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Abstract
Helium-3 (3He) is a noble gas that has critical applications in scientific research and promising
application potential as clean fusion energy. It is thought that the lunar regolith contains large
amounts of helium, but it is challenging to extract because most helium atoms are reserved in
defects of crystals or as solid solutions. Here, we find large amounts of helium bubbles in the
glassy surface layer of ilmenite particles that were brought back by the Chang’E-5 mission. The
special disordered atomic packing structure of glasses should be the critical factor for capturing
the noble helium gas. The reserves in bubbles do not require heating to high temperatures to be
extracted. Mechanical methods at ambient temperatures can easily break the bubbles. Our
results provide insights into the mechanism of helium gathering on the moon and offer guidance
on future in situ extraction.

Supplementary material for this article is available online
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Future perspectives
Lunar regolith contains important resources that are rare on Earth.
For example, helium-3, which is much more abundant on the
moon than on the earth, is a vital element for nuclear fusion and
future developments in energy sectors. Herein, we report abund-
ant helium bubbles in the glassy surface layer of lunar regolith
particles. The disordered atomic packing structure of glass plays
a critical role in capturing and retaining the noble helium gas.
Compared to the helium dissolved in the lunar crystal lattice that
requires high temperatures to release, the helium gas contained in
bubbles is much easier to extract by using a mechanical milling
strategy at ambient temperatures. This demonstrates promising
futures for a lunar gold rush.

1. Introduction

The moon has a variety of unique resources, which are import-
ant supplements and reserves for the terrestrial resources and
will have a far-reaching impact on the sustainable develop-
ment of human society. 3He, an isotope of helium, is a clean,
safe and controllable fusion fuel. Unfortunately, 3He is rare
on Earth (about 0.5 tons). It has been supposed that 3He is
very abundant in lunar rocks and soil grains [1, 2] due to the
intense solar wind irradiation on the moon. Exploration of
lunar resources, in particular 3He, has become an inevitable
trend in world space activities, because the resources not only
provide energy for future lunar exploitation but also help to
meet the growing energy needs on Earth [3, 4]. Determining
the form of existence and the associated abundance of 3He is
crucial for effective usage of noble resources.

In previous works, the reservation of helium on the moon
in different lunar rocks has been studied [5–8] either by in situ
multispectral optical reflectance method [8] or ex situ analyt-
ical devices in laboratories [5, 6, 9]. It has been suggested that
ilmenite is remarkably retentive of helium [5, 7, 8, 10–13]. Its
helium content is closely correlated with the concentration of
TiO2 in ilmenite [6, 8]. The helium atoms were thought to be
mostly retained in defects or as solid solutions in lunar regolith
particles. Accordingly, the lattice of ilmenite particles is con-
sidered to be suitable for capturing 3He [5, 10–12]. To extract
the 3He, high temperatures, e.g. 400 ◦C–1500 ◦C, are required
[14, 15], because the diffusion rate that determines the release
rate of 3He is higher at high temperatures [16–18]. It was found
that the concentration of helium is very rich in the region near
the surface [19], and it is much higher than that predicted
by simulations based on a diffusion model [20]. Therefore,
it is intriguing to research why the surface layer can capture
more helium.

In this work, we investigated the microstructures of lunar
ilmenite particles brought back by Chang’E-5 [21–23] using
an advanced spherical aberration-corrected transmission elec-
tron microscope (TEM) equipped with electron energy loss
spectroscopy (EELS) and energy dispersive spectroscopy
(EDS). It is found that there are huge amounts of helium
bubbles in the glassy surface layer on the ilmenite particles.
The glassy surface that is likely formed by irradiation acts as a
reservoir to capture and retain helium gas owing to the superb

stability of the lunar glass. We estimate the total reservation of
helium gas on the moon according to our results.

1.1. Ilmenite particle identification

The Chang’E-5 samples studied in this work were scooped
from the lunar regolith surface (samples CE5C0400), which
comprise approximately 6.0% ilmenite, 44.5% pyroxene,
30.4% plagioclase, 15.5% glass phases, and 3.6% olivine [24].
To identify the ilmenite particles, the lunar regolith particles
were loaded in a scanning electron microscope (SEM) and
screened by using back-scattering mode, because the heavy
elements, e.g. Fe and Ti are more sensitive in the back-
scattering mode. Then, several ilmenite (FeTiO3) particles
containing Fe, Ti and O elements were identified and used for
structural characterization. A representative ilmenite particle
is shown in figure 1. Some agglutinates that mainly contain
Ca, Al, Si, and O are attached to the ilmenite particle. A thin
slice was cut from the ilmenite particle by using focused ion
beam (FIB) for further TEM and EELS studies.

1.2. Helium bubbles

High-resolution transmissionmicroscopy was applied to study
the microstructure of ilmenite particles (see figure 2). As
shown in figures 2(a)–(c), the top layer from the surface of
the ilmenite particle is a glassy layer with dense disordered
atomic packing structures (see the inset high-resolution TEM
image). Its thickness is about 40–50 nm. Beneath the glassy
layer is a partial glass region with a thickness of about 30 nm
before reaching the inner crystalline phase. It is known that the
irradiation of high-energy ions can induce the amorphization
of crystalline materials, and the degree of the amorphization
decreases with the increase of the depth [25–27]. Therefore,
the top glass layer and the partially glassy layer beneath on the
surface of the ilmenite should be attributed to the irradiation
of the solar wind or other high-energy cosmic-ray irradiations.

Remarkably, we find plenty of spherical bubbles with dia-
meters of about 5–25 nm in the glassy layer. Figure 2(d) shows
the EELS curves acquired in different locations in figure 2(a).
A strong helium peak at around 22 eV [10, 28] is detected in
the big bubble (site 1 in figure 2(a)). The helium signal in the
small bubble (site 2 in figure 2(a)) is weaker than that in the
big bubble. The helium signal in the top glass layer (site 3 in
figure 2(a)) is very weak and the signal in the crystalline phase
(site 4 in figure 2(a)) is too weak to be detectable.

It can be seen that helium bubbles are mainly retained in the
glassy layer (zoomed-in in figure 2(b)). It is noticeable that the
helium bubbles are in spherical shapes with clear interfaces
(figure 2(c)), which is attributed to the viscous and flowable
characteristics of glasses [29–31]. These results suggest that
the glassy layer plays a critical role in capturing and retaining
helium gas.

The helium density is calculated following [32]: nHe =
IHe

IZIPσHed
, where nHe is the helium volume density (in He nm−3);

IHe is the integrated signal of helium; IZIP is the integrated
intensity of the zero-loss peak; σHe = 5.9 × 10−6 N m2 is the

2



Mater. Futures 1 (2022) 035101 A Li et al

Figure 1. An SEM image and EDS elemental mapping for a representative ilmenite (FeTiO3) particle with attachment of agglutinates. A
thin layer is cut for TEM test from the white rectangle site in the first image.

Figure 2. TEM images and EELS curves. (a) The bright field TEM image of the ilmenite (FeTiO3) sample. It has a glassy surface layer of
about 50 nm in thickness where abundant helium bubbles are observed. Below the glass layer is first a partial glass region and then the
crystalline phase. On the right-hand side are high-resolution TEM images. (b) The zoomed-in image of the glass layer containing many
helium gas bubbles. (c) A spherical helium bubble in the glass with clear interface. (d) The EELS curves acquired at different locations in
(a); site 1 is a big bubble; site 2 is a small bubble; site 3 is in the glass layer; site 4 is in the crystalline phase. The helium signal at around
22 eV is detected in the glassy layer.

cross section for the He 1s-2p transition [28], and the d is the
local thickness at the pixel position of the analyzed He nano-
volume. The calculated helium volume density in different
helium bubbles ranges from 50 to 192 He nm−3. The pressure

inside the bubbles is estimated according to [33, 34] to be
about 1–39 GPa (see details in supplementary information,
available online at stacks.iop.org/MF/1/035101/mmedia). The
total mass of the helium gas in bubbles is estimated to be about
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Figure 3. EDS mapping surrounding a helium bubble. (a) HAADF TEM image, and corresponding EDS mapping for (b) Fe, (c) O, and
(d) Ti. The dashed circles are guiding eyes to the bubble outline. (e) The linear scan of elemental distribution across a helium bubble, see the
dashed arrow in (a).

MHe = (8.4–64.5) × 1010 kg with a total volume of helium
bubbles of about (2.5–5)× 108 m3 (details can be found in sup-
plementary information). Upon the ratio of 3He to 4He is about
4× 10−4 [35], the mass of 3He in the bubbles should be up to
0.26 × 109 kg, which may be 1/10–1/4 of the total reserves of
3He on the moon. According to the estimation by Wittenberg
et al [3], the fusion energy produced by about 100 tons of 3He
could meet the global needs. Thus, the helium gas retained
in lunar glass bubbles will be enough for the needs of about
2600 years on Earth.

Compared to the 3He atoms captured in defects and in solid
solutions that are difficult to extract, the helium gas in bubbles
is of high quality, which is easier to extract. Mechanical meth-
ods at ambient temperatures, e.g. ball milling, can break the
bubbles and efficiently release the gas. This is highly appreci-
ated for in situ exploring the 3He gas on the moon.

1.3. Formation and capture mechanisms of helium bubbles

It is intriguing to investigate how and why the helium bubbles
were captured and retained in the glass layer. The elemental
mapping of the region surrounding a helium bubble was stud-
ied by using EDS (figure 3). The Ti and O atoms distrib-
ute homogeneously across the glass layer while there are
some Fe-rich nano-clusters surrounding the helium bubble.
The precipitation of Fe clusters may be attributed to the
reduction reaction by the hydrogen atoms in the solar wind.
The glassy layer is mainly composed of TiO2. Even though
the solar wind irradiation spans billions of years [24], the
damage is limited to a thin layer of only 50 nm. This
denotes a high irradiation tolerance of ilmenite, especially
with the protection of a glassy layer whose disordered atomic

packing structure can greatly decrease the speed of ions in the
solar wind.

A schematic illustration for the process to capture and retain
the helium gas in ilmenite is shown in figure 4. The ilmen-
ite lattice is more suitable for helium atoms to implant com-
pared to other lunar regolith particles [36, 37]. The high-speed
ions in the solar wind implant into the lattice and are trapped
in the vacancies and interstitials (figure 4(a)). After a long-
time irradiation, the lattice close to the surface is damaged
and forms a glassy layer (figures 2 and 4(b)). Even though the
crystalline ilmenite can capture many helium atoms, it could
not retain them because of the channeling effect of crystal-
line lattice [38], that is, some orientation in a lattice structure
is easier for ions to implant and release. In addition, the hot-
cool cycles on the moon promote the release of these trapped
atoms in the lattice. When the helium atoms diffuse into the
surface glassy TiO2 layer with disordered and densely packed
structure, there is no crystalline tunneling effect, and helium
atoms are difficult to escape from the disordered structure and
are then retained and form bubbles in the glass. This is the
reason why the EELS results show that the helium concen-
tration in the inner crystalline structure is much lower than
that in the glassy surface, especially that the helium bubbles
all locates in the glassy layer. The ultrahigh stability [39, 40]
and dense atomic packing structure [41] of TiO2 glass can
retain the helium gas for ultra-long time. The high pressure
in the helium bubbles of about 1–39 GPa also confirms that
the glassy TiO2 is an ideal reservoir to retain helium gas.

In summary, even though the lunar regolith brought back
by Chang’E-5 mission is much younger than those from the
Apollo mission and Luna mission, it contains large amounts
of 3He resource. The 3He gas that is stored in bubbles in
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Figure 4. Schematic illustration of the capturing and retaining
process of helium (He) on the surface of ilmenite. (a) Helium atoms
in the solar wind implant into the lattice of crystalline ilmenite.
(b) Surface amorphization caused by long-time irradiation of the
solar wind. (c) Helium atoms diffuse into the glassy surface layer
and form bubbles.

the glassy surface layer of the ilmenite particles is more
convenient to extract in situ compared to the 3He atoms
retained in lattice defects. This work provides a first evidence
for the advantage of glass in capturing and retaining 3He on the
moon owing to its stable disordered atomic packing structure,
which acts as a reservoir of the noble 3He gas. Our findings
suggest the possibility for future exploration of 3He resource
on the moon.

2. Methods

2.1. Sample preparation

The Chang’E-5 samples studied in this research were scooped
from the lunar regolith surface (samples CE5C0400), which
comprises approximately 44.5% pyroxene, 30.4% plagioclase,
15% glass phase, 6.0% ilmenite, and 3.6% olivine. A small
number of samples were examined under a binocular optical
microscope, Ningbo Yongxin NM910, in an ultraclean envir-
onment provided by a glovebox (Mikrouna Inc.). The particles
with a size ranging from a few microns to dozens of microns
were hand-picked and then transferred to a sticky carbon sub-
strate. The selected particles were characterized by morpholo-
gic observations and the elemental mapping in a field emission
SEM, Thermo Scientific Verios G4 UC, with the following
parameter: acceleration voltage of 15.0 kV and probe current
of 3.2 nA. Under the back-scattering mode, the particles con-
taining heavy elements were confirmed and then EDS map-
pings were acquired on each particle to screen out particles
rich in Fe and Ti elements. The FeTi-rich particles were selec-
ted to prepare the sections using FIB microscopy with a FEI
Helios G4 CX. Regions of interest on the chosen particles
were coated with a thick ion beam deposited Pt film (∼1 µm)
before ion milling to prevent damage to the particle surface by
the ion beam.

2.2. Scanning transmission electron microscope
(STEM)-EELS measurements

STEM imaging was performed on a spherical aberration-
corrected STEM instrument, Thermo Fisher Spectra 300,
equipped with a 5th order aberration corrector. The instrument
provided an incident electron probe of ∼1.3 Å in full-width-
at-half-maximum with a convergent semiangle of 24.6 rad.
The beam current of the electron probe is set to be ∼50 pA
and a typical dose level of ∼0.4–1 × 108 N m2 as used for
high-resolution imaging. STEM measurements were conduc-
ted at 300 kV accelerating voltage under an ultra-high vacuum
level of∼1× 10−7 Pa. STEM images were acquired in bright
field mode and high-angle annular dark field (HAADF) mode,
respectively. As will be discussed later, a layer containing
many bubbles, which is located at ∼10 nm below the sample
surface, was observed via STEM. In order to detect the helium,
EELS acquisitions were conducted and recorded through a
Gatan 1066 with a collection semiangle of 50 rad. The energy
resolution determined by the full width at half maximum of
the zero-loss peak was approximately 0.5 eV. The EELS map-
pings were carried out on the regions containing the bubbles.
We carefully acquired the EELS signal from the central por-
tion of each bubble for the following accurate estimation of
helium density in the bubbles. EDS maps of the He bubbles
regions were collected with a Thermo Fisher EDS detector
with four probes. Data for EELS and EDS were acquired as
spectrum images. The EELS and EDS data analysis were per-
formed using theDigitalMicrograph software (Gatan Inc.) and
Velox software (Thermo Fisher Inc.), respectively.
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