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Abstract

Mixed-signal neuromorphic processors provide extremely low-power operation for edge inference
workloads, taking advantage of sparse asynchronous computation within spiking neural networks
(SNNs). However, deploying robust applications to these devices is complicated by limited
controllability over analog hardware parameters, as well as unintended parameter and dynamical
variations of analog circuits due to fabrication non-idealities. Here we demonstrate a novel
methodology for offline training and deployment of SNNs to the mixed-signal neuromorphic
processor DYNAP-SE2. Our methodology applies gradient-based training to a differentiable
simulation of the mixed-signal device, coupled with an unsupervised weight quantization method
to optimize the network’s parameters. Parameter noise injection during training provides
robustness to the effects of quantization and device mismatch, making the method a promising
candidate for real-world applications under hardware constraints and non-idealities. This work
extends Rockpool, an open-source deep-learning library for SNNs, with support for accurate
simulation of mixed-signal SNN dynamics. Our approach simplifies the development and
deployment process for the neuromorphic community, making mixed-signal neuromorphic
processors more accessible to researchers and developers.

1. Introduction

Neuromorphic processors use analog and mixed-signal circuits to emulate the dynamics and computational
abilities of biological neurons and synapses. One of the most advanced architectures is DYNAP-SE2 [1],
which has an asynchronous mixed-signal structure whose analog components operate in the subthreshold
range, making it a candidate for ultra-low power and ultra-low latency applications.

Devices such as DYNAP-SE2 offer a high degree of biological realism and configurability, but have been
historically difficult to configure for several reasons: their complex architecture; the vast number of
parameters due to high configurability; and the lack of standardized configuration protocols. Despite this
difficulty, DYNAP-SE family members have already been used in several low-dimensional signal processing
applications. In [2], real-time classification of heartbeat pathologies from multi-channel electrocardiogram
recordings was performed, distinguishing between nominal beats and pathological rhythms. In [3] and [4],
electromyography signals were analysed to distinguish the movement of hand muscles to classify gestures. In
these applications, the reservoir computing paradigm [5] was exploited. A semi-randomly initialized spiking
recurrent neural network was deployed to the DYNAP-SE device to integrate the temporal patterns hidden in
sensory signals. Classification was performed by a linear readout implemented on a conventional CPU, by
monitoring the spiking activities of hardware neurons on DYNAP-SE. These applications demonstrated that
RSNN inference on the Dynap-SE chip can operate in the sub-mW power range.

© 2024 The Author(s). Published by IOP Publishing Ltd
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DYNAP-SE2 and other similar devices individually instantiate arrays of synapses and neurons in analog
circuits. The analog nature of these circuits exposes them to variability of the individual device components,
due to variations introduced in the fabrication process. This variability, known as ‘mismatch’, introduces
diversity in the behavior of ostensibly identical neurons and synapses across and between chips [6, 7].
Mixed-signal devices such as DYNAP-SE2 do not usually permit individual control over each parameter on
the chip, instead grouping parameters such as time-constants, thresholds, and even weight values across a
number of neurons and synapses. This grouping reduces the parameter complexity of the device. While it
inherently presents a challenge in calibration, the additional factor of mismatch further intensifies this
challenge. In addition, grouping parameters means that the parameter configuration space of an SNN
deployed to the chip is itself heavily constrained.

As a result, training and deploying applications to these devices usually requires several months of
dedicated effort from skilled researchers. To address this challenge, our work introduces an efficient and
effective methodology that provides the potential for commercial application development for DYNAP-SE2.
Extending Rockpool, an open-source deep-learning library for SNNs [8], our toolchain performs offline
gradient-based hardware-aware optimization of SNNs, which can be robustly deployed at scale to
mixed-signal devices, while preserving behavior. This Rockpool tutorial, available at https://rockpool.ai/
devices/DynapSE/jax-training.html offers an in-depth Jupyter Notebook on how to train a spiking network
for use with the DYNAP-SE2 processor. It reproduces the experiment introduced in this paper, and
comprehensively covers creating synthetic datasets, constructing and fine-tuning a spiking neural network
with Rockpool and Jax, and evaluating the network’s performance. Additionally, it addresses gradient-based
optimization techniques and the complexities of device mismatch in mixed-signal chips.

This work provides a DYNAP-SE2 simulator, ‘DynapSim’, which operates in the same parameter space as
DYNAP family processors [1, 9]. DynapSim executes an efficient and accurate differentiable simulation of
the DYNAP-SE2 design dynamics to solve the characteristic circuit transfer functions over time. This
differentiable computing approach has in recent years been applied to SNNs to train deep spiking networks
with gradient-based methods borrowed from machine learning [10, 11].

In order to perform gradient-based optimization, a spiking neuron model requires an additional
surrogate gradient function to ensure loss gradients can propagate through the neuron [10, 12—14]. Broadly
speaking, this addresses the issue that the derivative of the spike generation functions used in spiking
neurons are ill-formed, resulting in zero or undefined gradients when propagating through the neuron. By
providing a surrogate gradient for the spike generation function, loss gradients can be preserved. In our
DYNAP-SE2 neuron implementation, taking the derivative of the output spike train So(#) with respect to a
parameter P that affects the membrane current dynamics appears as follows:

8Sout (t) _ 00 (Imemalspkthr) ) 0Imem
ap B aImem 8P '

Here, ©(-) denotes the Heaviside step function, and P is any parameter that changes the membrane
dynamics such as a leakage current, gain current, etc. In order to determine the effect of changing the
parameter P on the output spike train, 0O(-) /Olmem must be well defined. However, the derivative of ©(-) is
zero everywhere and infinte at the spiking threshold. As a solution to this problem, a continuous surrogate
function is defined that substitutes the derivative of O(-) in the backward pass of the backpropagation
algorithm. In particular, we adopt a rectified linear function (ReLU) as a surrogate, with constant derivative
when Inem > Leset- For further implementation details of the neuron model and the surrogate function see
the Rockpool tutorial https://rockpool.ai/devices/DynapSE/neuron-model.html.

DynapSim is used as a computational neuron model in offline SNN simulations and during training.
Rockpool translates the optimized networks to equivalent hardware configurations, and provides
straightforward deployment of these networks to DYNAP-SE2 chips. For an overview of the DYNAP-SE2
hardware, we refer the reader to [1]. We then describe the implementation details of DynapSim, and
demonstrate training, deployment and quantitative evaluation of a toy model to DYNAP-SE2 hardware. We
present the steps to achieve training and deployment using code examples for Rockpool.

Our implementation is available as part of the open-source Python package Rockpool: https://rockpool.
ai/devices/DynapSE/dynapse-overview.html, with code available at https://github.com/synsense/rockpool .

1.1. Overview of the DYNAP-SE2 hardware

The DYnamic Neuromorphic Asynchronous Processor—ScalablE 2 (DYNAP-SE2) is a mixed-signal chip
that inherits the event-driven nature of the DYNAP family [1, 9]. It directly emulates biological behavior
using analog spiking neurons and analog synapses as the computational units. The transistors of the neural
cores operate in the subthreshold regime, resulting in power consumption below 1 mW. Each DYNAP-SE2
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Figure 1. DYNAP-SE2 Architecture. See text for details. NC: Neural Core; R: Router; BG: Bias Generator. Other acronyms: see text.

chip is equipped with 1024 adaptive exponential integrate-and-fire (AdExpIF) analog ultra-low-power
spiking neurons and 64 synapses per neuron. Figure 1 shows an overview of the architecture of the chip.

The DYNAP-SE2 digital spike routing architecture involves pre-synaptic neurons broadcasting their
spiking activities on an internal bus using specific neuron ‘tags’ Post-synaptic neurons monitor the bus for
up to 64 tags each, such that they can connect to up to 64 pre-synaptic tag IDs. This approach enables both
sparse and dense connection patterns, and since multiple neurons may broadcast the same tag, permits a fan
in of greater than 64 pre-synaptic neurons.

In this routing system, post-synaptic neurons themselves effectively store the weight matrices through
their broadcasting and listening connections. The strength of each synaptic weight is determined by the
weight current configuration stored at each synapse. This means that the synaptic efficiency, or the impact of
a pre-synaptic neuron’s signal on a post-synaptic neuron, is determined by the amount of current assigned to
that particular synaptic connection. For more comprehensive information on the specific mechanisms of
weight storage and transfer in this architecture, refer to [1] and [15].

The neural computation unit serves as the primary building block for creating the dynamics in
DYNAP-SE2. Each neural core (NC) consists of 256 analog neurons that share the same parameter set. The
digital memory blocks, content-addressable memories (CAMs) and Static-RAMs, store the transmitting and
receiving event configurations, respectively. The synapses and neuron soma carry out analog computations,
with four different types of synapses—AMPA, GABA, NMDA, and SHUNT—integrating the incoming
events and injecting current into the membrane. AMPA and NMDA activation increase the firing probability,
while GABA and SHUNT activation decrease it.

The CAM stores the listening event setting for each of the 64 connections of a neuron, which specifies its
synaptic processing unit. The neuron soma integrates the injection currents and holds a temporal state, with
configurable paths of charging and discharging capacitors designating the temporal behavior. The membrane
current, which is a secondary reading on the membrane capacitance, functions as the temporal state variable.
When the membrane current in a neuron reaches the firing threshold a reset mechanism is activated, which
returns the neuron membrane potential to a reset state. This also triggers the event sensing units, which then
package the event in address event representation (AER) format and broadcast it on the internal bus. In this
way, the neuron uses analog sub-threshold circuits to compute the dynamics but conveys the resulting
outputs using a digital routing mechanism.

Each neural core holds a parameter group to set the neuronal and synaptic parameters for its 256 neurons
and their pre-synaptic synapses. The neurons in the same core share many of the same parameter values,
including time constants, refractory periods, synaptic connection strengths, and other attributes. Special
digital-to-analog converters, “bias generators” (BG), set these parameter current values. In total, there are
70 parameters that can be set to adjust the behavior of the neurons and synapses, including time constants,
pulse widths, amplifier gain ratios, and synaptic weight strengths, among others. A comprehensive table
detailing these parameters, and their impact on the SNN simulation is provided in the appendices for
reference, table 3.
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Figure 2. Frozen noise classification task. 60 input channels provide input spiking patterns to the network (left; 4 shown here).
The network provides two output channels (right), each of which should emit high spiking activity when presented with one of
two target frozen noise inputs. ‘LinearJax’ and ‘DynapSim’ modules, provided by Rockpool, are used to simulate the weights,
synapse and neuron dynamics of the network (see text for further details).

For simulation purposes, a custom computational spiking neural model relates the behavioral dynamics
of a computational neural setting to the VLSI parameters of the respective circuits. It uses forward Euler
updates to predict the time-dependent dynamics and solves the characteristic circuit transfer functions in
time. Specifically, a ‘DynapSim’ neuron solves the silicon neuron [16] and silicon synapse [17] circuit
equations, making use of assumptions and simplifications from [18]. Further details of the application and
implementation can be found in [15].

2. Methods

2.1. Task and training approach

DynapSim is an extension of the contemporary spiking neural network library, Rockpool [8], and serves as a
simulation solution for the DYNAP-SE2 device. The approach it offers involves solving characteristic
equations of the analog circuits and does not provide a circuit-level accurate simulation. Instead, DynapSim
provides an approximate simulation that can be fine-tuned and translated into a device configuration. The
simulator is powered by the state-of-the-art high-performance machine learning library JAX [19], which
facilitates fast execution and just-in-time (JIT) compilation on CPUs, GPUs and TPUs. The toolchain we
provide performs off-chip gradient-based optimization of a spiking neural network (SNN) and deploys the
trained network to the chip while preserving the optimized behavior. The upcoming sections elaborate on
the technique of gradient-based optimization employed to train a SNN before its deployment to a
DYNAP-SE2 chip.

2.1.1. Toy task: frozen noise classification

The purpose of the frozen noise classification experiment is to evaluate the learning abilities of the
implemented simulator. The experiment focuses on training a DynapSim network to accurately classify two
distinct random frozen noise patterns. The network comprises two analog neurons with recurrent
connections, along with 60 external input connections. The desired outcome is for the first neuron to exhibit
a significantly higher firing rate when presented with the first frozen noise, and for the second neuron to
exhibit a significantly higher firing rate when presented with the second frozen noise. Figure 2 illustrates the
task at hand.

2.1.2. Data
To run the experiment with the spiking neuron model, a spiking input pattern is necessary. For this specific
task, randomly generated discrete Poisson time series with a mean frequency of 50 Hz in a 500 ms duration
are used as frozen noise recordings (see figure 3). Each sample comprises 60 channels, and the time-step
duration is 1 ms.

For training purposes, two samples are utilized to enable the network to overfit, while 1000 different
random samples are reserved for testing the trained network. The optimized network should recognize the
2 critical training samples, by generating high activity on the corresponding output neuron, and low activity
on the other neuron. If any other sample is provided, the network should generate random output activity.

2.1.3. Network

The network architecture used in this study consists of a simple recurrent spiking network with weighted
inputs. In Rockpool, this network is constructed of two layers Linear Jax and DynapSim. The first module,
LinearJax, applies a linear transformation to the input spikes to simulate spike weighting. The second
module, DynapSim, simulates the time-dependent analog silicon neuron and synapse dynamics. Listing 1
shows how to instantiate this network in Rockpool.

4
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Figure 3. Frozen noise recordings used in training.

Listing 1. Constructing the SNN in Rockpool.

net = Sequential(
LinearJax((Nin, Nrec)),
DynapSim((Nrec, Nrec), dt=dt),
)

This network architecture can be compared to using a ReLU activation layer following a fully connected
layer in classical NNs. The difference, however, lies in the fact that the DynapSim layer computes and
maintains a time-dependent state instead of a stateless activation. The output of the DynapSim neurons
depends not only on the instantaneous inputs but also on past inputs via internal state variables. The state
continues to evolve continuously over time, regardless of when the neuron receives spikes on its input.
Additionally, the DynapSim layer encapsulates a recurrent connection matrix that is one of the targets of the
optimizer. Lastly, the layer corresponds to a custom analog hardware configuration, and solving the
characteristic equations of the analog circuits is a key part of its function.

To limit the complexity of the task, in this case only the weight parameters are trained, while the rest of
the neuron and synapse parameters are fixed to their default simulation values. This means that
mathematically, only two 2D weight matrices are subject to optimization: the 60 x 2 input weight matrix
stored inside LinearJax and the 2 x 2 recurrent weight matrix stored inside DynapSim.

2.1.4. Response analysis

For the frozen noise discrimination task, the classification of the network is indicated by the neuron with the
highest mean firing rate r, for class 0, and r; for class 1. As a performance metric, the ratio between the
output neurons’ mean firing rates quantifies the network’s ability to distinguish the two target frozen noise
patterns. The firing rate ratio (FRR) is calculated by dividing the higher mean firing rate by the lower mean
firing rate read from the decision neurons, as shown in equation (1).

max (7o, 71)

FRR = (1)

Hlil’l(f'()7 f']) '

2.1.5. Mismatch Simulation

Each optimisation step during training includes a forward and a backward pass. The forward pass simulates
the mixed-signal circuit behavior under ideal conditions, but the circuits in real sub-threshold computation
devices are subject to parameter mismatch. In order to make trained networks robust against parameter
deviations, Biichel et al proposed to modify values during training by injecting parameter noise as well as by
an adversarial attack on parameter values [6].

DynapSim includes an empirically-verified model of parameter mismatch, which we apply in the forward
pass, slightly perturbing the parameter values in the network that are subject to change. This mismatch
simulation model addresses parameter variability without focusing on certain known factors like
temperature fluctuations or process impurities. Instead, it offers a general approach to managing parameter
mismatch. It varies the parameters under a Gaussian distribution, with the mean taken as the nominal
parameter values, and variance determined by empirical measurement [6, 7]. New mismatched parameters
are set every n epochs. During optimisation, the network reaches parameter values that obtain a low loss
value, in spite of the parameter variation. As a result, SNNs trained in this way are less sensitive to
mismatch-induced loss of performance when deployed to mixed-signal neuromorphic hardware. Figure 4
illustrates the effect of mismatch on parameter values.
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Figure 4. Mismatch Simulation. Nominal values for two parameters (orange) are applied to the network, following which
DynapSim is used to simulate the parameter mismatch that would be experienced when deployed to a DYNAP-SE2 device (blue
distributions).

2.1.6. Optimization

The optimization objective is highly dependent on the task and can be customized according to the
requirements. In this particular task, the goal is to increase the firing rate of a specific neuron upon receiving
a known frozen noise record. To achieve this, the mean square error (MSE) loss function is utilized.

The target signal is a uniform spike train that generates an event at every time step from one channel and
that generates no events from the other channel. The mean value of the differences in rate between target and
network output gives a scalar loss value to be used in error backpropagation.

In this experiment, the Adam algorithm is utilized for optimization [20], and the training pipeline is
similar to a conventional machine learning pipeline. Since the forward computation involves
non-differentiable spike production functions, a surrogate gradient approximation replaces these in the
backward pass [10, 12—-14].

Figure 5 illustrates the decrease in MSE loss over the training process. During training, the MSE loss
decreased from 0.5 to 0.46 over one million epochs. Despite the straightforward task, a small learning rate
was necessary to provide stable learning in the face of the complex non-linear neuron model. Even this
seemingly small reduction in loss value results in a significant improvement in behavior, allowing the
network to classify two similar frozen noise samples. Figure 6(a) shows the response of the network to
trained input samples.

When the first noise pattern is presented to the network, neuron 0 (channel 0) exhibits high firing
activity (164 Hz), while neuron 1 (channel 1) shows significantly lower activity (24 Hz), resulting in an FRR
of 6.83. On the other hand, when the second noise pattern is presented, neuron 1 (channel 1) fires almost
constantly (122 Hz), while neuron 0 (channel 0) remains quiet as intended (10 Hz), resulting in an FRR of
12.2. The clear distinction between the higher and lower firing rates demonstrates that the network is capable
of distinguishing between the two input patterns.

To evaluate the network’s recognition capabilities on unseen data, we used a test set of random noise
samples to demonstrate that the network only recognizes the training patterns. We generated 1000 frozen
noise input patterns with the same mean frequency and length as the target patterns used in training. The
FRRs between the decision neurons were recorded to quantify the ability of the network to reject un-trained
input patterns. We expect the network to respond with FRRs close to one, indicating the input patterns are
not similar to either class 0 or class 1. Figure 6(b) shows the network’s repsonse to a random sample, with an
FRR close to 1. The distribution of FRR values under 1000 random noise samples is shown in figure 6(c).

During the 500 ms test runs, both the first and second neurons remain active, firing at similar rates.
Based on these observations, it can be concluded that the network responds strongly only to the trained
target inputs, and rejects the non-trained noise inputs.

2.2. Deployment to DYNAP™_SE2

To deploy an SNN using Rockpool, the network is first defined in simulation and optimized using
gradient-based or non-gradient-based methods. Rockpool then extracts a computational graph from the
optimized network, containing all the necessary parameters for specifying the chip configuration. However,
the computational graph does not include information about hardware resource allocation, so a mapping
procedure is required to cluster the parameters and find a suitable hardware allocation. The parameters also
need to be quantized since the DYNAP-SE2 hardware cannot support floating point precision, and converted
to bias values to configure the neuron and synapse parameters. Finally, the user needs to connect and
interface with the chip to deploy the SNN.
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Figure 6. Response of the simulated trained network to trained and untrained input samples. a Response of the trained network
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Listing 2. Deploying an SNN to DYNAP-SE2.

# Define

net = Sequential(
LinearJax((Nin, Nrec)),
DynapSim((Nrec, Nrec), dt=dt),

#Map
spec = mapper(net.as_graph())

spec.update(autoencoder_quantization(::spec))

config = config_from_specification(::spec)

# Connect & Interface
se2_devices = find_dynapse_boards()

se2 = DynapseSamna(se2_devices[0], :=config)

out, state, rec = se2(raster, record=True)

Listing 3. Extracting an SNN from a hardware configuration.

net = dynapsim_net_from_config(:=config)
out, state, rec = net(raster, record=True)

Rockpool accomplishes this process in only a few lines of code, as demonstrated in listing 2.
Our pipeline also supports ‘reverse mapping, whereby a simulation SNN can be extracted from an

existing hardware configuration, as shown in listing 3.
The sections below explain the details of these steps.

2.2.1. Computational graph

A computational graph in Rockpool represents the flow of data through a neural network. In Rockpool, the
as_graph () method extracts a computational graph from a full SNN model. This graph captures all the
computationally significant parameters of the network, as well as the network structure. The graph
representation enables manipulation of the SNN architecture, facilitating mapping the network parameters

7
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Figure 7. Weight matrix parameters and information flow through an example SNN. Input weights W, are shown in blue. Blocks
of recurrent weights W,, () are hatched. Feed-forward hidden weights W, are indicated in orange. Blocks of LIF spiking neurons
are indicated in black.
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Figure 8. Merged weight matrices derived from the network in figure 7. The blocks of weights in figure 7 are indicated here with
their corresponding colours and labels.

to various hardware architectures, and permitting conversion between neuron models. For instance, a
trained LIF network can be transformed into an equivalent DynapSim network, with similar behaviour.

2.2.2. Mapping

The mapper () functionality converts a computational graph from an arbitrary SNN into a DYNAP-SE2
HDK hardware specification, regardless of whether the network was originally a DynapSim network.
mapper() clusters the parameters into groups and determines the hardware IDs of neurons. The mapping
process is described in detail below. For an alternative approach to mapping SNNs to DYNAP-SE hardware,
see [21].

Figure 7 shows the weight parameters and information flow in an example SNN with both feed-forward
and recurrent components.

The input weight matrix, Wi,, applies a linear transformation to the external input and delivers it to the
hardware neurons. Recurrent weight matrices, Wi (rec), Wi(rec)> and W), establish the connection weights
between hardware neurons, while feed-forward weight matrices, W, and Wy, connect different groups of
neurons to each other. The mapper produces a single equivalent recurrent weight matrix that collects all
feed-forward neurons in a single pseudo-recurrent representation.

Figure 8 shows the merged input and recurrent weight matrices corresponding to the network in figure 7.

The input weight matrix W;, connects virtual input neurons to hardware neurons on DYNAP-SE2 All
other weight matrices in figure 7 are merged into one large recurrent weight matrix. The input neurons are
assigned tags (virtual IDs) from the set of virtual input tags (‘virtual tags’), while the hardware neurons are
assigned tags (hardware IDs) from the list of available hardware neurons (‘actual tags’).

Once this is complete, the mapper () reduces an SNN down to three connected graph modules: one
DynapseNeurons object holding the current parameter values of the hardware neurons, one
LinearWeights object holding the input weights from the external connections to the hardware neurons,
and one LinearWeights object holding the recurrent weights between the hardware neurons.
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Figure 9. Process of weight quantization. The floating-point weight matrix (top) is converted into a quantized representation,
consisting of a bit-mask containing the number of quantal connections made between two neurons as well as connection type
(bottom; left) and a set of ‘base weight’ parameters (bottom; middle) indicating the strength of each quantal connection. The
reconstructed weight matrix (bottom,; right) will be similar to, but not identical to the original matrix. For example, weak
connections may be pruned (blue highlights).

2.2.3. Quantization

During simulation, weight matrices in the layers can adopt any floating-point value, but when deploying to
the hardware of DYNAP-SE2, weight settings are limited to a 4-bit restricted connection-specific assignment.
To convert weight matrices to device configuration, parameter quantization is necessary. The quantization
process for DYNAP-SE2 involves two steps: obtaining 4 base weight parameters for the inner product space;
and storing connection-specific 4-bit binary weight masks in digital memory cells. The goal of quantization
is to find a set of ‘base weight’ parameter values and a binary bit-mask matrix that together reconstruct a
floating-point weight matrix with minimal deviation. To accomplish this, an auto-encoder structure, a
popular unsupervised machine learning method, is used. The intermediate code representation represents
the base weight currents, and the decoder weight matrix provides binary bit-masks.

In the simulated network, weight values can be positive or negative, representing the synapse’s excitatory
or inhibitory behavior. The sign of each weight determines the synapse type for that connection: inhibitory
GABA synapses for negative values and excitatory AMPA synapses for positive values. Figure 9 shows the
weight quantization procedure.

Training of the unsupervised auto-encoder learns a hardware-compatible configuration that replicates
the target weight matrix with minimal deviation. The MSE loss metric between the target and reconstructed
weight matrices is optimised during the quantization process.

2.2.4. Deployment

The behavior of a neuron and synapse is characterized by several parameters, including time constants that
determine leakage rate and gain ratios that control the amplitude of spike-dependent jumps. While in
simulation these parameters can be adjusted mathematically to modify the behaviour of neurons,
implementing this parameterisation in VLSI circuits is more complicated. Silicon-based implementations of
neurons and synapses rely on adjusting bias voltages and currents. Deploying an SNN application to a
mixed-signal device implies translating simulation parameters and the behavioral dynamics of a
computational neuron model, into the parameters and bias voltages of the corresponding neuron circuits.
This involves finding a digital bias generator setting that accurately expresses bias current values in Amperes
using empirical lookup tables.

Figure 10 illustrates what parameter translation entails within this reference frame. Mapping from
high-level parameters to hardware configuration involves two major steps. The first step is to identify a
supporting current value in amperes, given the parameter value. For instance, to ensure 7 = 1 ms, Ije,x needs
to be 800 pA for the AMPA gate, according to our theoretical expectations using the equation (2)

T= Lsyn UT. (2)
kI,

Here, Cyyy, represents the synaptic capacitance, # denotes the mean subthreshold factor (n-type, p-type),
and Uy represents the thermal voltage, which is approximately 25 mV at room temperature. It should be
noted, however, that to maintain the simplicity and efficiency of the simulation, the effect of temperature
variation due to circuit power dissipation has not been considered.
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Figure 10. Translation between high-level behavioural parameters and circuit bias values. The ideal behaviour of a neuron (e.g. a
time constant; left) corresponds to setting an accurate analog bias value to control the behaviour of a circuit (right).
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Figure 11. Response of the trained network deployed to DYNAP-SE2. a Frozen noise for input class 0 (blue) and response of HW
neurons (red). Arrow: target class. b Response to class 1 input.

The second step involves identifying a suitable bias generator configuration, which yields the exact
current value needed to set the high-level parameter. To do this, we used empirical recordings of bias current
responses-given the digital bias generator configuration-as a guide in the digital configuration search.

While the process explained here applies to all configuration parameters, it does so with a different first
step. For weight matrices, the weight quantization process returns the base weight currents, and amplifier
gains are subsequently computed relative to the leakage currents, depending on predefined ratios. For a more
detailed analysis of the conversion methodology, please refer to [15].

3. Results

We used Rockpool and DynapSim to train an SNN as described above, then used the mapping, quantization
and deployment facilities of Rockpool to deploy the trained SNN to a DYNAP-SE2 device, configuring the
hardware parameters on the chip. We converted the frozen noise patterns to real-time AER sequences for
injecting into a DYNAP-SE2 device. Each event in the noise pattern is encapsulated with its time and address
and sent to the development kit, where an on-board FPGA circuit converts the AER events to digital pulses
that stimulate the synaptic input gates of the neurons [1]. The analog neurons on the DYNAP-SE2 then
process the inputs and produce output events. Whenever a neuron fires, digital circuits on the FPGA capture
the event’s timestamp and source address and encapsulate it as an AER event, which is temporarily stored in
buffers implemented inside the FPGA. The output of the hardware evaluation of an input is recorded as AER
event sequences.

Figure 11 demonstrates that the combined effects of quantization and device mismatch do not result in
loss of performance. The hidden temporal information that the network has learned is still present, and the
network is able to differentiate between the training samples.

The FRR described in the Response Analysis section under Methods is utilized to assess the neurons’
ability to distinguish frozen noise patterns. A high FRR (>1) indicates good discrimination between the two
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Table 1. Output firing rates and FRRs for target and test input samples. ‘Simulated’ results are from PC-based simulation of the trained
DynapSim network in Rockpool. ‘Quantized’ results are from PC-based simulation of the quantized model in Rockpool. ‘Hardware’
results are obtained from running inference of the model deployed to DYNAP-SE2 hardware. 1000 samples were used for the Simulated
and Quantized results. 10 samples were used for inference on hardware. FN: Frozen Noise (trained target input sample); TEST: Random
poisson untrained test samples; NO: Output neuron for class 0; N1: Output neuron for class 1.

Simulated Quantized Hardware

Frozen Noise NO (Hz) N1 (Hz) FRR NO (Hz) N1 (Hz) FRR  NO (Hz) N1 (Hz) FRR

FN class 0 164 14 11.7 136 58 2.3 18 2 9.0
FN class 1 24 122 5.1 58 144 2.5 0 36 >100
TEST (mean) 138 123 1.1 143 123 1.2 17 14 1.9

Table 2. Training time comparison. The training process was executed identically using the same training code on two machines. We
compared the training speed when using non-accelerated JAX, and when using JAX-JIT compilation to the CPU on each machine.

Attribute Machine 1 Machine 2

CPU 8 Core Apple M1 Pro Intel Core i7-7500
RAM 32 GB 16 GB

(ON] macOS 12.4 Ubuntu 20.04
Epoch/s (JAX) 0.7 0.4

Epoch/s (JAX-JIT) 2600 1350

Duration (JAX) 15 days 28d

Duration (JAX-JIT) 6.5 min 12.5 min

Speedup 3714 x 3375 x

trained frozen noise input samples. Table 1 displays the firing responses of the simulated, quantized, and
hardware networks when presented with trained frozen noise 0 (FNO), trained frozen noise 1 (FN1), and the
un-trained random noise TEST samples.

We presented 1000 randomly generated independent test samples for inference in the simulation, taking
advantage of the flexibility of the simulation environment. In contrast, for hardware testing, we presented 10
random independent Poisson noise samples to DYNAP-SE2. The limited number of hardware tests was a
deliberate decision, influenced by the intricate nature of the hardware setup. Chip configuration for each
iteration requires manual intervention, and required at least 5 min for each iteration in practice.

In all cases, mismatch was either simulated (for ‘simulated” and ‘quantized’ results), or was physically
present on the DYNAP-SE2 hardware device. Untrained test samples produced high output firing rates in
general (>100 Hz simulation; TEST in table 1), but with low FRR close to 1. The worst-case test sample with
highest FRR for an untrained test sample, indicating false-positive discrimination, was 1.5 in simulation; 1.6
for the quantized network; and 3.2 for inference on the DYNAP-SE2 HW. Trained target frozen noise input
samples produced similar maximum firing rates as the untrained test samples, but with much higher FRR.

The experimental results indicate that quantization and mismatch cause information loss when
converting an optimized network to a hardware configuration. However, despite this loss of information and
device mismatch, the decision mechanism remains functional. The hardware deployed model also
successfully distinguishes trained input samples, with high FRR.

3.1. Training speed

Gradient-based spiking neural networks training is known to take a long time due to the complexity of the
dynamical equations that spiking neurons solve in time, which involve many floating point operations.
Additionally, backpropagation through time implies additional memory overhead compared with
backpropagation in classical ANN optimisation problems. However, recent advancements in machine
learning tools have presented opportunities for performance improvements.

DynapSim utilizes JAX, a high-performance mathematical library which includes automatic
differentiation. JAX’s JIT compilation support for functional programming significantly reduces execution
time in the optimization loop. To illustrate the benefits of JIT, we executed the training script on two
different machines, and the performance results are presented in table 2.

Using JAX-JIT reduced the computation time by up more than 3000, making it possible to optimize
SNN structures employing complex neuron models without the need for giant computer clusters or waiting
for weeks to see the results. Rockpool / DynapSim is able to use the JIT facilities of JAX to target GPUs and
TPUs, enabling scalable use of large computational resources when available, for efficient training of SNNs.
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4. Discussion

We demonstrated a new approach and toolchain for gradient-based training and automated deployment of
SNN applications to mixed-signal SNN devices such as DYNAP-SE2. The training pipeline is shown to run

1 million epochs in minutes instead of weeks, by exploiting the JIT compilation features of JAX. DynapSim is
a huge step towards building commercial SNN applications for mixed-signal neuromorphic processors.

The deployment strategy offers an unsupervised method for weight quantization, removing the need for
manual calibration and tuning of hardware bias parameters. The resulting quantized network’s parameters
are automatically translated to a hardware configuration. Although the task introduced here is relatively
simple, it proposes a novel methodology for application development targeting mixed-signal SNN
processors. The approach, metrics, and evaluation strategies can easily be applied to more complex tasks.

Results indicate that the optimized network is robust to the effects of quantization and device mismatch,
which are common challenges in hardware implementation. This suggests that spiking neural networks can
be used robustly in real-world applications where hardware constraints and variability are significant factors.
Still, further studies are needed to investigate the network’s performance under different quantization and
device mismatch scenarios and to generalize the findings to different spiking neural network architectures
and applications.

Rockpool simplifies the modeling and deployment process for the neuromorphic community, addressing
a key obstacle that has limited the accessibility of mixed-signal neuromorphic processors to only high-end
academic and industrial research. Our approach paves the way for building commercial applications using
mixed-signal neuromorphic technologies.
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Table 3. Bias Parameters, a supplementary table listing the most significant parameters and their impact on the SNN simulation.

Parameter Corresponding current Description

SOAD_TAU_P Iry, AHP block time constant T,y
DEAM_ETAU_P L7 Excitatory AMPA synapse time constant Tampa
DEGA_ITAU_P e Inhibitory GABA synapse time constant 7y,
DENM_ETAU_P I Excitatory NMDA synapse time constant Tmda
DESC_ITAU_P I Inhibitory SHUNT synapse time constant Tghyne
SOIF_LEAK_N I Neuron membrane time constant Timem
SOAD_PWTAU_N Tputse_ahp AHP block pulse width #;,1c_anp
SYPD_EXT_N Tpulse Any synaptic input pulse width £,
SOIF_REFR_N Let Neuron membrane refractory period t.¢
SOAD_GAIN_P Igaing, AHP block gain

DEAM_EGAIN_P Tgain, Excitatory AMPA synapse gain
DEGA_IGAIN_P Igaingy, Inhibitory GABA synapse gain
DENM_EGAIN_P Loainga Excitatory NMDA synapse gain
DESC_IGAIN_P Tgaingon Inhibitory SHUNT synapse gain
SOIF_GAIN_N Lgainen Neuron membrane gain

SYAM_WO0_P Ly, Weight bit 0 strength

SYAM_WI1_P Ly, weight bit 1 strength

SYAM_W2_P L, weight bit 2 strength

SYAM_W3_P L, weight bit 3 strength

SOAD_W_N Ly, AHP block weight current

SOIF_DC_P L Constant DC current injected as input
DENM_NMREV_N Iig, ... NMDA gate soft cut-off current
SOIF_SPKTHR_P Ipkinr spiking threshold current
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