepts at all quantiles for different renewable energy consumption. The black line shows
the parameter estimates for different regression quantiles, and the blue area represents the 95% confidence
interval for the parameter estimate. For comparison, the solid red line represents the parameter estimates of
the ordinary linear regression with the same predictors, and the dashed red line is the 95% confidence
interval of the ordinary linear regression.
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Table 13. Parameter estimates by different quantiles a, b.

Type Parameter q= 0.1 q= 0.25 q= 0.5 q= 0.75 q= 0.9

PV Intercept −0.0941∗∗∗ −0.0591∗∗∗ 0.0183∗ 0.0597∗∗∗ 0.1045∗∗∗

Zscore (GDP) 2.7797∗∗∗ 2.2285∗∗∗ 1.5577∗∗∗ 2.0157∗∗∗ 1.9498∗∗∗

Zscore (SIZE) −0.6339∗∗∗ −0.57∗∗∗ −0.2542∗∗ 0.0384 0.2227∗∗∗

Zscore (INC) −1.1629∗∗ −0.6335∗∗ −0.2079 −1.1399∗∗∗ −1.3436∗∗∗

Zscore (RD) 0.5098∗∗∗ 0.4788∗∗∗ 0.3729∗∗∗ 0.4078∗∗∗ 0.4127∗∗∗

Zscore (STR) 0.2014∗∗∗ 0.2885∗∗∗ 0.4023∗∗∗ 0.2707∗∗∗ 0.2023∗∗∗

Zscore (PV) −0.4206∗∗∗ −0.3596∗∗∗ −0.2362∗∗∗ −0.2017∗∗∗ −0.1521∗∗∗

WIND Intercept −0.1277∗∗∗ −0.0821∗∗∗ 0.0232∗∗∗ 0.0693∗∗∗ 0.1061∗∗∗

Zscore (GDP) 3.3784∗∗∗ 2.6279∗∗∗ 1.9837∗∗∗ 1.3531∗∗∗ 0.7550∗∗∗

Zscore (SIZE) −0.7686∗∗∗ −0.4558∗∗∗ 0.1808∗ 0.0056 −0.0423∗∗∗

Zscore (INC) −1.0619∗∗∗ −0.8044 −0.3777 −0.2856 0.1746∗∗∗

Zscore (RD) 0.5669∗∗∗ 0.5558∗∗∗ 0.0489 0.4918∗∗∗ 0.6024∗∗∗

Zscore (STR) −0.1553∗∗∗ −0.0480 0.2159∗∗∗ 0.1780∗∗∗ 0.1910∗∗∗

Zscore (WIND) −1.3015∗∗∗ −1.0199∗∗∗ −0.7749∗∗∗ −0.5223∗∗∗ −0.4340∗∗∗

BIO Intercept −0.1027∗∗∗ −0.0717∗∗∗ 0.0049 0.0627∗∗∗ 0.1080
Zscore (GDP) 0.7100∗∗∗ 1.4652∗∗∗ 1.9700∗∗∗ 2.1460∗∗∗ 3.2740∗∗∗

Zscore (SIZE) −0.2170∗∗ −0.3514∗∗∗ 0.0322 0.0953 0.2526∗∗∗

Zscore (INC) 1.5636∗∗∗ 0.8249∗∗ 0.0215 −0.9605∗∗∗ −2.1202∗∗∗

Zscore (RD) 0.1073∗ 0.2421∗∗∗ 0.0673 0.3460∗∗∗ 0.2113∗∗∗

Zscore (STR) 0.3180∗∗∗ 0.2780∗∗∗ 0.2984∗∗∗ 0.2188∗∗∗ 0.1832∗∗∗

Zscore (BIO) −1.0072∗∗∗ −1.0359∗∗∗ −0.9643∗∗∗ −0.5113∗∗∗ −0.4904∗∗∗

Note: aDependent Variables: Zscore (EEF).
b Model: [%1, (Intercept)].

Figure 4. Plot of the estimated parameters of photovoltaic.

As shown in figure 4, the coefficient and confidence interval of photovoltaics are significantly negative,
indicating that the impact of photovoltaic consumption on each quantile of the EEF is negative and
significant, and with the increase of EEF, the negative influence gradually weakens. The coefficients and
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Figure 5. Plot of the estimated parameters of wind energy.

confidence intervals of scientific research funds, economic development, and energy structure are
significantly positive, indicating that the impact of scientific research funds, economic development, and
energy structure on each quantile of the EEF is positive and significant. When EEF is low, the positive impact
of scientific research funds and economic development on it is larger and gradually decreases; when EEF is
large, the positive impact of scientific research funds and economic development is similar under different
quantiles, while the positive impact of energy structure on the EEF first increases and then decreases with the
increase of it.

As shown in figure 5, the coefficient and confidence interval of wind energy are significantly negative,
indicating that the impact of wind energy consumption on each quantile of the EEF is negative and
significant, and has a decreasing trend with the increase of the EEF. The coefficient and confidence interval of
economic development are significantly positive, indicating that the impact of economic development on
each quantile of the EEF is positive and significant. With the increase of the EEF, the positive impact of
economic development on it is gradually decreasing.

As shown in figure 6, the coefficient and confidence interval of biomass energy are significantly negative,
indicating that the impact of biomass energy consumption on each quantile of the EEF is negative and
significant. When EEF is small, the negative influence is large, and then gradually weakens. The coefficients
and confidence intervals of economic development and energy structure are significantly positive, indicating
that the impact of economic development and energy structure on each quantile of the EEF is positive and
significant. With the increase of the EEF, the positive impact of economic development on it is gradually
increasing, while the overall impact of energy structure on the EEF shows a downward trend.

Figure 7 and table A6 respectively show the prediction results of the impact of photovoltaic, wind energy,
and biomass energy on the EEF when the control variables such as economic development, population size,
per capita disposable income of residents, scientific research funds, and energy structure are 0. The results
show that with the growth of photovoltaic, wind energy, and biomass energy consumption, EEF shows a
downward trend in different quantiles, but the declining gap is large. The growth of photovoltaic, wind
energy, and biomass energy consumption has a more obvious negative impact on the low EEF and a weaker
negative impact on the high EEF.
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Figure 6. Plot of the estimated parameters of biomass energy.

Figure 7. Prediction lines.

To sum up, photovoltaic, wind energy and biomass energy can reduce EEF by replacing fossil energy
consumption, but the share of primary power and other energy in China’s total primary energy production is
less than 20% in 2020, so the reduction effect is limited. Simultaneously, restricted by factors such as
technology, the increase in the consumption of photovoltaic, wind energy and biomass energy are lower than
the increase in the EEF. Therefore, with the increase in the EEF, the reduction effect of three renewable energy
consumption is gradually reducing, and the changing trend is in line with the expected results.

5. Conclusions and recommendations

The paper offers two methodologies for assessing the impact of renewable energy consumption on the EEF.
The study uses the VAR model to explore the impact of economic development, population size, per capita
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disposable income of residents, scientific research funds, energy structure, and renewable energy
consumption on the EEF. The Granger causality test shows that all variables are not the Granger causes of the
EEF. The cointegration test shows that there is a long-term cointegration relationship between them.
Increasing economic development, scientific research funds, energy structure, and renewable energy
consumption will decrease EEF while increasing population size, and per capita disposable income of
residents will increase EEF. The impulse response analysis finds that population size, energy structure, and
scientific research funds have a large positive impact on the EEF, but the degree of impact decreases in turn,
the positive impact of per capita disposable income of residents on the EEF first increases and then decreases,
while the negative impact of economic development on the EEF becomes positive as time increases, and the
negative impact of renewable energy consumption on the EEF gradually increases with time. The variance
decomposition results show that the average contribution rate of the EEF to its changes is 79.19%, the
average contribution rate of renewable energy consumption to EEF changes is 1.34%, economic
development, population size, scientific research funds, per capita disposable income of residents, and energy
structure contribute to EEF changes are 0.38%, 9.99%, 2.58%, 1.60%, and 4.91%, respectively.

In addition, the paper uses the quantile regression method to explore the impact of photovoltaic, wind
energy, and biomass energy on the EEF. The results show that the impact of photovoltaic, wind energy, and
biomass energy consumption on each quantile of the EEF is negative and significant, and the negative effect
gradually weakens with the increase of the EEF. When economic development, population size, per capita
disposable income of residents, scientific research funds, and energy structure are 0, EEF shows a downward
trend in different quantiles with the growth of photovoltaic, wind energy, and biomass energy consumption.
When EEF is low, the reduction effect of photovoltaic, wind energy, and biomass energy consumption on the
EEF decreases the most, that is, the increase of photovoltaic, wind energy, and biomass energy consumption
has a more obvious negative impact on low EEF, the negative effect of EEF is weak on high EEF, and with the
increase of the EEF, the decreasing effect of three kinds of renewable energy on the EEF is wind energy,
biomass energy, and photovoltaic in descending order.

To reduce EEF and promote the development of renewable energy, we consider the following suggestions:
(a) Vigorously promote international cooperation in renewable energy technology, make full use of China’s
advantages in the market, capital, critical minerals, and some technologies, actively promote the construction
of transnational power grids with neighboring countries, and support Chinese enterprises with technological
advantages to go global, to improve China’s market participation and recognition in the development of
renewable energy in the Belt and Road region. (b) Optimizing the use of land and sea resources related to
renewable energy. Do a good job in the land occupation plan for the development of clean energy such as
solar energy and wind energy, and ensure the land demand for clean energy development while ensuring the
safety of food arable land and the ecological environment. In addition, vigorously develop distributed
photovoltaics, offshore wind energy, and other clean energy with less land and reduced land occupation.
(c) Further improve the supporting policies related to the development of renewable energy, accelerate the
improvement of the renewable energy power market trading mechanism, improve the consumption capacity
of renewable energy through market-oriented methods, strengthen support policies for the research and
development and application of energy storage technology, and improve the coordinated development
guarantee mechanism and policy of renewable energy and social and natural ecological environment
protection.
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Appendix

Table A1. ADF unit root test results.

Variable Test form (C,T,K) P-value Conclusion

LNEEF (C,0,11) 0.0212 Stable∗∗

LNGDP (C,0,11) 0.0669 Stable∗

LNINC (C,0,11) 0.1340 Unstable
LNRD (C,0,11) 0.5070 Unstable
LNRE (C,0,11) 0.9483 Unstable
LNSIZE (C,0,11) 0.8427 Unstable
LNSTR (C,0,11) 0.8113 Unstable
D (LNEEF) (0,0,11) 0.1359 Unstable
D (LNGDP) (0,0,11) 0.4881 Unstable
D (LNINC) (0,0,11) 0.5568 Unstable
D (LNRD) (0,0,11) 0.0397 Stable∗∗

D (LNRE) (0,0,11) 0.4069 Unstable
D (LNSIZE) (0,0,11) 0.3011 Unstable
D (LNSTR) (0,0,11) 0.5276 Unstable

Table A2. Variance decomposition results.

Period S.E. LNEF LNGDP LNINC LNRD LNRE LNSIZE LNSTR

1 0.0073 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0136 98.6823 0.0130 0.5150 0.1044 0.0155 0.2512 0.4186
3 0.0192 95.1381 0.1219 1.2804 0.5294 0.2185 1.4191 1.2926
4 0.0243 89.3527 0.3263 1.8852 1.3007 0.7277 3.9036 2.5038
5 0.0290 82.2630 0.5262 2.1950 2.2398 1.3917 7.4560 3.9284
6 0.0335 75.2052 0.6384 2.2611 3.1282 1.9553 11.3782 5.4337
7 0.0378 69.0884 0.6489 2.1885 3.8548 2.2780 15.0248 6.9167
8 0.0417 64.1995 0.5902 2.0566 4.4227 2.3691 18.0507 8.3112
9 0.0452 60.4347 0.5092 1.9064 4.8907 2.3095 20.3714 9.5781
10 0.0482 57.5482 0.4536 1.7545 5.3257 2.1800 22.0417 10.6964
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Table A3. Parameter estimates at different quantiles of photovoltaics a, b.

95% confidence interval

Quantile Parameter Coefficient Std. Error t df Sig. Lower bound Upper bound

0.10 Intercept −0.0941 0.0131 −7.1833 73 <0.001 −0.1203 −0.0680
Zscore (PV) −0.4206 0.0422 −9.9599 73 <0.001 −0.5048 −0.3365
Zscore (GDP) 2.7797 0.4422 6.2857 73 <0.001 1.8984 3.6610
Zscore (SIZE) −0.6339 0.1612 −3.9326 73 <0.001 −0.9551 −0.3126
Zscore (INC) −1.1629 0.5245 −2.2174 73 0.0297 −2.2082 −0.1177
Zscore (RD) 0.5098 0.1080 4.7222 73 <0.001 0.2946 0.7250
Zscore (STR) 0.2014 0.0629 3.2008 73 0.0020 0.076 0.3269

0.25 Intercept −0.0591 0.0067 −8.821 73 <0.001 −0.0725 −0.0458
Zscore (PV) −0.3596 0.0216 −16.6432 73 0.0000 −0.4026 −0.3165
Zscore (GDP) 2.2285 0.2262 9.8508 73 <0.001 1.7777 2.6794
Zscore (SIZE) −0.5700 0.0825 −6.9118 73 <0.001 −0.7343 −0.4056
Zscore (INC) −0.6335 0.2683 −2.3612 73 0.0209 −1.1682 −0.0988
Zscore (RD) 0.4788 0.0552 8.6698 73 <0.001 0.3687 0.5889
Zscore (STR) 0.2885 0.0322 8.9593 73 <0.001 0.2243 0.3526

0.50 Intercept 0.0183 0.0096 1.916 73 0.0593 −0.0007 0.0374
Zscore (PV) −0.2362 0.0308 −7.6602 73 <0.001 −0.2976 −0.1747
Zscore (GDP) 1.5577 0.3229 4.8247 73 <0.001 0.9142 2.2012
Zscore (SIZE) −0.2542 0.1177 −2.1597 73 0.0341 −0.4887 −0.0196
Zscore (INC) −0.2079 0.3829 −0.5429 73 0.5888 −0.971 0.5552
Zscore (RD) 0.3729 0.0788 4.7309 73 <0.001 0.2158 0.5300
Zscore (STR) 0.4023 0.0459 8.7551 73 <0.001 0.3107 0.4939

0.75 Intercept 0.0597 0.0065 9.2126 73 <0.001 0.0468 0.0726
Zscore (PV) −0.2017 0.0209 −9.6628 73 <0.001 −0.2434 −0.1601
Zscore (GDP) 2.0157 0.2186 9.2204 73 <0.001 1.5800 2.4514
Zscore (SIZE) 0.0384 0.0797 0.4822 73 0.6311 −0.1204 0.1972
Zscore (INC) −1.1399 0.2593 −4.3966 73 <0.001 −1.6566 −0.6232
Zscore (RD) 0.4078 0.0534 7.6405 73 <0.001 0.3014 0.5141
Zscore (STR) 0.2707 0.0311 8.7000 73 <0.001 0.2087 0.3327

0.90 Intercept 0.1045 0.0067 15.6632 73 0.0000 0.0912 0.1178
Zscore (PV) −0.1521 0.0215 −7.0735 73 <0.001 −0.195 −0.1092
Zscore (GDP) 1.9498 0.2251 8.6599 73 <0.001 1.5011 2.3985
Zscore (SIZE) 0.2227 0.0821 2.7137 73 0.0083 0.0591 0.3863
Zscore (INC) −1.3436 0.2670 −5.0319 73 <0.001 −1.8757 −0.8114
Zscore (RD) 0.4127 0.0550 7.5085 73 <0.001 0.3032 0.5223
Zscore (STR) 0.2023 0.0320 6.3125 73 <0.001 0.1384 0.2661

Note: a Dependent Variable: Zscore (EEF).
b Model: [%1, (Intercept)].
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Table A4. Parameter estimates at different quantiles of wind energy a, b.

95% confidence interval

Quantile Parameter Coefficient Std. Error t df Sig. Lower bound Upper bound

0.10 Intercept −0.1277 0.0093 −13.7514 73 0.0000 −0.1462 −0.1092
Zscore (WIND) −1.3015 0.0832 −15.6462 73 0.0000 −1.4673 −1.1358
Zscore (GDP) 3.3784 0.3066 11.0174 73 0.0000 2.7673 3.9896
Zscore (SIZE) −0.7686 0.1142 −6.7290 73 <0.001 −0.9963 −0.5410
Zscore (INC) −1.0619 0.3783 −2.8072 73 0.0064 −1.8158 −0.3080
Zscore (RD) 0.5669 0.0722 7.8539 73 <0.001 0.423 0.7107
Zscore (STR) −0.1553 0.048 −3.2338 73 0.0018 −0.251 −0.0596

0.25 Intercept −0.0821 0.0125 −6.5621 73 <0.001 −0.107 −0.0571
Zscore (WIND) −1.0199 0.1120 −9.1041 73 <0.001 −1.2431 −0.7966
Zscore (GDP) 2.6279 0.4129 6.3638 73 <0.001 1.8049 3.4509
Zscore (SIZE) −0.4558 0.1538 −2.9631 73 0.0041 −0.7624 −0.1492
Zscore (INC) −0.8044 0.5094 −1.5791 73 0.1186 −1.8196 0.2108
Zscore (RD) 0.5558 0.0972 5.7182 73 <0.001 0.3621 0.7495
Zscore (STR) −0.0480 0.0647 −0.7429 73 0.4600 −0.1769 0.0809

0.50 Intercept 0.0232 0.0083 2.8105 73 0.0063 0.0067 0.0397
Zscore (WIND) −0.7749 0.0739 −10.4785 73 <0.001 −0.9222 −0.6275
Zscore (GDP) 1.9837 0.2726 7.2770 73 <0.001 1.4404 2.5269
Zscore (SIZE) 0.1808 0.1015 1.7808 73 0.0791 −0.0216 0.3832
Zscore (INC) −0.3777 0.3363 −1.1233 73 0.2650 −1.0479 0.2924
Zscore (RD) 0.0489 0.0642 0.7617 73 0.4487 −0.079 0.1767
Zscore (STR) 0.2159 0.0427 5.057 73 <0.001 0.1308 0.3010

0.75 Intercept 0.0693 0.0078 8.833 73 <0.001 0.0537 0.085
Zscore (WIND) −0.5223 0.0703 −7.4305 73 <0.001 −0.6624 −0.3822
Zscore (GDP) 1.3531 0.2591 5.2221 73 <0.001 0.8367 1.8695
Zscore (SIZE) 0.0056 0.0965 0.0582 73 0.9538 −0.1867 0.1980
Zscore (INC) −0.2856 0.3196 −0.8936 73 0.3745 −0.9226 0.3514
Zscore (RD) 0.4918 0.061 8.0635 73 <0.001 0.3702 0.6133
Zscore (STR) 0.1780 0.0406 4.3862 73 <0.001 0.0971 0.2589

0.90 Intercept 0.1061 0.0079 13.4700 73 0.0000 0.0904 0.1218
Zscore (WIND) −0.4340 0.0706 −6.1502 73 <0.001 −0.5747 −0.2934
Zscore (GDP) 0.7550 0.2601 2.9021 73 0.0049 0.2365 1.2734
Zscore (SIZE) −0.0423 0.0969 −0.4366 73 0.6637 −0.2354 0.1508
Zscore (INC) 0.1746 0.3209 0.5442 73 0.5879 −0.4649 0.8142
Zscore (RD) 0.6024 0.0612 9.8377 73 <0.001 0.4804 0.7244
Zscore (STR) 0.1910 0.0407 4.6889 73 <0.001 0.1098 0.2722

Note: aDependent Variable: Zscore (EEF).
b Model: [%1, (Intercept)].
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Table A5. Parameter estimates at different quantiles of biomass energy a, b.

95% confidence interval

Quantile Parameter Coefficient Std. Error t df Sig. Lower bound Upper bound

0.10 Intercept −0.1027 0.0073 −14.1382 73 0.0000 −0.1172 −0.0883
Zscore (BIO) −1.0072 0.0597 −16.8722 73 0.0000 −1.1262 −0.8883
Zscore (GDP) 0.7100 0.2419 2.9353 73 0.0045 0.2279 1.1920
Zscore (SIZE) −0.2170 0.0896 −2.4231 73 0.0179 −0.3955 −0.0385
Zscore (INC) 1.5636 0.2958 5.2853 73 <0.001 0.974 2.1533
Zscore (RD) 0.1073 0.0584 1.8379 73 0.0701 −0.0091 0.2237
Zscore (STR) 0.3180 0.0349 9.1114 73 <0.001 0.2485 0.3876

0.25 Intercept −0.0717 0.0080 −8.9300 73 <0.001 −0.0877 −0.0557
Zscore (BIO) −1.0359 0.0660 −15.6986 73 0.0000 −1.1674 −0.9043
Zscore (GDP) 1.4652 0.2673 5.4806 73 <0.001 0.9324 1.9980
Zscore (SIZE) −0.3514 0.0990 −3.5496 73 <0.001 −0.5487 −0.1541
Zscore (INC) 0.8249 0.3270 2.5226 73 0.0138 0.1732 1.4766
Zscore (RD) 0.2421 0.0645 3.7510 73 <0.001 0.1135 0.3707
Zscore (STR) 0.2780 0.0386 7.2049 73 <0.001 0.2011 0.3549

0.50 Intercept 0.0049 0.0085 0.5741 73 0.5677 −0.0121 0.0218
Zscore (BIO) −0.9643 0.0699 −13.8020 73 0.0000 −1.1035 −0.8251
Zscore (GDP) 1.9700 0.2831 6.9592 73 <0.001 1.4058 2.5342
Zscore (SIZE) 0.0322 0.1048 0.3076 73 0.7593 −0.1767 0.2411
Zscore (INC) 0.0215 0.3462 0.0620 73 0.9508 −0.6686 0.7115
Zscore (RD) 0.0673 0.0683 0.9844 73 0.3282 −0.0689 0.2035
Zscore (STR) 0.2984 0.0409 7.3053 73 <0.001 0.2170 0.3799

0.75 Intercept 0.0627 0.0067 9.3761 73 <0.001 0.0493 0.0760
Zscore (BIO) −0.5113 0.0549 −9.3129 73 <0.001 −0.6208 −0.4019
Zscore (GDP) 2.1460 0.2225 9.6465 73 <0.001 1.7026 2.5893
Zscore (SIZE) 0.0953 0.0824 1.1563 73 0.2513 −0.0689 0.2594
Zscore (INC) −0.9605 0.2721 −3.5299 73 <0.001 −1.5028 −0.4182
Zscore (RD) 0.346 0.0537 6.4419 73 <0.001 0.2389 0.4530
Zscore (STR) 0.2188 0.0321 6.8164 73 <0.001 0.1549 0.2828

0.90 Intercept 0.1080 0.0046 23.5424 73 0.0000 0.0989 0.1172
Zscore (BIO) −0.4904 0.0377 −13.0071 73 0.0000 −0.5656 −0.4153
Zscore (GDP) 3.2740 0.1528 21.4307 73 0.0000 2.9695 3.5784
Zscore (SIZE) 0.2526 0.0566 4.4656 73 <0.001 0.1399 0.3653
Zscore (INC) −2.1202 0.1869 −11.3464 73 0.0000 −2.4926 −1.7478
Zscore (RD) 0.2113 0.0369 5.7303 73 <0.001 0.1378 0.2849
Zscore (STR) 0.1832 0.0220 8.3096 73 <0.001 0.1393 0.2271

Note: a Dependent Variable: Zscore (EEF).
b Model: [%1, (Intercept)].

Table A6. Prediction table a, b, c.

Zscore (PV) q= 0.1 q= 0.25 q= 0.5 q= 0.75 q= 0.9

−0.5286801 0.1282 0.131 0.1432 0.1663 0.1849
3.2227373 −1.4498 −1.218 −0.7429 −0.5905 −0.3857

Zscore (WIND) q= 0.1 q= 0.25 q= 0.5 q= 0.75 q= 0.9

−0.7953 0.9074 0.7290 0.6395 0.4847 0.4513
2.4143 −3.2700 −2.5443 −1.8475 −1.1916 −0.9417

Zscore (BIO) q= 0.1 q= 0.25 q= 0.5 q= 0.75 q= 0.9

−0.9187 0.8226 0.8799 0.8908 0.5324 0.5586
2.7728 −2.8956 −2.944 −2.669 −1.3552 −1.2519
a Dependent Variable: Zscore (EEF).
b Model: [%1, (Intercept)].
c Predictions in the model are evaluated at Zscore (GDP)= 0.0000000, Zscore (SIZE)= 0.0000000.

Zscore (INC)= 0.0000000, Zscore (RD)= 0.0000000, Zscore (STR)= 0.0000000.
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