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Abstract
The data throughput in the von Neumann architecture-based computing system is limited by its
separated processing and memory structure, and the mismatching speed between the two units. As
a result, it is quite difficult to improve the energy efficiency in conventional computing system,
especially for dealing with unstructured data. Meanwhile, artificial intelligence and robotics
nowadays still behave poorly in autonomy, creativity, and sociality, which has been considered as
the unimaginable computational requirement for sensorimotor skills. These two plights have urged
the imitation and replication of the biological systems in terms of computing, sensing, and even
motoring. Hence, the so-called neuromorphic system has drawn worldwide attention in recent
decade, which is aimed at addressing the aforementioned needs from the mimicking of neural
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system. The recent developments on emerging memory devices, nanotechnologies, and materials
science have provided an unprecedented opportunity for this aim.

This roadmap profiles the potential trend in building neuromorphic systems from the view of Chinese sci-
entists. The content of this roadmap will cover some core topics from multidisciplinary researchers, including
electronics, computer science, materials, physics, and so on. The perspectives and challenges are also discussed
partly, which may serve as guidance for the pursuing of high energy-efficient and/or bio-realistic systems that
can compute, sense, and act as our human beings. This will also give birth to some excited paradigm breakers
and advanced technologies in a wide spectrum of areas.
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Introduction

Changjin Wan and Qing Wan
Nanjing University, People’s Republic of China
E-mail: cjwan@nju.edu.cn and wanqing@nju.edu.cn

The recent surge in artificial intelligence (AI) drives the exploration of machine learning hardware, espe-
cially the development of fundamental building blocks, namely, neuromorphic devices. China is becoming
one of the most thriving regions of this research field. The general aim of the roadmap on neuromorphic devices
and applications research in China is to provide an overview of the different fields of research and progress that
are related to neuromorphic devices and applications, evaluate the possible technical routes and challenges,
and give guidelines and perspectives that would shed light on future development. The roadmap addresses the
following topics:

• Materials for neuromorphic devices

• Applications and tools for neuromorphic devices and systems

• Perspectives for neuromorphic computing

Materials for neuromorphic devices. The development of neuromorphic devices is still dependent on what
materials can render. Even the scaling of state-of-the-art (SOTA) complementary metal-oxide-semiconductor
(CMOS) technologies benefits from the utilizing of advanced materials. For example, the success of fin-shaped
field-effect transistor (FinFET) was partly attributed to the implementation of high-κ dielectric materials. In
view of transistor-type neuromorphic devices, proper semiconducting materials would bring about low off
current, which could improve the energy efficiency; high mobility, which is important for increasing switch
speed of the devices; and high sensitivity/selectivity to certain stimulations, which might benefit near- or
in-sensor computing. Dielectric materials for memristor-type neuromorphic devices should also be subject
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to significant attention, as the mechanisms of a memristive neuromorphic device, including redox, phase
change, magnetic tunneling, and ferroelectric polarization, are mostly determined by the dielectric materials.
Therefore, we collected several sections under this topic, and we promise that with the exploring of emerging
materials and refining of the conventional materials, these will offer new opportunities for the development of
neuromorphic electronics.

Applications and tools for neuromorphic devices and systems. Another important research field with respect
to neuromorphic devices is to make them practicable. Emerging applications based on neuromorphic devices
that could advance the conventional digital system in certain aspects, like energy efficiency, error tolerance,
plasticity, and so on, will be highly pursued. For example, the realization of artificial perception based on
neuromorphic devices has potential implications for future robotics that might have humanlike sophisticated
sensorimotor capabilities within a very narrow energy budget. Besides, to boost efficiency from design to man-
ufacturing, it is very necessary to develop electronic design automation (EDA) tools, and it would be possible to
extend the application and generality of neuromorphic computing and engineering by developing automated
synthesis and mapping techniques.

Perspectives for neuromorphic computing. The ultimate aim of neuromorphic devices is to build a neuro-
morphic system that operates similarly to our neural networks (NNs). A short-term goal would be focused on
the implementation of nonvolatile memory (NVM) technique for improving the energy efficiency of machine
learning algorithms. The NVM array has shown excellent energy efficiency in dealing with matrix–matrix
multiplication, which is a computing- and memory-intensive workload and is not efficient in conventional
CPU-like von Neumann architectures. In this trend, system-on-chip (SoCs) accelerating NN computing is
widely reported for different specific applications, such as image recognition, keyword spotting, and natural
language processing. However, several tough challenges should be addressed before taking full advantage of
the neuromorphic device-based SoCs. Development in this trend will also bring with it unprecedented oppor-
tunities that could come from many aspects, like algorithm–circuit–architecture codesign, introduction of
event-driven process, novel NN structures, and so on.

3



2 (2022) 042501 Roadmap

1. From memristors to neuromorphic computing

Xiaohe Huang and Peng Zhou∗

Fudan University, People’s Republic of China
E-mail: pengzhou@fudan.edu.cn

1.1. Status
Resistive memory originates from the reversible resistive effect induced by electrical pulses reported in the
1960s [1]. In 1971 Chua proposed a theoretical model of a memristor, predicting its resistive state would change
with the history of applied voltage [2]. By 2008 experimentally demonstrated TiO2-based resistive random-
access-memory (RRAM) devices first linked RRAM with memristors [3]. With a simple ‘sandwich’ structure,
memristors have been developed to a very small size with low power consumption, and they can perform the
function of storing and even processing information excellently [4]. When it is unknown whether memris-
tors can shake the position of mature flash memory as the mainstream NVM, it is expected to serve as the
most desirable basic device unit for implementing synaptic and neuronal functions in the emergence of neu-
romorphic computing. The data transfer and speed gap between conventional computing and memory make
the data processing waste a huge amount of energy and time. The so-called memory wall problem generated
by the von Neumann bottleneck becomes more and more urgent. Neuromorphic computing, which mimics
the nervous system in the biological brain, uses analog signals to process information with high parallelism,
low power consumption, and convergence of storage and computing [5]. So neuromorphic computing has a
natural advantage over digital systems in solving computational tasks faster and more efficiently in a smaller
area.

Since the first memristor device simulation to implement synaptic functions in 2010 [6], memristor-based
neuromorphic devices are now able to mimic the basic functions of biological neurons and synapses. Among
them, memristors have been the most studied as simple artificial synapses, whereby integrated arrays can
directly rely on physics laws to perform efficient parallel in-memory computations [7], such as accelerating
vector–matrix multiplication in artificial neural network (ANN) training and inference. Classical machine
learning tasks, such as information encoding [8], data classification [9], and reinforcement learning [10],
can already be implemented in them. Neuromorphic computing is more efficient than the current tradi-
tional computing paradigm in the demanded environment of internet of thing (IoT), which requires available
ultralow-power intelligent edge computing. Memristors are the most promising underlying devices since artifi-
cial neurons that simulate biological functions based on physical principles enable a simpler and more efficient
circuitry than CMOS [11]. Although further development of artificial neural devices is a great challenge, it is
a promising way to implement complex human brain systems in hardware (figure 1).

1.2. Current and future challenges
Although neuromorphic devices have made some progress from the device level to the array level, they are still
a long way from real application, and many technical bottlenecks remain to be solved [12]. Device yields and
uniformity for memristors are still not sufficient. The microscopic process of resistive material change is inher-
ently stochastic [13]. The random movement of ions or thermal activation of defects may lead to fluctuation
of device parameters, thus reducing uniformity and yield. Even though the yield and uniformity of NVM for
binary values can be easily achieved, memristors for multilevel states face higher requirements [14]. Nonlin-
earity and asymmetry constrain the application of the devices, and the limited number of tunable weight states
limits the computing accuracy [15]. Other metrics to evaluate memristors as neuromorphic devices include
retention, endurance, and on/off ratio. Devices that meet the requirements in all performance metrics are still
lacking to facilitate the design of general-purpose systems. How to design and select materials and mecha-
nisms for neuromorphic devices to manufacture high-precision devices is still a central issue for researchers
to consider.

At the array level, the sneak-path currents generated by the applied voltage on unselected devices hinder
the read/write operation of the memristors, limiting the large-scale integration of crossbar arrays [16]. On the
other hand, if the size scales down and the array scales up, the wire resistance inside the arrays will inevitably
increase, which leads to a voltage drop on the wire, significantly affecting the signal transmission, and limits
the accuracy of the calculation while also increasing power consumption [17]. At the system application level,
algorithms with their practical applications that fully manifest the advantages of neuromorphic computing are
important factors to drive the industry forward. Most of the current research is modifying device properties to
better fit on available algorithms, which limits the inherent properties of materials and devices, so algorithms
that are more closely tied to the device are needed. For example, there is a lack of proven algorithms especially
for spiking neural networks (SNNs) [5].

4
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Figure 1. Roadmap for the development of memristor-based neuromorphic computing. Memristors have made milestones on
the road to neuromorphic computing, from devices to arrays, but demonstrations of their systems and applications are still in the
initial stages. Applicable systems and algorithms are necessary for the future realization of the goal of general-purpose
neuromorphic computing in the long term. Panel inset ‘devices linked to memristor theory’ is reproduced from reference [3].
Panel inset ‘12 × 12 memristor crossbar array’ is reproduced from reference [7]. Panel inset ‘fully memristor-based CNN
hardware’ is reproduced from reference [11].

1.3. Advances in science and technology to meet challenges
The development and maturation of a new computing paradigm will inevitably confront many obstacles. With
the combined efforts and wisdom of the research community and the advancement of science and technology,
it is feasible to overcome the challenges encountered at all levels from device to array to the system. For the
underlying device stability, the uniformity of the device can be improved by limiting the position of the con-
ductive filament (CF) (for example, by introducing dislocation defects [18] and localized doping [19]) or by
increasing the device Roff/Ron ratio (by reducing device area [20] to increase Roff for the filamentary type) to
compensate for resistance fluctuation. The nonlinear weights can also be alleviated with optimized program-
ming methods [15] using programming pulses that are adapted to the device characteristics for operation. The
problem of asymmetry can be overcome by combining multiple devices as a unit structure [21]. Just as silicon
is to CMOS technology, finding the materials and structures that best fit the function of the memristors may
be the fundamental solution to these device problems.

To allow the array size to be scaled up, it is possible to minimize the sneak-path current by using better
selectors [22], and another attempt is to build complementary memristors [23]. An ideal selector is as critical
as the memristor in determining the ceiling of the array size. Parasitic resistance between interconnects is also
a major challenge affecting array performance. Finding a better conductive material for the wire or using more
advanced interconnects to reduce parasitic resistance is a goal that researchers have been working on. A further
compromise to mitigate the need for large arrays is combining multiple small arrays to implement different
layers of computing. The design of the top-level system influences the collaboration between each level from
top to bottom. The algorithms developed according to the properties of the underlying devices can mitigate
the stringent requirements for the devices and arrays [17]. A successful algorithm can also lead to customized,
specialized applications, unlocking the potential of brain-inspired computing. A generic, proven architecture
is the bedrock for building a system, where the design of peripheral circuitry incurs a substantial overhead.
Compatible high-performance conversion circuits and controllers enable more efficient data flow within the
system. What can be learned from the mature CMOS technology is that EDA tools can effectively collaborate
on the design of the entire system at a hierarchical level. Creating an efficient simulation platform will facilitate
integrated development from the bottom to the top (figure 2).
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Figure 2. Challenges and possible solutions for memristor-based neuromorphic computing. The hierarchical architecture from
the top application algorithm to the underlying device is intrinsically linked and needs to be optimized in collaboration with each
other.

1.4. Concluding remarks
The traditional computing paradigm has become unsustainable under the demands of today’s big data and
IoTs. Neuromorphic computing with memristors is a shock to the ecosystem that has long been dominated
by silicon-based CMOS technology and von Neumann architecture. Although neuromorphic computing has
the theoretical potential to be very disruptive, the progress made so far has not yet demonstrated its advan-
tages for immediate application. The challenges it faces are not intangible; to overcome them requires joint
research efforts across disciplines. It is expected that breakthroughs in materials science or even at the physical
mechanism level will greatly improve the performance of neuromorphic devices. Theoretical advances in neu-
roscience are also contributing to a better understanding of biological computational behavior, which could
potentially inspire more efficient algorithms. The mutual development of software, hardware, and theory will
lay the foundation for the realization of ultimate brain-inspired intelligence.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61925402, 61851402,
62004040, and 62090032), Science and Technology Commission of Shanghai Municipality (19JC1416600),
Shanghai Education Development Foundation, and Shanghai Municipal Education Commission Shuguang
Program (18SG01).

6



2 (2022) 042501 Roadmap

2. Two-dimensional two-terminal memristors

Lin Chen∗ and Tian-Yu Wang
Fudan University, People’s Republic of China
E-mail: linchen@fudan.edu.cn and tywang@fudan.edu.cn

2.1. Status
The application of AI technology has promoted the progress of the information age and put forward higher
requirements for computing functions for the electronic devices. Traditional computers with von Neumann
architecture are facing bottlenecks, such as bandwidth mismatch and huge energy consumption, inspiring
the development of novel computing paradigm with in-memory computing (IMC) capability and low power
consumption. Emerging devices and materials are needed for the development of novel computing architec-
ture. Neuromorphic computing memristors are promising physical devices to construct IMC system, which
show advantages of scalability, high density integration, high-speed operation, and low power consumption
[24–26].

As the feature size of integrated circuits (ICs) gradually moves toward physical limits, it is hard to follow
Moore’s law under the feature size below 1 nm for traditional silicon-based semiconductor devices. Two-
dimensional (2D) layered materials as a promising candidate could work with a thickness of sub-1 nm, showing
great potential in next-generation semiconductor materials due to high mobility, capability of overcoming
short channel effects, and great size reduction, such as graphene, hexagonal boron nitride (h-BN), molybde-
num disulfide (MoS2), tungsten disulfide, and indium selenide [27–33]. Efforts have been made to prepare
2D memristors for neuromorphic computing applications. Various device structures have been proposed to
improve the performance of 2D memristors, including lateral structure, vertical structure, heterostructure, and
‘one-selector one-memristor’ (1S1M) structure [4, 34–36] (figure 3). The lateral structure-based memristor
consists of two horizontal electrodes, and it is beneficial to introducing ions or other materials for modification
research. The vertical structure-based memristor consists of a top electrode, a bottom electrode, and a middle
active layer, which is the mainstream device structure. There is one more functional layer in heterostructure-
based memristors than the vertical structure. For the circuit-level application of neuromorphic computing,
the 1S1M structure that combines a selector and a memristor was proposed. Vacancy defect accumulation and
CF migration are the main mechanisms in most reported 2D memristors. The 2D memristors may provide
more possibilities for a new era of IMC.

2.2. Current and future challenges
Over the past 10 years the 2D memristors have been studied to act as the core components of neuromorphic
computing system. However, the CMOS process compatibility, integration capability, reliability, stability, and
unclear mechanisms of 2D neuromorphic computing memristors still limit their industrialization and promo-
tion [37]. The reports of 2D memristors are focused on the demonstration of a single device, and the challenge
is mainly in the growth of wafer-scale 2D materials for memristor array. Although 2D films could be prepared
by chemical vapor deposition, the high temperature is not CMOS compatibility, which limited the promotion
of this process. Due to the high temperature and long process time, it is hard to obtain a large-area 2D film
for heterogeneous integration with silicon-based ICs. Second, the challenge for 2D neuromorphic comput-
ing memristors is reliability and stability. Due to the random defect density in different samples, the electrical
properties of 2D memristors are hard to control. More studies focused on the optimization of crystallinity by
developing the thin-film growth process to obtain uniform device performances. Third, the sneak-path cur-
rent of crossbar array limited the integration capability of 2D neuromorphic computing devices. Although
2D materials could easily scale down to sub-nanometer level and integrated to 3D structure, the sneak-path
current problem should be solved by integrating different 2D functional units. For future 2D neuromorphic
computing electronics, the unclear mechanisms of devices and biological NN need to be investigated for better
simulating biological behaviors by 2D memristors and achieving high-efficiency computing.

2.3. Advances in science and technology to meet challenges
From the perspective of material growth, it is in urgent need to develop a suitable process compatible with
CMOS technology to fabricate 2D memristors. Atomic layer deposition and advanced transfer technology
provide more possibility for fabrication of large-area 2D memristors. From the perspective of device design,
further optimization of device structure and lattice defects with the help of advanced electron beam lithogra-
phy process and rapid thermal annealing process would be helpful to improve performance of device. From
the perspective of array integration, the development of a two-terminal selector, a three-terminal transistor,
and self-rectifying device would be helpful to solve the problem of leakage and sneak-path current in neu-
romorphic computing crossbar array based on 2D memristors [38, 39]. From the perspective of mechanism,
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Figure 3. Summary of different device structures of 2D memristors.

advanced characterization methods in biological and IC disciplines, such as in situ electron beam microscope
and conductive atomic force microscopy, would be helpful to understand the work mechanism.

2.4. Concluding remarks
The 2D memristors have shown great potential in low power consumption, small size, and bandgap adjustable
and flexible neuromorphic computing electronics. Although the CMOS process compatibility, integration
capability, reliability, stability, and work mechanisms of 2D memristors are still challenges, the advanced fabri-
cation process, transfer technology, characterization methods, and novel device structure could help to break
the development bottlenecks and push the promising 2D memristor-based neuromorphic computing system.
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3.1. Status
The memristor concept was theorized in 1971 by Professor Chua, and in 2008 researchers at HP Labs linked
the concept to the experimentally studied oxide resistive devices [40, 41]. Owing to the advantages of high
speed (down to 100 ps), low power consumption (down to femtojoule), high endurance (>1012), high scala-
bility (down to 2 nm size), three-dimensional (3D) stacking capability (4F2/n; n is the number of 3D stacked
layers), and the back end of line (BEOL) process compatibility, not only can the memristors meet the require-
ments of high-performance NVM applications (in this case, RRAMs), but they also show the ability to perform
basic computation operators, such as Boolean logic and dot product operations. The idea of memristors
as a cornerstone of memory and IMC in the post-Moore era has gained widespread acceptance (figure 4)
[4, 11, 42].

Dating back to the 1960s, Hickmott reported the low-frequency negative resistance phenomenon in metal
oxide devices, and after decades of exploration a large group of oxides with metal/insulator/metal device con-
figurations have been reported to show frequency-dependent pinched hysteresis loops, typical fingerprints
predicted by Chua [40, 41]. Compared with complex oxides, like SrTiO3, BiFeO3, and Pr0.7Ca0.3MnO3, simple
binary amorphous metal oxides (especially HfOx, TaOx, WOx, and AlOx) are in the spotlight of academia and
industry because of their SOTA performance and low process cost. A number of oxide-based memristor array
prototypes (up to Mb-class capacity) have already been developed (table 1).

In addition to the next-generation universal memory receiving the most attention, the binary switching
behavior of memristors has been proposed to perform stateful logic to complement conventional charge-
based logic, and high reconfigurability has been achieved with these memristors. Generic memristor arithmetic
logic unit and some application-specific hardware for logic-intensive computing scenarios (data query, Ham-
ming distance calculation, exclusive-OR [XOR] encryption, etc) have been demonstrated to provide efficient
alternatives.

Besides, in recent years, the multilevel or analog properties of memristors have been fully exploited to
emulate the weight updating and storage behaviors of biological synapses, and thus applied to the develop-
ment of highly intriguing brain-inspired neuromorphic devices and systems. In addition, based on the analog
matrix computing capability of crossbar arrays, accelerators for various machine learning algorithms (such
as clustering, classification, regression, deep networks, and combinational optimization) have been developed
with astounding improvements in computing power and energy efficiency (>100 tera-operations per second
[TOPS] W−1) over conventional processors, like CPU and graphic processing unit (GPU).

3.2. Current and future challenges
To outstand from various device candidates for IMC, memristors must overcome challenges, including eluci-
dating the physical origin, device optimization, large-scale integration, and industrial applications.

Although it has been intensively exploited by first-principle calculation, in situ characterization, and device
modeling [43, 44], an in-depth understanding of resistive switching behaviors in the vast range of memristor
materials is still to be achieved. For a typical binary oxide HfOx that works under the binary switching mode,
the CF has recently been revealed to be crystalline metal phases [44], whose formation and rupture account
for the large resistive window. However, for doped oxides and the memristive materials designed for gradual
resistance modulation, the exact physical origin, such as metal filaments, interfacial switching, or defective
leakage paths, still needs to be clarified for various materials and/or doping schemes, which is also the basis
for further optimization of device performance. Such understanding is particularly critical for analog comput-
ing applications, where a stable, high-precision programming is highly desirable and meanwhile nonlinearity,
variability, and other nonideal factors should be effectively suppressed.

At the array level, the successfully demonstrated one-transistor one-resistor macros are limited by the
large transistor area [45–48]. One-selector (Ovonic threshold switches, insulator–metal transition switches,
or metallic filament-based threshold switches) one-resistor architecture is a viable compact alternative yet far
from mature [49, 50]. Here the biggest challenge is to improve the overall performance, including drive capa-
bility, selectivity, endurance, and uniformity. In favor of low leakage and large switching window, the metallic
CF-type oxide selectors are superior to Ovonic or metal–insulator transition types. Nonetheless, the advan-
tages of CF selectors are offset by the random nature of ion migration, slow relaxation process, and atomic
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Figure 4. Oxide memristors emerge as building blocks of non-von Neumann IMC, especially for data-centric scenarios.

Table 1. Summary of SOTA oxide memristor arrays.

Special

Type Passive 1T1R array23231T1R: 1 transistor and 1 resistor 4T2R 1S1R array Self-rectifying 3D
array array stacking

Year 2019 [11] 2020 [45]2021 [46] 2021 [47] 2020 [48] 2013 [49] 2021 [50] 2021 [51] 2020 [25]

W/ W/AlOx/ V/VOx /
Au/ TiN/ TiN/ Ta/ TaOy/ HfWOx/Pt Hf0.8Si0.2O2/ Ti/

Device WOx/ TaOx/ TiO2 OxReRAM TaOx/ Ta2O5−x/ Al2O3/Hf0.5Si0.5 Hf02/
Au HfOx/ Pt Pt/TiN/ O2 Ta

TiN AsTeGeSiN/
TiN

Device size (μm2) 0.25 0.25 0.025 0.022 0.16–0.29 0.5 100 900 0.6

Transistor node (nm) NA 180 22 14, FinFET 16 NA NA NA NA

Array size 5 kb 2 kb 4 Mb 1 Mb ∼1 kb 64 bit 1 kb 100 kb 4 kb

Analog IMC Analog Binary Binary Analog Analog IMC Binary
Application (machine IMC IMC Memory IMC Memory IMC (matrix IMC

learning) (CNN) (CNN) (TCAM) (SNN) multiplication) (CNN)

accumulation that leads to the drawbacks of large variation, long latency, and limited lifetime. Other nonlin-
ear devices, like self-rectifying memristors, are candidates with 3D integration potential [25, 51, 52]. However,
a dense oxide tunneling or barrier layer introduced to provide reverse rectification usually leads to a significant
increase in the operating voltage (exceeding 5 V or even 10 V), and thus unfavorable power consumption.

At the application level, a new functionality proposes new demands on device performance [42]. First,
in situ learning requires frequent updating of device conductance, implying that endurance improvement
needs to be focused on. Breakthroughs in computing energy efficiency also mean that the power consumption
(both write and read) must be consistently reduced. Second, quantization and variation-aware algorithms
to compensate for the limited accuracy and non-idealities also have to be developed. In addition, efficient
programming methods in arrays, peripheral circuits to support parallel computing, and analog-to-digital
and digital-to-analog conversion modules remain technical challenges. Besides, how to realize high-precision
computing using low-precision memristors appears to be a substantial challenge with great scientific value
[53].

3.3. Advances in science and technology to meet challenges
To address the challenges mentioned previously, a collaborative strategy of hardware and software is required,
with the pull of specific applications. For the NN accelerators or neuromorphic computing systems, recent
developments with vacancy-deficient/vacancy-rich structures (such as TaO2−x/Ta2O5−x and Al2O3/AlOx) are
particularly promising since high performance and reliability have been demonstrated while the materials and
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processes are compatible with CMOS [49]. The asymmetric structure can create a vacancy profile to control CF
formation, which in turn precisely modulates the device conductivity. Besides, this multilayer structure helps
to enhance the overall resistance, and hence reduces the read power consumption. In this way, the energy
efficiency of the inference process may be significantly improved. For hardware/software collaboration, write-
with-verify or closed-loop methods are widely employed to realize high precision (6–7 bits) programming.
Other designs, such as quantization or binary NNs, have also been proposed to mitigate the harsh require-
ments of device analog properties. Efficient training algorithms, along with improvement in device endurance,
together offer the possibility of in situ training implementation.

In contrast to the IMC with compelling analog devices, binary IMC does not require high-precision pro-
gramming and has the potential for commercialization in the short to medium term using the currently
available device technology, and therefore deserves better attention from researchers. For instance, binary
memristor-based ternary content-addressable memories (TCAMs) have been experimentally demonstrated
for pattern matching, showing superior performance over the traditional static random-access-memory
(SRAM)-based TCAMs [48, 54]. Particular attention has been paid to strategies of leveraging digital IMC
to speed up hyperdimensional computing, one-shot learning, and database query, which involve a large num-
ber of comparison and logic operations on binary sequences, with significantly higher energy efficiency over
CMOS processors [54, 55]. Besides, the use of the bit slicing concept in binary crossbar, redundancy program-
ming strategy, and mixed-precision architecture has been proved to be efficient approaches to improve the
precision of IMC [42, 53, 56].

3.4. Concluding remarks
In summary, the promising incorporation of high-performance memory and computing capabilities allows
metal-oxide memristors to become one of the building blocks for beyond-Moore non-von Neumann com-
puting architecture. The International Roadmap for Devices and Systems and the Institute of Electrical and
Electronics Engineers Rebooting Computing Committee believe that at the crossroads where Moore’s law is
difficult to sustain, the IMC paradigm is the way to go, with the collaborative development of new technologies
from the device, circuit, architecture, and algorithm levels. To promote the commercial application of memris-
tors, efforts must be paid to mechanism characterization, device design and optimization, BEOL integration,
and killer applications research. Interdisciplinary and cross-level innovation is needed to understand and over-
come the challenges. Although IMC is still in its fancy and needs further extensive investigation in the next
5–10 years, especially on the generality and energy efficiency limits of this technology, the maturity of oxide
memristor technology will lay a solid device foundation for high-performance computing (HPC) systems. We
also believe that in the ubiquitous cloud and edge computing, memristor-based IMC will play a pivotal role.
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4.1. Status
The advent of big data and AI era has brought unprecedented challenges to the conventional hardware plat-
forms based on von Neumann architecture, such as ‘storage wall’ and ‘power wall’. To address these issues,
a novel conception of neuromorphic computation was first proposed by Mead in 1990 [57]. It has attracted
extensive attention with high parallelism, low power consumption, and integration of storage and compu-
tation. In the past decade, great progress has been made in constructing neuro-inspired computing systems
by imitating the information processing mechanism of biological brain nervous system through mainstream
CMOS technology, including Neurogrid [58], TrueNorth [59], Loihi [60], and Tianjic [61]. However, the
Moore’s law constraint, complex peripheral circuits, volatility, and incapability of online learning hinder the
development of more advanced transistor-based neuro-inspired systems.

On the other hand, depending on unique mechanism, more and more novel structure devices start to
directly mimic the behavior of synapses and neurons from the physical level, so as to construct the neuro-
morphic computing systems. Thus, these devices are also called neuromorphic devices. Most neuromorphic
devices are expanded from emerging NVMs with their superior speed and power consumption than flash
and excellent analog conductance regulation, like RRAM [46], ferroelectric random-access memory (FeRAM)
[62], and magnetic random-access memory (MRAM) [63]. Phase-change random-access memory (PCRAM),
as a competitive candidate, utilizes the large resistance contrast between amorphous and crystalline states
of chalcogenide materials to store information and shows tremendous potentials in the field of neuromor-
phic computations [64]. The research of IBM shows that by optimizing the material composition and device
structure of PCRAM, more than 1000 resistance states of memory cell can be realized [65], which lays a foun-
dation for realizing multi-precision analog computation. Taiwan Semiconductor Manufacturing Company
(TSMC) compared the image recognition performance of convolutional neural networks (CNNs) based on
PCRAM, RRAM, and MRAM, respectively, and the result proved that PCRAM can achieve higher inference
accuracy due to its larger resistance ratio [66]. In 2020, Peking University and Shanghai Institute of Microsys-
tem and Information Technology realized the local high-precision training of CNNs [67], eligibility traces for
energy-efficient reinforcement learning [68], and uncertainty quantification applications [69] with the multi-
resistance-level of PCRAM chip. In 2021, a 14 nm CMOS and phase-change-memory (PCM)-based IMC core
with 10.5 TOPS W−1 energy efficiency and 1.59 TOPS mm−2 performance density is presented by IBM. There-
fore, the application of PCRAM as a neuromorphic device is the most promising approach to break through the
bottleneck of energy efficiency, integration, memorability, and online learning in the field of neuro-inspired
computing systems.

4.2. Current and future challenges
Despite the privileged advantages of PCRAM as a neuromorphic device to construct the neuro-inspired com-
puting system due to the increasing process of materials science and the technology accumulated in mass
production, there are still some inevitable obstacles impeding its further development in higher-level intelli-
gent applications. First, higher reliability, lower power consumption, and window value of conductance are
the most fundamental requirements of PCRAM as kernel device in a high-performance and energy-sensitive
neuromorphic computing hardware. The reliability is embodied in the program/read speed, thermal stability,
retention, and endurance, which are directly related to the performance of hardware and also urgent issues
to be solved as novel memory. The power consumption of PCRAM mainly originates from the programming
pulses driven by instantaneous current, which acts as the update of synaptic weight in neuro-inspired com-
putation. The window value of device conductance is associated with the bit width of synaptic weight and
will eventually affect the accuracy of computation. Second, the key point when imitating the behavior of
NNs is to mimic the synaptic plasticity that refers to a characteristic or phenomenon of adjustable connec-
tion strength between neurons. Whether long-term synaptic plasticity (LTSP), short-term synaptic plasticity,
or spike-timing-dependent plasticity (STDP), all these kinds of synaptic plasticity are embodied as electric-
induced controllable conductance in neuromorphic device. However, owing to the fast phase transition and
unique asymmetric switching mechanism of PCRAM, limited linearity and symmetry of conductance reg-
ulation can be achieved currently. In addition, since the biological neural system is generally composed of
billions of neurons connected by trillions of synapses, in the application of PCRAM devices imitating NNs on
a large-scale, the device variability has to be a hard nut to crack in mass production. Last but not least, as a
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unique phenomenon of PCRAM device, resistance drift, mainly caused by structural relaxation [70], is also an
ineluctable challenge in practical application scenarios.

4.3. Advances in science and technology to meet challenges
To address the mentioned challenges, it is essential to form cross-level collaborative innovation and opti-
mization strategies, including materials, devices, manufacturing process, circuits, and algorithms. Research
on materials science, like optimizing composition and doping engineering, cannot only reduce the melting
point of PCRAM device to cut down the energy consumption [71], but it also retards the crystallization to
obtain the linear and progressive conductance regulation [72]. Furthermore, high-thermal-stability doping
can enhance the reliability so as to avoid the excessive complexity of hardware training and the loss of comput-
ing accuracy. Employing new materials, like carbon nanotubes or graphene as electrode and advanced device
shield, can obviously improve the heating efficiency during write program and restrict inter-device variability,
respectively. In terms of device design and structure, the specific thin conducting surfactant layers [73, 74] and
the phase-change heterostructure [75] have been proved to be further effective in restricting resistance drift.
As for circuit and array design, differential mTnR cell structure and reference cell-based resistance tracking
provide a set of feasible solution for symmetrical conductance regulation and device uniformity. Finally, asso-
ciated with the algorithms, PCRAM-based neuromorphic computing hardware platforms with high accuracy
and energy efficiency will lead to a promising future in practical applications.

4.4. Concluding remarks
Neuro-inspired computing is a systematic research involving multiple disciplines, and various emerging mem-
ory devices have been tested recently for their suitability. The PCRAM technology, as the most mature and
promising neuromorphic device, is expected to become the core technology to replace existing von Neumann
architecture and realize the in-memory-computing, which can achieve great breakthrough in computing and
energy efficiency.
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5.1. Status
Physically transient electronics is a new class of technology that the devices and/or systems are designed to
physically disappear after completing the specific functions [76]. This concept is proposed by John Rogers in
2012, and electronic devices based on materials that can dissolve in water or bio-fluids have been reported.
Physically transient devices based on biodegradable materials demonstrate excellent potential for hardware
security, bio-integrated electronics, and implantable medical system applications [77, 78]. On the other hand,
brain-inspired neuromorphic computing systems using the co-location of logic and memory concepts, offering
a promising solution for the lower power consumption and highly efficient computing that can break through
the limits of the von Neumann bottleneck [4]. Combining the advantages of physically transient electronics
and neuromorphic computing to develop physically transient neuromorphic computing systems would have a
unique advantage and excellent potential for brain–machine communication, such as prosthetics, in situ bio-
signal recording and feedback, and implantable and/or bio-integrated neural medicine like adaptive biohybrid
interfaces, and repair communication between neurons and security computing system applications.

Various emerging devices, such as PCM, FeRAM, and RRAM, have been proposed to perform as artificial
neuromorphic devices [79]. Among these, memristor is a promising candidate due to its simple structure,
flexible material selection, low power, and high efficiency in computing. So physically transient memristor-
based neuromorphic computing has great advantages in brain–computer interface, security electronics, and
bio-integrated systems. Physically transient devices, including transistor, diode, and sensors, using biocompat-
ible and biodegradable materials were firstly demonstrated in 2012 [76]. The physically transient memristor
based on natural biopolymer with dissolvable properties was proposed in 2016 [80]. Transient memristor to
mimic biological synaptic functions had already been demonstrated in 2018 [81]. Thereafter, material opti-
mization and device design of memristor for physically transient neuromorphic devices have demonstrated
their feasibility to simulate biological synapses and neurons [82–84]. Materials, including Mg, W, and Mo for
electrodes and MgO, ZnO, and MoOx for switching layers, have shown great advantages for transient memris-
tor application. Although the electrical performance of physically transient memristors still cannot compare
with conventional memristors based on transition metal oxides, and integrated arrays are still lacking, the
development of physically transient memristors is at a very early stage and faces great challenges, but it has a
promising future for physically transient neuromorphic systems.

5.2. Current and future challenges
Physically transient memristors have made rapid progress from materials to the larger-area array fabrica-
tion technology, but there remain several fundamental and technical challenges to be resolved. Stability and
degradability of transient memristors always show a competitive relationship. However, they should meet the
requirements of maintaining stable electrical characteristics with negligible variation with time and physi-
cally disappearing immediately after completing their functions or encountering a trigger signal. The currently
available transient memristors are mostly based on biodegradable and dissolvable materials, which suffer from
degradation in ambient environment. The mechanism and methods to balance the stability and degradability
are still a challenge. The device performance of transient memristors, especially endurance and device-to-
device uniformity characteristics, is far behind the demand of neuromorphic computing. How to design
materials and device constructions to meet the requirements for long-term stability and quick degradabil-
ity as well as the remarkable electrical performance for neuromorphic device application are basic and central
issues.

For integrated array, compatibility with a larger area and with the high-density nano-fabrication technology
is the key to commercialization and is still a challenge. On the other hand, feasibility of device size scaling down
needs to be verified since the currently available physically transient memristors are still in micron scale. There-
fore, wafer-scale fabrication technology for nanodevices and integrated arrays is required. For bio-integrated
systems, it is desirable that the operation voltage of transient memristor neuromorphic devices is compatible
with the action potential of bio-systems to meet the requirements of brain–machine communication [85].
But the operation voltages of transient memristors far exceed the low bio-voltage. In addition, how to con-
nect artificial devices with living biological systems to realize intelligence brain–machine interfaces needs to
be explored. For general applications, triggering methods for transient electronic devices disappearing are
very important. Careful and accurate designing of transient neuromorphic systems is needed to control and
program their degradation rates and disappearance times.
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5.3. Advances in science and technology to meet challenges
The development of physically transient neuromorphic systems from concept to application will meet serious
challenges. With the advances in science and technology through efforts from multiple areas of the research
community, overcoming challenges from materials to devices to integrated systems is desirable. Because of the
contradiction between stability and degradability, materials with different chemical properties are expected to
form unique multilayer stacked structures to maintain stable electrical performance in air and rapid degra-
dation in biofluids and/or water. In addition, designing of special chemical bonds in the material system is
also possible to achieve such demands. Protection or encapsulation layers are an effective choice for transient
memristors to ensure stability of their electrical performances before they disappear. Based on developed mate-
rials, the endurance and uniformity of the devices can be enhanced by referring to the proposed methods for
conventional memristors, such as controlling the size and shape of CFs.

For large-scale integrated arrays, selecting of wafer-scale and nano-fabrication technology-compatible
materials is the most effective option for material and device-level feasibility. Furthermore, a technology called
transfer printing, which can transfer devices and circuits on top of wafers to various hetero-substrates such as
degradable substrates, is an ideal fabrication technology for integrated transient neuromorphic systems [86].
With advances in materials and transfer printing, it is no doubt that the size of devices can scale down. Fully
implemented transient memristor arrays also depend on the progress of the whole transient electronic area.
Transient transistors that can fit with transient memristors would greatly boost the realization of physically
transient neuromorphic systems. For bio-integrated systems, deep understanding of ionic transport proper-
ties both from materials and biological view is helpful in controlling ionic transport to design bio-voltage
transient memristors for brain–machine communication. The degradation of transient devices that results
in their disappearance can be controlled by applying external forces, such as thermal force, light, and fluids,
to these devices [87]. With combined effects from the areas of materials, physics, engineering, etc, and with
advances both in software and hardware, physically transient memristors will show promising applications
(figure 5).

5.4. Concluding remarks
Physically transient electronic devices that can disappear on demand would lead to transformative new appli-
cations. Physically transient memristors, which integrate the advantages of transient electronics and neuro-
morphic computing, may yield various innovative applications, such as biological interactive intelligence and
security computing. The development of transient memristors is just beginning, and great advantages for
application have not yet been demonstrated. The main challenges range from materials design to fabrication
technology to system application, including the contradiction between stability and degradability, wafer-scale
and nano-fabrication technology, and degradation trigger methods. To overcome these challenges needs effort
and cooperation from different disciplines. We believe that breakthroughs in chemistry and materials science
will resolve the contradictions between stability and degradability for transient memristors. Research progress
of materials and electrical engineering will achieve larger-scale integration technology of physically transient
neuromorphic devices. Joint research of materials, devices, integration technology, and even biology both from
theoretical and experimental views will pave the way for biological integrated intelligence.
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6.1. Status
Driven by the development of next-generation artificial intelligent systems, the requirement for neuromorphic
electronics that can emulate fundamental functions of the human nervous system is significantly increasing
[88]. The human nervous system, which consists of ∼1011 neurons and ∼1015 synapses, can be divided into
the peripheral nervous system (PNS) and the central nervous system (CNS) [89]. The CNS is capable of cal-
culating and storing massive information simultaneously obtained from the PNS, which has merits of lower
energy consumption and faster information processing compared with von Neumann computers. Synaptic
plasticity and its event-driven update functions through repetitive spike-form stimulations can be considered
as primary elements of energy-efficient computing. Thus, the development of artificial intelligent computing
systems at a hardware level demands the construction of neuromorphic electronics with the ability to simulate
key factors for processing and memory performance of the CNS. Furthermore, the PNS is composed of sensory
and motor nerves and organs. Human beings detect numerous stimuli from the complicated environment and
make proper instructions through the cooperation of the CNS and PNS. External stimuli are perceived through
the sensory part of the PNS and processed through the CNS, and then corresponding behavioral instructions
are given by the motion part of the PNS. Hence, artificial intelligent systems can be developed with the coop-
eration of neuromorphic electronics, which are capable of accurate perception, efficient data processing, and
motor coordination.

Organic synapses are representative components of neuromorphic electronics, which enable to mimic
synaptic plasticity and correlative functions [90]. Organic materials have many merits of easy processability
for solution-processing techniques, low cost, and simple regulation by molecular properties [91]. Moreover,
compared with inorganic materials, organic materials with outstanding ductility and biocompatible mechani-
cal performance are desired for flexible devices, which have promising application prospects in future wearable
and bioinspired electronics and robotics. Organic synapses have attracted wide interests of researchers all over
the world, and then different kinds of device configurations are proposed. Compared with two-terminal synap-
tic devices, three-terminal synaptic transistors can execute signal transmission and self-learning concurrently
[91]. Also, they can have multiple gates to receive signals from diverse sources at the same time, so dendrite
integration and spatiotemporal effect can be realized. Through suitable structure design and material selec-
tion, synaptic transistors can transform external stimuli into electrical signals, which makes them possible to
realize neuromorphic electronics that directly respond to the surrounding environment. Chinese researchers
have made many remarkable contributions in the field of transistor-based organic synapses.

6.2. Current and future challenges
One of the biggest challenges in transistor-based organic synapses is to imitate various biological synaptic
characteristics. According to Hebb’s theory, short-term plasticity, long-term plasticity, STDP, and spike-rating-
dependent plasticity are basic forms of synaptic plasticity [92]. Consequently, it is believed that synaptic devices
should simulate these neuroplastic behaviors. Also, it is expected that full synaptic characteristics can be emu-
lated in the next 10 years. Next, energy efficiency is regarded to be a significant factor in constructing an
artificial intelligent system based on synaptic devices. A biological synapse consumes∼10 fJ per synaptic event;
it is essential to find effective ways to decrease the power consumption [91]. Most of the present transistor-
based organic synapses have a large gap with the biological counterparts in terms of energy consumption and
device size [88]. Besides, since flexibility and stretchability are the extremely important advantages of organic
transistors, it is rational to apply transistor-based organic synapses in flexible, conformable, and stretchable
neuromorphic electronics [89].

With the successive advancement of transistor-based organic synapses, hardware achievements of artificial
intelligent systems have been in the spotlight. The major research objective of neuromorphic electronics is
to simulate the neuromorphic computing functions of the human brain in hardware. Besides basic synaptic
functions, remarkable progressive neuromorphic computing functions should also be emulated. Transistor-
based organic synapses must be integrated in the form of arrays to implement system-level neuromorphic
computing. Most studies have still utilized algorithms to establish ANNs for the simulation of system-level
neuromorphic computing based on the characteristics of one or several devices. The hardware implementation
of ANNs based on organic synaptic transistors requires further efforts, which can be one goal for the next
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Figure 5. Challenges and possible solutions for physically transient memristors. The hierarchical architecture from materials to
devices to integrated systems needs to be optimized in collaboration with each other.

Table 2. Summary of transistor-based organic synapses in China.

Type Materials

FGT

Floating gate: C60, perovskites, reduced graphene oxide, metal–organic frameworks, topological insulators, carbon dots,
2D imine polymers, black phosphorus–ZnO hybrid nanoparticles, and upconverting nanoparticles

Tunneling layer: PMMA, PS, and silk
Channel: pentacene, IDTBT, and PDPP4T

CTT

Active additives: perovskites, MoS2, porphyrin, PLA, and chlorophyll
Dielectric: PAN and SiO2

Channel: carbon nanotubes, C8-BTBT, DNTT, PDPP4T, DPPDTT, TIPS-pentacene, PQT-12, and PTCDA

EGT
Electrolyte insulator: ionic liquid, ion gels, and solid-state electrolyte

Channel: PQT-12, C8-BTBT, P3HT, IDT-BT, PEDOT: PSS, DNTT, and rubrene

FeGT
Ferroelectric insulator: P(VDF-TrFE)

Channel: graphene and PIID-BT

10 years. The hardware implementation of ANNs may also encounter next-level issues, such as uniformity,
endurance, reliability, interconnection, and complicated processing problems.

In addition to neuromorphic computing applications, transistor-based organic synapses should also be
explored to build artificial perception and motor systems. Through proper suitable structure design, mate-
rial selection, and device integration, artificial perception systems should be able to convert external stimuli
(light, pressure, smell, sound, etc) from the external environment into electrical signals. Then, the correspond-
ing behavioral instructions can be manipulated through artificial motor systems. These bionic processes are
similar to sensing and motoring functions of biological sensory systems. It is of great significance to develop
a comprehensive artificial intelligent system that can realize multiple perception and motor functions in the
next 5 years.

6.3. Advances in science and technology to meet challenges
Through desirable device configuration and material selection, different kinds of transistor-based organic
synapses for the hardware implementation of next-generation artificial intelligent systems have been widely
studied. So far, four kinds of transistor-based organic synapses have been presented, including floating gate
transistor (FGT), charge trapping transistor (CTT), electrolyte gate transistor (EGT), and ferroelectric gate
transistor (FeGT) (table 2).
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Figure 6. (a) Device structure of a photonic FGT based on CsPbBr3 QDs [93]. Copyright 2018, Wiley-VCH. (b) Schematic
diagram of a 2D MOF-based FGT [94]. Copyright 2019, Wiley-VCH. (c) Schematic diagram of a CTT based on CsPbBr3 QDs
[95]. Copyright 2020, American Chemical Society. (d) Schematic diagram of a PAN-based CTT [96]. Copyright 2018, American
Chemical Society. (e) Device structure of a stretchable EGT based on wavy networks P3HT nanofibers [98]. Copyright 2020,
Elsevier B.V. (f) Schematic diagram of multiterminal EGTs with a highly interconnected neuromorphic architecture of
multi-inputs and multi-outputs [99]. Copyright 2018, American Chemical Society. (g) Device structure of a FeGT [101].
Copyright 2019, Springer Nature.

FGTs possess a large on/off ratio and a controllable channel conductance. Thus, they are suitable to achieve
long-term synaptic potentiation and depression functions. Both 0D materials [93] and 2D materials [94]
(figures 6(a) and (b)) have been extensively explored for the construction of FGTs. For CTTs, charge carriers can
be trapped at active additives and active additives/organic semiconductor (OSC) interfaces [95] (figure 6(c)) or
dielectric/OSC interfaces [96] (figure 6(d)). Trapped charges offer an extra electric field, leading to a regulatable
channel conductance, which is a platform for emulating synaptic characteristics. EGTs are capable of using ions
in electrolyte dielectric to adjust the channel conductance. Conformal EGTs with the combination of flexible
material components have been reported, which presented remarkable conformability on 3D curved surfaces
[97]. Besides, to satisfy compatibility with dynamic surfaces for practical applications, stretchable EGTs were
explored [98] (figure 6(e)). Biologically, a neuron is capable of receiving multiple input signals, and each
received signal can be transmitted to numerous neurons. Similarly, multiterminal EGTs with a highly intercon-
nected neuromorphic architecture of multi-inputs and multi-outputs were demonstrated [99] (figure 6(f)).
More importantly, EGTs with low operating voltage are appropriate for low-energy-consumption synaptic
devices. A low power consumption of 0.29 fJ per synaptic event was implemented in organic single-crystalline
nanoribbon-based EGTs [100]. Ferroelectric insulator with spontaneous polarization states is the critical com-
ponent in ferroelectric gate transistors. The channel conductance of FeGTs can be gradually controlled through
the modulation of polarization states in the ferroelectric insulator. FeGTs utilizing P(VDF-TrFE) ferroelec-
tric polymer as the gate dielectric were demonstrated [101] (figure 6(g)). Through the gate adjusting, both
hole-dominated and electron-dominated transport could be realized, leading to tunable bipolar characteristics.

For neuromorphic computing systems, significant progressive functions, including logic operation [95],
filtering [102], and association learning [98], have been successfully achieved. In addition, different kinds of
artificial perception systems have been explored, such as visual- [103], tactile- [104], olfactory- [105], and
auditory-perception systems [106]. Artificial motor systems have also been built with the combination of an
organic synaptic transistor and an artificial motor element [107]. These bionic processes are similar to sensing
and motoring functions of biological nervous systems.

6.4. Concluding remarks
Many efforts have been made by Chinese researchers in both material and structure to design novel transistor-
based organic synapses that can emulate biological synapses with similar functions and energy consumption
level. Although neuromorphic systems based on organic synaptic transistors have been implemented in a wide
range of applications, the development of artificial intelligent systems is still in an early stage, and various
challenging issues remain to be addressed for practical applications. For example, only a small number of
synaptic functions have been emulated. Full biological synaptic characteristics and complete human perception
systems should be imitated. Up to now, artificial perception systems have the capability of sensing only one
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Figure 7. (a) Human perception system. (b) Artificial perception system [109].

type of sensing signals, which limit the efficient resolution for the coupling issue of sensing information in the
future. By integrating diversified fields, such as materials science, microelectronics, medicine, and computer
science, we speculate that the large-scale deployment of artificial intelligent systems will no longer be a dream.
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7.1. Status
Von Neumann architecture is highly efficient in dealing with structural data. However, it is less energy effi-
cient in dealing with intelligent tasks. Especially with the developments of IoT technology, it is necessary to
process massive amounts of data in an energy-efficient way. Thus, new computation architectures are highly
desirable in dealing with such tasks. In 1950s, John McCarthy et al have proposed AI, aiming to mimic human
brain [108]. Especially after the success of the AI robot ‘AlphaGo’, studies on AI have aroused worldwide
attention. With deep learning technology, AI has entered into a new era in the fields of speech, image pro-
cessing, and natural language. Conventionally, AI is built based on von Neumann architecture and complex
computer programming codes. However, high energy consumption is always needed because of the limited
parallel computation that originated from physical separation of computation modules and memory units in
von Neumann architecture (i.e. the von Neumann bottleneck).

As comparison, our brain is a highly parallel biological computation system. It has ∼1011 neurons and
∼1015 synaptic connections. Neurons are the computation engines, while synapses are the basic units of signal
processing. Due to the huge number of parallel synaptic computations and the unique synaptic plasticity activ-
ities, brain computation is highly reliable with strong fault tolerance. Thus, our brain can handle unstructural
real-time data and complex tasks with a low energy consumption of ∼20 W, including perception, learning,
thinking, memory, and decision making. Therefore, it is interesting to mimic biological synapses and neu-
rons on hardware devices. Recently, studies on brain-inspired neuromorphic devices are getting an important
branch of AI.

Additionally, our body is a multifunctional perception learning system. External stimuli are received on sen-
sory organs and are transmitted to the CNS through afferent nerves. The CNS processes information, resulting
in the formation of perception activities. Thus, designing bionic NNs at hardware level based on neuromorphic
devices is becoming a research hot spot, which would provide a possible solution to make energy-efficient AI, as
schematically shown in figure 7 [109]. Presently, investigation of artificial perception learning system based on
neuromorphic devices is also getting a new research branch. It would provide new opportunities for extending
human intelligence.

7.2. Current and future challenges
Imitation of synaptic computation and neural information processing mode in our brain on hardware devices
is an important step to realize the brain-inspired hardware-based neuromorphic system, which will greatly
promote the development of information technologies. Two-terminal synaptic devices have been proposed to
mimic synaptic functions, including memristors, PCMs, atomic switches, etc. They have priorities, including
simple structure, low operation power consumption, small physical size, and easy 3D integration. In contrast,
transistors have the advantages of controlling electrical performances much easier. Additionally, multigates can
be integrated in a single device. Thus, transistors have also been proposed for neuromorphic device applica-
tions. In neuromorphic transistors, the gates and the channel are generally regarded as pre- and post-synapses,
respectively. Channel conductance is always deemed as synaptic weight. Because of high carrier mobility,
excellent optical transparency, and large area preparation, oxide thin-film transistors have been widely inves-
tigated for next-generation displays. Recently, oxide transistors have also been proposed for neuromorphic
electronic applications. Several synaptic functions have been imitated. In addition, some complex synaptic
activities and NN algorithms have been imitated, including spatiotemporal information integration [110],
pattern recognition [111], and dendritic algorithms [112].

An artificial perception learning system usually adopts sensors and neuromorphic devices. Sensors are
responsible for perceiving and transforming external stimuli into electrical signals. External stimuli perceived
by sensors, including photosensor, force sensor, etc, can be delivered to neuromorphic devices. Neuromorphic
devices can process population coding in a way similar to that in brain NN. These processes require synaptic
transmission and synergistic algorithm to complete complex neural perception activities. Presently, artificial
perception learning systems have also attracted increasing attention. To date, some artificial perception systems
based on oxide neuromorphic transistors have been reported, such as tactile perception systems [113], visual
perception systems [110], and artificial sensory neuron (ASN) with visual–haptic fusion [114]. Basically, a
single neuromorphic device generally cannot achieve functions of perception and sensing at the same time. It
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Table 3. Summary of oxide neuromorphic transistors in China.

Type Multi-gate Gate dielectric Channel

EGTa

Single gate
Ionic liquid or ion gels WO3, IZO, In2O3

Solid-state electrolyte InOx , ITO, In2O3, ZnO NWs

Dual gate
Ionic liquid; ion gels SrCoO2.5

Solid-state electrolyte IZO, ITO

Multi-gate
Ionic liquid or ion gels IGZO
Solid-state electrolyte IZO, ITO

FeFET Single gate PZT IGZO
Conventional transistor Single gate SiOx, SiNx, AlOx, HfOx, SiO2 IGZO

aAcronyms used in table: EGT (electrolyte gated transistor), PZT (PbZr0.2Ti0.8O3), SiOx (Silicon oxide),
SiNx (Silicon nitride), AlOx (Aluminum oxide), HfOx (Hafnia oxide), SiO2(Silicon dioxide), WO3
(Tungsten trioxide), IZO (Indium zinc oxide), In2O3 (Indium oxide), InOx (Indium ox,ide), ITO
(Indium tin oxide), ZnO (Zinc oxide), NWs (Nanowires), SrCoO2.5 (Strontium chromium oxide) and
IGZO (Indium gallium zinc oxide)

is necessary to develop multifunctional electronic devices with perception and memory to imitate the sensory
activities and reflex activities of our body.

7.3. Advances in science and technology to meet challenges
There are several reports on oxide transistor-based neuromorphic devices, including EGTs, ferroelectric field-
effect transistor (FeFET), and conventional transistor. Here, we briefly discuss the recent progresses in China,
as shown in table 3.

In terms of EGT-based neuromorphic transistors, different electrolytes have been proposed, including
ionic liquids and ionic gels [115] and solid-state ionic liquid electrolytes [116]. Additionally, inorganic solid-
state electrolytes have several priorities, including good chemical stabilities, CMOS process compatibilities,
etc. Thus, inorganic solid-state electrolytes have also been adopted in oxide neuromorphic transistor [117].
Furthermore, laterally coupled oxide neuromorphic transistors have also been fabricated. Spatiotemporally
correlated signal processing has been mimicked [118]. Due to the lateral coupling activities, multi-gates could
be integrated into a single neuromorphic device to receive multi-inputs, resembling biological neurons well.
Thus, laterally coupled neuromorphic transistors show great potentials for building ANNs. Advanced NN
algorithms can be demonstrated [112, 119], including a proof-of-principle visual system for emulating lobula
giant motion detector neuron, dendrite integration, orientation tuning functions, and neuronal gain control
(arithmetic) in the rate coding scheme. With the nimble selection of multiple inputs in a multi-gate oxide
neuromorphic transistor, complex hybrid functions could be realized.

Ferroelectric dielectrics have spontaneous polarization states, which can be altered by an external electric
field. Thus, modulation could be precisely controlled by accurately providing the gate voltage. In other words,
multiple-channel conduction states can be obtained. Thus, FeFETs also have broad application prospects in
neuromorphic engineering [120]. Oxide transistors gated with conventional gate dielectrics also possess the
priorities of large-scale integration and compatibility with CMOS technology. Recently, such transistors have
been proposed for neuromorphic electronic applications [111, 121]. However, it is difficult to mimic LTSP for
oxide transistors gated with conventional dielectrics. Fortunately, light-induced persistent photoconductivity
can overcome this problem well. Therefore, conventional dielectric gated transistors also have potentials in
optoelectronic neuromorphic devices.

Additionally, oxide neuromorphic transistors have also been proposed to construct artificial perception
systems, which can mimic the information sensing and processing in a biological system. The main strat-
egy is to connect neuromorphic transistors with different sensing units. To date, some artificial perceptual
systems based on oxide neuromorphic transistors have been proposed in China, including tactile perceptual
system [113, 122, 123], visual perceptual system [124–126], and auditory perceptual system [127], as shown in
table 4. Recently, mimicking the biological perception activities is getting an important branch for the cognitive
platforms.

7.4. Concluding remarks
Oxide neuromorphic transistors have been proposed to simulate various synaptic activities, such as synaptic
plasticity (e.g. excitatory postsynaptic current [EPSC], paired-pulse facilitation [PPF], post-tetanic potentia-
tion, and long-term potentiation [LTP]), synaptic learning rules (e.g. STDP and spike-rate-dependent plastic-
ity [SRDP]), and advanced learning activities (e.g. associative learning, pattern memory, pattern recognition,
and dendritic integration). In addition, artificial perceptual systems based on oxide neuromorphic transistors
have also been proposed, such as tactile perceptual system, visual perceptual system, and auditory perceptual

21



2 (2022) 042501 Roadmap

Table 4. Summary of artificial perceptual systems based on oxide transistors in China.

Type Structure Stimuli Channel References

Tactile perception system Pressure sensor + transistor Pressure ITO, IGZO [113, 122, 123]
Visual perceptual system Phototransistor Light + electricity IGZO, IGCO,a ITO, In2O3 [124–126]
Auditory perception system In-plane synaptic transistors Electricity IGZO [127]

aIGCO: Indium gallium cadmium oxide

system. However, it should be noted here that more efforts are still needed. Only limited perceptual functions
have been mimicked. As comparison, our body perceptual system is a multisensory hybrid perceptual sys-
tem, which makes our body to respond to outer surroundings in an energy-efficient way. Therefore, it is highly
desirable to realize multi-perceptual functions on a single perceptual platform in a synergic mode. Fortunately,
multi-gate oxide neuromorphic transistors would act as fundamental building blocks to receive different stim-
uli from multi-input units. It should be noted here that the number of gates depends on the adoption of
materials and the device processing. However, it is possible that tens or hundreds of gates would be integrated to
a single-oxide neuromorphic transistor. Thus, the device processing should be updated. Furthermore, it is also
a great challenge to realize the interconnection and large-scale integration of oxide neuromorphic transistors
in a single chip.
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8.1. Status
Building an ‘intelligent machine’, which could process like a human brain, has always been the dream of sci-
entists. The famous work, ‘Intelligent machinery’, was written by Turing in 1948 [128]. He proposed a new
unorganized machine that can mimic ‘cognitive’ functions of humans (i.e. ‘learning’ and ‘problem solving’).
Turing also investigated the feasibility of fabricating an intelligent machine. However, due to the limitation set
by the condition at that time, the assumption of the intelligent machine cannot be realized.

Over the past few decades, due to the rapid development of neuroscience, the functions of neurons and
synapses have been uncovered and documented. The neural behaviors and synaptic plasticity are the main
research content of the neural systems. In the meantime, materials sciences were also growing rapidly, which
paved the way for mimicking the biological behaviors by manipulating electronic materials.

The concept of ‘neuromorphic computing’ was first proposed by Mead in the late 1980s, and the first
neural-inspired chip was fabricated by Mead [129]. Based on the early development, remarkable progresses
have been achieved during the past decade. For example, the CMOS-based neuromorphic chips TrueNorth
(IBM) and Loihi (Intel) were launched, which provided an impressive industrial debut [130, 131]. With the
rapid growth of the big data application market, traditional computers are limited to the ‘von Neumann
bottleneck’, which cannot afford cost-effective and sustainable scaling. The high-power consumption and
bandwidth problem, brought on by von Neumann architecture, has not been fundamentally solved. To resolve
these issues, an increasing number of new devices, called neuromorphic devices, were proposed as basic neu-
romorphic units, which can provide high speed, low power consumption, and high bandwidth. Over the past
decade, various sorts of neuromorphic devices have emerged successively [132], which mainly fall into three
categories via their operation principles: resistive random access memory (ReRAM) [133, 134], PCM [135,
136], FeFET [137], and others. All these emerging devices were used to simulate the function of biological
synapses and neurons, and all have been widely applied to neuromorphic circuits to accelerate matrix–vector
multiplications to realize machine learning tasks. Of course, like most new technologies, these emerging devices
also face various challenges.

8.2. Current and future challenges
Although neuromorphic devices have greatly developed in recent years, there are many remaining challenges
that need to be addressed. For fully realizing the goal of neuromorphic computation, the artificial neuro-
morphic device should have good characteristics, such as high switching ratio, ultralow power consumption,
good endurance behavior, great potential to scale down, super running speed, etc. Therefore, the challenge
that has been presented to us is to develop new materials and fabricate new devices that can simultaneously
meet all the requirements. Among the emerging materials, functional oxides seem likely to have the poten-
tial to achieve this goal. In the last few years, functional oxides are widely used in the field of neuromorphic
device, which was supported by various operation principles, such as drift, diffusive, phase change, ferro-
electric, and magnetic. These devices, based on different mechanisms, may perform in one aspect, while still
suffer in other aspects. The benchmark of the SOTA performance of devices with different mechanisms is
shown in figure 8. Take the ReRAM for instance. The intrinsic randomness is associated with the growth and
rupture of conducting filaments, which can be used to simulate both neuronal and synaptic dynamics. Nev-
ertheless, the ReRAM materials, such as TaOx, HfOx, and TiOx, often face reliability issues [134, 138, 139].
Similarly, although FeFET exhibits some promising characteristics as an electronic synapse, such as fast pro-
gramming operations, symmetric potentiation and depression curves, and large switch ratio, it suffers from
scaling limitations.

For the PCM devices, the resistivity change originates from phase change. There are two kinds of phase
transitions. One is that PCM materials transform between crystalline phase and amorphous phase, and the
other one is that PCM materials transform between two different crystalline phases. For the first one, temper-
ature plays a very important role in the transformation, so thermal management is a challenge, particularly
for scaled devices. For the other one, the structure of the functional oxides changes without breaking the
lattice framework, which is also called topotactic phase transformation [140]. In this situation, oxygen sto-
ichiometry has a great influence on the physical and electrochemical functionalities. In the topotactic phase
transformation, many novel physical properties can emerge due to the coupling between lattice, charge, and
spin degrees of freedom. These novel properties can provide new opportunities for the development of neuro-
morphic device, and many recent studies have been focused on this field. Ge et al realized reversible topotactic
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Figure 8. Benchmark of the SOTA performance of devices with different mechanisms.

Figure 9. (a) and (b) Cross-sectional HAADF-STEM image of SFO. (c) X-ray absorption spectra of the O-K edges. (d)
Asymmetric STDP implemented in the SCO-based synapses. (e) Schematic diagram of hydrogen ion movement in the VO2-based
devices. (f) Cycle for gating-induced long-term potentiation and long-term depression processes of the VO2-based devices.
Reproduced with permission from references [135, 136, 141].

phase transformation in strontium ferrite, SrFeOx (SFO), which can be applied to neuromorphic computing
[136] (figures 9(a) and (b)). The SFO-based synaptic transistor exhibited high performance and offered new
options for neuromorphic device. A similar phenomenon has been found in SrCoOx (SCO) and was applied
to the simulation of synaptic functions [141] (figures 9(c) and (d)). It should be mentioned that the typical
Mott material VO2 may be the promising candidate for the neuromorphic device due to its stable, reversible,
and ultrafast metal–insulator transition [135, 142] (as shown in figures 9(e) and (f)). In other words, the cou-
pling of multi-degree of freedom in the functional oxides provides multiple possibilities for the simulation of
synaptic behavior.

From the application aspect, the neuromorphic device should be integrated into deep neural networks
(DNNs) for simulating the functionality of the CNS. Pattern classification is one of the most important appli-
cations for the DNN (figure 10(a)). The crossbar array made up of neuromorphic devices was proposed for
hardware implementation (figure 10(b)). The synaptic weights were mapped into the neuromorphic devices
in the crossbar array, and the core operation of vector-by-matrix multiplication is accelerated by the matrix of
conductance multiplication at the physical level. During the operation of the DNN, the synaptic weights are
adjusted. Regardless of the performance of device units, the number of data states, linearity, and symmetry
have always been the top priorities to improve the accuracy of the pattern classification [143]. The synaptic
devices based on functional oxides are potential candidates to benefit from the high performance of gradual
resistance change and high on/off ratio. The three-terminal synaptic transistor based on SFO exhibits good lin-
earity and symmetry behavior. The accuracy of the SFO-based synaptic transistors came up to 92.7%, which
is much higher than the obtained phase-change memory devices [136] (figure 10(c)). Li et al demonstrated
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Figure 10. (a) Schematic diagram of a three-layer NN. (b) Schematic diagram of a neural core with a crossbar structure to
perform the analog matrix operations. The grayscale of each pixel is represented by the value of input voltage, and the output
value is represented by the value of output current. (c) Training accuracy of SFO-based devices for large image. (d) Training
accuracy of BaTiO3- and BaTiO3-based devices for large image. Reproduced with permission from references [136, 144].

an artificial synapse based on ferroelectric tunnel junction. The artificial synaptic device showed excellent
linearity, and as many as 200 conductance states were obtained. The simulated ANN exhibited a very high
recognition accuracy of 96.4% for the handwritten data set [144] (figure 10(d)). Despite the fact that these
new types of synaptic devices exhibited excellent linearity and enough conductance states, more work must be
done to further improve performance and adaptability, for example, by combining the excellent characteristics
of emerging devices with the conventional CMOS platform [145].

In summary, despite a scene of prosperity of the network-level research is spreading out, we still need to
obtain inspiration from neuroscience studies and apply novel physical properties to the simulation of complex
neural behaviors. Under such conditions, the modern characterization methods are essential to find new phys-
ical mechanisms, which can speed up discovery in materials science to meet the requirement. For commercial
availability, further attempts should be made to develop the fabrication procedures, algorithms, and the way
of integration for neuromorphic computing.

8.3. Concluding remarks
During the past years, neuromorphic devices based on functional oxides have been a research hot spot with the
rapid development of AI. Some prototypes of neuromorphic chips have been demonstrated and have exhibited
their superiority in some applications. The future development of neuromorphic devices and systems will be
focused on the discovery of new physical mechanisms and materials, new fabrication procedures, efficient
algorithms, and a new way of integration. We firmly believe that neuromorphic computation is one potential
pathway to break through the ‘von Neumann bottleneck’, which can promote computer power growth to a
great extent.
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9.1. Status
Building the human brain-like neuromorphic computing system on a hardware level is considered an effec-
tive way to overcome problems faced by traditional computers in this data explosion era (e.g. low parallelism
and high power consumption) [146, 147]. To achieve this goal, different neuromorphic devices have been
developed by using various functional materials to mimic the basic behaviors of synapses, which is the basis
of biological NN. A synapse can be roughly divided into three parts: presynaptic membrane, synaptic cleft,
and postsynaptic membrane (figure 11) [148]. Under stimulation, a neurotransmitter can be released from
the presynaptic membrane into the synaptic cleft and then act on the postsynaptic membrane. In this process,
the signal transmission efficiency between two neurons, that is, synaptic weight, can be adjusted. Up to now,
synapses have been successfully implemented by different types of electronic devices. Among them, neuro-
morphic transistors have attracted a lot of attention due to their multiple terminals, excellent stability, clear
operation mechanism, and relatively controllable device performances [149, 150].

Due to the atomic thickness, high surface-to-volume ratio, and extreme sensitivity to charge transfer or
electrostatic modulations at the interface, 2D materials are considered as one of the most promising potential
choices for developing diverse neuromorphic transistors with powerful features [151]. Moreover, van der Waals
heterostructures can be composed of a combination of 2D materials, which opened a window for developing
various types of electronic/optoelectronic synaptic and heterosynaptic devices [152, 153].

9.2. Current and future challenges
Because the development of 2D material-based neuromorphic transistors is still in the early stage, there are
some problems and challenges that need to be solved. First, the physical size of the device array is relatively large,
and the fabrication processing technology of uniform 2D material channels is not compatible with the con-
ventional CMOS technology, which discourages large-scale integration [154]. Second, the biological synapse
connections are arranged in 3D space, resulting in a great challenge in the interconnection of neuromorphic
devices [155]. Third, only a small fraction of biological synaptic behaviors have been imitated [91].

9.3. Advances in science and technology to meet challenges
At present, domestic research still focuses on the realization of high-performance synaptic devices, and gate
electrode, device channel, drain electrode, and channel conductance are regarded as the presynaptic mem-
brane, synaptic cleft, postsynaptic membrane, and synaptic weight, respectively. Inspired by the ion transport
mode in biological synapses, 2D material-based electrolyte-gated synaptic transistors were developed [151,
156, 157]. In 2018, Zhu et al demonstrated an ionic gating-modulated neuromorphic transistor by using WSe2

[151]. This device has remarkable linearity, symmetry, reproducibility, and ultralow energy consumption of
∼30 fJ per spike. In addition, the transistor successfully mimicked various synaptic behaviors, including EPSC,
PPF, SRDP, and dynamic filtering.

Distinct from the electrolyte-gated transistors, charges tunneling between the channel and the floating gate
can achieve gate-tunable nonvolatile channel conductance, which provides an alternative approach to emulate
synaptic plasticity [158, 159]. Jin et al incorporated the HfOx/HfS2 heterostructure into a WSe2 flash memory
device, achieving a high on/off current ratio of ∼105, a large memory window over 60 V, good endurance over
250 cycles, and a long retention time over 103 s [160]. By applying gate voltages with different polarities, the
synaptic depression and potentiation can be further mimicked in the devices.

FeFETs have also attracted considerable attention as a promising platform for mimicking biological
synapses, because the carrier concentration of FeFETs can be precisely and gradually modulated by changing
the polarization state of ferroelectric materials using the gate voltage [161, 162]. Recently, Wang et al demon-
strated the α-In2Se3 ferroelectric transistors with ultrafast write speed (40 ns), improved endurance, flexible
adjustment of neural plasticity, ultralow energy consumption of 234/40 fJ per event for excitation/inhibition,
and thermally modulated 94.74% high-precision iris recognition classification simulation (figure 12) [162].

Using light to control the synaptic weight may implement synaptic devices with large bandwidth, low
interconnection energy loss, and ultrafast signal transmission, and can help construct novel ANN architec-
tures [163, 164]. Cheng et al experimentally demonstrated a novel photoelectrically modulated neuromorphic
device based on a vertical 0D–CsPbBr3 –quantum–dots/2D–MoS2 hybrid-dimensional van der Waals hetero-
junction [163]. Photoelectrically modulated spiking Boolean logics, dendritic integrations in both temporal

26



2 (2022) 042501 Roadmap

Figure 11. Schematic illustration of a biological chemical synapse. Reproduced with permission [148]. Copyright 2014, Springer
Nature Publishing AG.

Figure 12. Schematic diagram of the α-In2Se3 ferroelectric semiconductor channel device. Reproduced with permission [157].
Copyright 2020, Wiley-VCH.

and spatial modes, and Hebbian learning rules can be successfully mimicked in the devices using specific
intriguing optical and electrical synergy approach.

9.4. Concluding remarks
In summary, based on the contents discussed previously, we consider that future studies should combine the
conventional semiconductor micro–nano manufacturing technology with 2D materials, achieving large-scale
application of 2D neuromorphic transistors. Moreover, persistent efforts should be made by researchers to
design and fabricate more complicated neuromorphic networks based on 2D synaptic transistors. Last but not
least, high-performance and multifunctional devices should be proposed to achieve more biological synaptic
behaviors.
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10.1. Status
In 2018, a novel type of bionic device called ASN came into sight, which was aimed to imitate the biological
perceptual capabilities of electronic devices [165]. After that, an increased number of ASN was proposed, pur-
suing the emulations of sensory neuron with various modalities, such as touch, vision, and olfactory sense.
In 2018, Xu et al from Nankai University developed the tactile-type ASN for extracting spatiotemporal fea-
tures of tactile pattern to enhance recognition accuracy and for motion control of actuators to construct the
artificial reflex arc [166]. In 2019, Song et al from Northeast Normal University developed a damage memory
system based on organic transistors, which mimics our olfactory system to protect the subject from hazardous
gas [105]. In the same year, Zhou et al from Hong Kong Polytechnic University developed an artificial visual
neuron based on optoelectronic memristor for neuromorphic visual pre-processing functions [167]. Among
them, neuromorphic transistor is the most used as the information processing component in an ASN, due
to its unique advantages, such as spatiotemporal integration property and scalability with other functional
components. Transistor-based ASN is able to integrate inputs from spatial isolated terminals, like the dendrite
in a neuron without additional wiring [118], and it can be used for implementing multisensory fusion by
integrating with multiple sensors [114].

The basic form of the ASN is the integration of neuromorphic and sensing components as well as some
additional parts, like signal generation and/or conduction media. The sensing components acted as the recep-
tor of a sensory neuron, which is responsible for transducing the external stimuli into spike train or analog
signal via the aforementioned additional parts. By selecting or designing proper sensors, the devices could
be built for mimicking different types of sensory neurons. The neuromorphic component, which acted as the
synapse, is responsible for the preprocessing of sensing information and feeds the followed perceptual learning
processes. The development of this area has shifted from pursuing the biological fidelity of a sensory neuron to
exploit the advantages of biology-like perception for empowering the bioinspired machineries. More impor-
tantly, with the gradual deepening of understanding on in-sensor computing paradigm that has been long
evolved in biological sensory system, achieving of bionic perception from the bottom up has gained increas-
ing attention. It is very promising for propelling autonomous AI and solving the von Neumann bottleneck
problem in conventional computing systems, which are hash-rate and power-hungry machines (figure 13).

10.2. Current and future challenges
Currently, the main challenge comes from the poor understanding of sensory neurons and the sensory sys-
tem, which is vitally important for the conceptual design of an ASN. Our sensory system can filter large-scale
external stimuli by the sensory neurons and interpret them into simplified presentations through the NN. This
process greatly reduces the scale of the sensory data, facilitates the learning and recognition process, and enables
ultralow-energy operation. However, the detailed mechanisms are still unclear, which increase the difficulty of
the translation into electronic implementation. The secondary challenge might be from the device level. What
kind of functional components should be integrated with the neuromorphic transistors and how to integrate
them to realize the essential functions of a sensory neuron are the main issues belonging to the device-level
challenge. Previously, the ASN incorporates a synaptic transistor with one or more sensors with similar proper-
ties of a certain receptor, which have been demonstrated with apparent sensory processing power. However, the
biological sensory neurons are far more complex. They communicate using spike trains, form a vast number
of interconnections in the gray matter, and are more adaptive and energy efficient. What is more, conventional
devices do not have the intriguing mechanical properties as biological counterparts, such as stretchability and
self-healing. Another challenge might come from the material level. Although a vast number of emerging mate-
rials were developed for expanding the functionalities of ASNs, such as 2D materials, perovskite, and MXene,
optimizing and innovating are still highly required for empowering the current ASN fundamentally.

Furthermore, important issues for system-level integration have not been considered yet, such as the con-
nection between device to device and the device density. In a biological system, the receptor density is highly
varied from region to region, and they are connected to the neural system through the nerve fibers. This is abso-
lutely different from the IC technologies. A revolutionary or at least a comprised solution should be addressed
for the replication of the biological sensory system.
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Figure 13. Scheme illustrates the inspiration from the biological sensory system and derived ASN devices in terms of tactile-,
olfactory-, and iconic-type ASNs. ASN and tactile-type ASN are adapted with permission [165]. Copyright 2018, WILEY-VCH.
Olfactory-type ASN is adapted with permission [105]. Copyright 2019, Royal Society of Chemistry.

10.3. Advances in science and technology to meet challenges
Confronted with these current and future challenges, there are some possible solutions. For example, with
the mapping of a simple NN of a nematode by serial electron microscopy reconstructions [168], understand-
ing of the connection, distribution, and mechanism has increased significantly. So, how a neuron and the
NN operate and how functions and mechanisms relied on the complex network structures could be revealed
for not too long. In terms of devices, some stimulation-sensitive materials (e.g. triboelectric materials [169],
hydrogels [170], and conducting polymers [171]) could also serve as the gate dielectric or channel materials,
which can simplify the integration of the sensing and processing components of an ASN and may empower
the in-sensor-memory process. With the development of some efficient and bioinspired oscillators, like car-
bon nanotube-based ring oscillators [172] and diffusive memristor-based oscillators [173], the ASN could
encode the information as the way of their biological counterparts with lower energy consumption and higher
error tolerance. The biological mechanical properties could benefit from the introduction of intrinsic stretch-
able active materials, such as the conjugated polymer/elastomer phase separation-induced elastic semicon-
ductor [166] and rubber-based semiconductor [174], nanomaterials (including carbon nanotubes and silver
nanowire), and novel structure designs (like the serpentine, micro-cracked, and waved [175]).

Transistors with a multigate configuration could be served as a good example for constructing the complex
network connections, as they can form interconnections on demand and without precise and defined wiring
[118]. This would greatly simplify the reproduction of the highly complex connections in the NN. Further-
more, by integration of several kinds of neuromorphic devices, the network could be more sophisticated as the
biological one. An example is the formation and degeneration by integrating with memristors. Meanwhile, we
are still waiting for breakthroughs in both scientific and technological aspects to build a highly autonomous
artificial perceptual system.
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10.4. Concluding remarks
The ultimate goal is to build an autonomous artificial intelligent system with human-like perceptual, cognitive,
and active capabilities. However, several challenges should be addressed before starting practical applications.
The main obstacle is from the neuroscience aspect, in which the mechanisms for how neurons and NNs operate
are still not clear. However, efforts paid to develop electronic implementations for imitating their biological
counterparts will not be in vain. On the one hand, bioelectronics boomed with the creation of novel elec-
tronic paradigms based on neural mechanisms and by endowing existing electronics with biological plausible
intelligence. On the other hand, it can serve as the supplementary path for understanding the basic neural
mechanisms in parallel to the neuroscience methodology. Despite its infancy, it has become appealing to the
scientific community, including materials science, flexible electronics, soft robotics, neuromorphic engineer-
ing, and bioelectronics. Among the various candidates, neuromorphic transistors are thought to be one of the
most promising information processing components for ASNs. We believe that the development of ASN based
on neuromorphic transistors would eventually give birth to the autonomous artificial intelligent system, which
has profound significance in improving our lives and manufacturing processes.
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11.1. Status
Research on neuromorphic ICs started as early as the 1980s [12]. However, dilemma in parallelism and power
consumption of neuromorphic computing has hindered their development. Recently, rapid growing of data-
centric computation rearoused attention on the neuromorphic ICs. The implementation of the neuromorphic
ICs cannot only dramatically enhance the efficiency of data processing but also promote the applications of
AI in various edge computing scenarios. In addition, it will simulate the operation mode of the human brain
to a certain extent, which will further enhance the development of neuroscience and in return will lay the
foundation for the development of strong AI. However, although electron devices are superior in general-
purpose computations nowadays due to their much lower latency compared with neurons, the huge efficiency
gap between ICs and the nervous system is a major stumbling block on neuromorphic computing.

There are two main approaches to realize neuromorphic computing; one is based on the CMOS technique
and the other on the NVM technique. Figure 14 summarizes the energy efficiency and power consumption
of the recently reported neuromorphic computing system based on CMOS and NVM with ANN and SNN;
research from or participated by Chinese scientists are highlighted. Although the SNN shows lower energy
efficiency compared with the ANN, the event-driven process of the SNN would have great potential archiving
ultralow-power applications. Moreover, the NVM-based architectures are more energy efficient.

For CMOS-based ANN structure [176–178], a chip using SRAM has been proposed, and the recognition of
handwriting digits at an energy of 630 pJ has been achieved. To further improve the energy efficiency, one way
is to mimic the mechanism of the brain with IC in the SNN architecture [59, 61, 185]. For example, the Darwin
chip utilizing SRAM supports 2048 neurons and over four million synapses, consuming 0.84 mW [185].

However, the CMOS devices limit the integration and energy of chips. Therefore, it is necessary to explore
a new architecture based on novel devices. Up to now, there have been many NVM-based ANN and SNN
structures [45, 179–184]. Compared with the CMOS-based architecture, the new structures are generally more
energy efficient.

Due to the development of neuromorphic computing-oriented novel design methodology and NVM
devices, great progress has been achieved in neuromorphic ICs in terms of complex tasks with limited power
consumption. In the future, continuously improving the efficiency of the devices and ICs will change the
environment of neuromorphic computing.

11.2. Current and future challenges
There have been many progresses in neuromorphic computing, but lots of challenges to reduce energy cost
need to be addressed. Difficulties arise from different levels. For chips with a large scale of cores, the network-
on-chip (NoC) connection strategy has been widely used to communicate between the process elements (PEs).
In this part, power cost occurred mostly in routers and communication link. For instance, the enormous inter-
core communication will lead to congestion of NoC and occupy amount of storages, which would dramatically
reduce performance.

For every core, the analog circuits are used to realize the computing in memory, which requires interfaces
to connect the digital and analog circuit components. However, the utilization of analog-to-digital converter
(ADC) and the digital-to-analog converter (DAC) results in large power dissipation, especially for the ADC.
Meanwhile, in a CMOS-based core, six transistors are needed to realize at least a simple synapse or neuron.
To implement more functions with electronic synapse and neuron, more transistors have to be utilized in the
circuits. As a result, rapid rise in area and power cost is inevitable. As the number of cores increases, the power
inefficiency brought by these difficulties becomes severe.

Recently, increasing works realizing the neuromorphic chip based on the NVM to further simulate neural
function and improve energy efficiency have been reported. However, there are also many special difficulties to
optimize the low-power brain-inspired chips without considering the device reliability and yields, especially
for training process. First, the programming voltages of the NVM are sometimes higher than the VDD of core
devices due to the device characteristic, which leads to huge energy cost when tuning the conductance. More-
over, the most common NVM devices have a nonlinear characteristic of modulating the conductance, which
is nonideal for conductance tuning. It is necessary to propose some schemes to solve the problem. Meanwhile,
most of the approaches are implemented using the lookup table (LUT) or calibration circuits, which increase
the energy cost in the training process. In addition, to perform the on-chip training, the STDP rule is also
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Figure 14. (a) Energy efficiency and (b) power consumption of the recently published neuromorphic computing. Research from
or participated by Chinese scientists are highlighted.

utilized with complex programming signal, which would lead to an enormous waste of power. Furthermore,
the sneak-path leakage of the crossbar also results in a certain power consumption. Some typical factors that
influence the energy consumption are summarized in figure 15.

11.3. Advances in science and technology to meet challenges
To meet the aforementioned challenges, many new technologies need to be proposed by researchers in China.
For the NoC, it is critical to reduce the energy consumption of data transmission and cache. Using sparse and
low-bit data is a good approach, because routers can transmit less data and become asleep rapidly. In addition,
the strategy to balance the distance and congestion between routers is important. An efficient mapping solu-
tion called memetic algorithm-based mapping method, which can reduce the average latency by 63% and the
average energy consumption by 69% by maximizing bandwidth utilization, has been reported [186].

Besides, achieving a low-power interface is a critical issue for IMC. Since throughput and resolution are the
main sources of power consumption in ADC, reducing these two categories without compromising accuracy
would be necessary. Therefore, the reuse of ADC and DAC is beneficial to enable an efficient brain-inspired
system. An RRAM-based accelerator named area efficient and power efficient [180] has been proposed, which
improved the power efficiency by reducing the number of DACs and balancing the trade-off between the
algorithm accuracy of deep CNNs and the resolution of ADCs.

In addition, it is important to establish electronic synapses and neurons with low-power circuits or devices.
Meanwhile, designing the programming scheme and training algorithm to realize an efficient on-chip learn-
ing is an attractive challenge. Fortunately, many preliminary efforts aiming at these goals have been made. A
silicon neuron with the behaviors of regular spiking, intrinsically bursting, and fast spiking has been realized
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Figure 15. Qualitative ranking of the source of energy consumption for the three architectures. A larger value on a given axis
indicates a higher proportion in terms of the corresponding factors.

[187]. In addition, neuro-transistors, by integrating dynamic pseudo-memcapacitors as the gates of transis-
tors, have been proposed, by which a capacitive NN has been built [188]. Excitingly, a leaky integrate and fire
neuron, using a capacitor-less leaky FeFET with ultralow hardware cost, has been demonstrated [189]. FeFETs
with symmetrical and linear-liked weight tuning, which uses a fixed voltage, have also been proposed [190].
Besides, a bilayer transparent memristor has been realized with set and reset voltages of 14 mV and 0.3 V,
respectively, and it is composed of indium tin oxide solely [191]. These prototype devices not only reduce the
operation voltage of traditional memristors, but they also pave the way for simplifying the device structure
and the fabrication process.

11.4. Concluding remarks
Ultralow-power neuromorphic computing ICs have become a center of research recently and have achieved
fruitful results. Until now, some CMOS-based architectures have already been proposed. To further reduce
energy consumption and improve integration, a lot of explorations and efforts have been made from devices
to the chip architecture. Yet, there are still some challenges that need to be addressed, including simulating a
synapse or neuron with fewer devices, designing efficiency communication mechanisms, reducing the power
consumption of tuning conductance, etc. By far, a unified framework or theory in the field of low-power neu-
romorphic computing has not been proposed yet. Meanwhile, there is not even a standard for the manufacture
of devices and the selection of materials. In summary, it has come to a point for us to think more about where to
go and how to develop new devices, chip architectures, and ways of integration for low-power neuromorphic
computing.
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12.1. Status
The new computing paradigm is inseparable from dedicated EDA tools [192]. There are two essential parts of
the traditional design flow, namely, front-end and back-end syntheses. The front-end synthesis is concerned
with how to translate design abstraction into a technology-specific netlist under the constraints of power, per-
formance, and area, while the netlist to physical layout is generally implemented in the back end. In addition,
verification runs through the whole process. Automated synthesis is the core part of the front-end synthe-
sis. Synthesis includes translating the high-level description into a gate-level netlist, technology-independent
optimization, and technology mapping [193, 194].

Neuromorphic computing is quite different from standard-cell CMOS technologies and LUT field-
programmable gate array components. Memristors sandwiched in crossbar arrays present new logical abstrac-
tions and challenges to (technology) mapping. Memristive devices are characterized by their nonvolatile binary
storage capability and their ability to store continuous conductance values. Binary storage is used to execute
NOR or implication logic operations and other digital logical operations. In contrast, storing a continuum of
conductance values facilitates the computation of Ohm’s law and Kirchhoff’s current summation laws [194].
In previous research, an NN was mapped to a crossbar based on physical laws, which enables matrix–vector
multiplication to be more efficient. The weights of the network are stored in memristive devices in this sce-
nario [12, 45]. Neuromorphic architecture, however, requires additional effort when incorporated into a
general design, such as digital circuits. Recently, a mixed-signal neuromorphic architecture was proposed to
unite analog efficiency and digital programmability [195]. Furthermore, the neuromorphic computing archi-
tecture can be realized using a bottom-up approach using the self-assembly method for the fabrication of
nanowires and nanodevices. As a result of self-assembly, non-idealities are inevitable when it comes to com-
puting. In addition to improving yield from a hardware perspective, fault-tolerant/defect-tolerant EDA tools
are also beneficial. In general, a correct function is obtained by either utilizing existing defective devices or
by avoiding certain areas of defective devices. Defect-tolerant logic mapping on a digital logic architecture for
‘CMOS/nanowire/molecular’ hybrid circuits [196] was widely addressed recently [197, 198].

It would be possible to extend the application and generality of neuromorphic computing and engineering
by developing automated synthesis and mapping techniques, the design flow of which is shown in figure 16.
AI in advance brings a great deal of profit to EDA (e.g. the simulator for the mapped crossbar array), while
EDA techniques could be used to enable AI-based hardware. Therefore, deep integration of neuromorphic
computing and EDA is a promising goal.

12.2. Current and future challenges
In recent decades, logic synthesis has been developed mainly for CMOS technology, where logic is abstracted
by using traditional AND/OR, NAND/NOR, or XOR. For neuromorphic applications, however, memristive
devices can implement stateful implication logic [199] or majority-of-three (MAJ) logic [200]. Memristive
devices could have multilevel states, which allow the computation of multi-values instead of binary-value logic.
The following is a general view of the challenges of automated synthesis and mapping.

Logic representation. Logic optimization relies on the underlying logic representations. In the early ages
(i.e. the 1960s), truth table is used for representation of small-scale functions. Later, as the programmable
logic array technology natively implements the sum of product (SOP) form, two-level logic representations
were extensively studied at that time. The standard logic representation began shifting from SOPs to directed
acyclic graphs (DAGs) with the advent of large-scale integration. The notable DAG-based representation exam-
ples are binary decision diagrams, AND-inverter graphs (AIGs), and MAJ-inverter graphs [201], the nodes in
which act as 2:1 multiplexer, two-input AND, and three-input MAJ, respectively. In neuromorphic computing,
the diversity of memory devices leads to different logic abstractions. Although current SOPs or AIGs can be
transformed into representations suitable for memristive devices, the naı̈ve one-to-one mapping could bring
lots of redundancy.

Logic mapping. Mapping the optimized logic network to a crossbar array is the main task for logic map-
ping. The crossbar array supports both serial and parallel computing, thanks to its regular fabric. Hence, the
logic mapping process can be further divided into three stages: (1) scheduling the logic computing to parti-
tion the designs and generate instruction sequence, (2) defect-tolerant mapping of the designs, and (3) the
online/offline mapping of an NN. The challenges mainly come from the non-idealities. An efficient simula-
tor for the crossbar is highly in demand. The simulator should capture the sources of non-idealities of both
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Figure 16. EDA design flow for automated synthesis and mapping of neuromorphic computing.

non-data dependent- (liner) or data-dependent (nonlinear) types. The nonlinearity could be a big challenge.
By using data training and inference, NNs can be used to deal with this issue [202].

Multi-value states. The continuous conductance values are usually used to store the weights of the NN.
There is less attention paid to multi-value logic (MVL) synthesis, but multi-value representation is considered
as a key enabler for next-generation and high-information-density digital electronics [203]. MVL is not a new
concept. It is restricted since the CMOS technology works better for binary-value logic. MVL can now be
operated with significantly reduced complexity and remarkable new capabilities, thanks to the development
of new electronic materials and devices. The exploitation of multi-value states of memristive devices could
bring lots of new opportunities.

12.3. Advances in science and technology to meet challenges
Logic representation. To keep the diversity of the memristive devices, the logic representation for neuromorphic
computing should be flexible to represent all the candidates, from two-input AND/OR to three-input majority.
The majority logic operation over variables x, y, and z is M

(
x, y, z

)
= xy + xz + yz. It inherently incorporates

AND/OR since M
(
x, y, 0

)
= xy and M

(
x, y, 1

)
= x + y. Hence, the majority logic is more expressive and can

be used as a unified logic representation. Combined with an inverter, the majority logic is functionally complete
for all the functions. XOR is widely used in arithmetic circuits; the majority logic with three-input XOR could
be a promising logic representation [204]. For example, a full adder has two outputs that are sum out and carry
out, which correspond to a three-input XOR and majority logic, respectively.

Logic mapping. To exploit the parallel computing properties by the crossbar array, it is important to have
a design partitioned from both coarse-grain and fine-grain perspectives. Also, the partitioned design should
be scheduled to optimize the number of instructions and computing resources. The scheduling process is
highly related to the logic representation under the physical constraints of the crossbar array. Because the logic
mapping actually performs the placement and routing step compared in the traditional flow, a mapping-aware
logic synthesis could also benefit the neuromorphic computing design flow. For the simulator, the AI-based
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simulation method could be a promising path to address the nonlinearity fault. Finally, the synthesizer, the
simulator, and the mapper make up the essential parts for the EDA tools of neuromorphic computing.

Multi-value states. MVL synthesis was addressed in the 1990s [205]. Logic representations, optimization
algorithms, and intermediate file format were discussed. However, a significant amount of effort and research
needs to be done. The development of new electronic materials and devices can verify the synthesized results.
In turn, the synthesizer enables the development of new devices. Moreover, once the number of multi-value
states is large enough, the gap between digital and analog circuits could be narrowed. The multi-value state
has more sampling of the signals.

12.4. Concluding remarks
EDA toolchains are indispensable for neuromorphic computing and engineering. The three important parts
for design automation of neuromorphic computing are synthesizer, mapper, and simulator. The three parts
are not independent existence but have strong coupling with each other. Various device candidates, device
nonideal behaviors, and multi-value states pose great challenges to promoting neuromorphic computing
technologies for practical application. Consequently, there needs continuous work on unified logic represen-
tation, defect/fault tolerance logic mapping, and MVL synthesis. With the advances in EDA and large-scale
integration, neuromorphic computing is promising to be a critical computing paradigm.
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13.1. Status
The recent surge in AI drives the exploration of machine learning hardware, especially chip designs. It turns out
that conventional CPU-like von-Neumann architectures are not suitable for machine learning tasks in terms
of energy efficiency. Optimized for complex controlling problems, current CPUs focus more on out-of-order
dispatch, branch prediction, and cache coherence. Only 9% of the entire processor power dissipation is con-
sumed by data path-related operations. In addition, the on-chip memory of CPUs is often limited. As a result,
the CPU requires tremendous external memory access and latency to meet computing- and memory-intensive
workloads, such as matrix–matrix multiplication in NNs. Due to these reasons, the commercial CPU perfor-
mances of HPC have been saturated for decades [206]. In contrast, the computing operation number of SOTA
AI algorithms doubles every 3.4 months [207], resulting in a big gap between hardware and software. The GPU
was the first viable hardware solution for SOTA machine learning algorithms. It employs single-instruction
multiple-thread architectures to perform large-scale parallel computing. However, the power consumption
of GPUs normally exceeds hundreds of watt, which is too power hungry to deploy in edge and embedded
scenarios.

The aforementioned facts drive domain-specific computer architectures and corresponding silicon proto-
types for machine learning. In this trend, SoCs accelerating NN computing are widely reported for different
specific applications, such as image recognition, keyword spotting, and natural language processing. Compared
with conventional CPU and GPU, these machine learning SoCs rearrange the hardware organization and even
instruction set. Tensor processing unit from Google [208], for example, employs systolic arrays to efficiently
implement matrix–matrix multiplication efficiently. Only five instructions remain for the HPC coprocessor.
Memory hierarchies are also optimized for data movement. Meanwhile, researchers from academia are seeking
more efficient implementation, such as Cambricon [209] and Eyeriss [210]. In this review, we categorize these
solutions as near-memory computing (NMC), that data processing is no longer externally but close to where
data reside—memory.

More recently, a new type of computer architecture called IMC prevails. As the name implies, IMC refers
to that data processing takes place inside the memory; therefore, (part of) data movement is eliminated. IMC
reuses storage devices, for example, memristor of NVM [45], to perform analog computing. It features not only
good energy efficiency but less data movement. In this review, both NMC- and IMC-based machine learning
SoCs, illustrated in figure 17, will be investigated.

13.2. Current and future challenges
There are two main challenges inside machine learning SoC designs, normally known as the power wall and
the memory wall.

Power wall. Due to the end of Dennard scaling, the power dissipation density concerning area keeps increas-
ing as the fabrication technology downscales from sub-100 to sub-10 nm. This trend results in a severe problem
of chip cooling. To ensure that transistors work properly under a reasonable temperature range, there exists a
maximum thermal limit, known as the power wall. SOTA HPC chips have been already approaching this limit
when using 7–14 nm FinFET technology [211]. As a result, CPU performance (maximum clock rate) does
not increase when better technology is adopted. It is critical to investigate more energy-efficient circuits and
architectures to implement HPC. The potential of conventional digital circuits is running low, while analog
and mixed signal-based computing circuits are promising [212]. However, analog circuits are sensitive to pro-
cess variation, noise, and varying voltage/temperature, especially for accurate computing. A trade-off between
precision and power consumption is of great concern.

Memory wall. Another issue of machine learning SoC comes from the data transportation between com-
puting logic blocks and memory blocks. For each multiplication and accumulation operation, it requires four
times memory access in the conventional computer architectures. In other words, an N × N matrix multipli-
cation would trigger 4N3 times memory access, which consumes much longer latency and power consumption
than parallel computing if the memory is off-chip. Note that the actual input and output data sizes ar 2N2 and
N2, respectively. Therefore, a good design should target an optimized solution reducing the memory access
gap from O(N3) to O(N2). Historically, this limit is known as the memory wall or the von Neumann bot-
tleneck. This challenge is not scaling down-friendly either. Although the power and area consumption of the
logic decreases as the technology scales, the pad size and the external data bandwidth are almost maintained,
if not using a high-speed link interface, across different technology nodes. A straightforward solution to the
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Figure 17. Architecture options for machine learning SoCs: NMC vs IMC.

memory wall is embedding an extremely large (>100 MB) on-chip memory inside SoCs [213]. But it is not a
cost-effective way. Detailed understanding of algorithms shows that data reuse inside NNs can be a key knob
to solve the memory wall. Systolic arrays, for example, are a common architecture to avoid intermediate results
of matrix computing transferring outside the computing logic circuits.

13.3. Advances in science and technology to meet challenges
Many innovations were proposed to address these challenges. We categorize some of them into three major
advanced trends, notifying that there is some significant work that is not covered due to the limited length.

13.3.1. Reconfigurable data flow optimization
Reconfigurable NMC architectures feature software-defined hardware fabric connecting bunches of PEs and
local memory blocks. In NN processors, different NN data flows can be applied to the architecture, reducing
the data movement. For example, Thinker in [214] is a reconfigurable hybrid NN processor, which has two
reconfigurable heterogeneous PE arrays supporting on-demand partitioning and reconfiguration for paral-
lel processing different NNs. Each PE supports bit-width adaptive computing to meet variant bit widths of
different neural layers. Another reconfigurable deep learning accelerator, iFPNA [215], achieves both energy
efficiency and flexibility. This processor has both the programmable data flow engine with custom instruction
sets and reconfigurable PE arrays. The method also supports application-specific design, such as a biomedical
AI processor (BioAIP) in [216]. The reconfigurable BioAIP with adaptive learning is compatible with an NN
and biomedical signal processing engine.

13.3.2. Algorithm–circuit–architecture codesign
Original deep learning algorithms have redundant margins, causing extra power consumption and memory
access. Sophisticated NN compression and modification techniques can remove the cost of these redun-
dancies, improving the overall performance. For example, a block-circulant algorithm can unify CNN/fully
connected/recurrent neural network (RNN) workloads with transpose-domain acceleration. Based on this
algorithm, a unified NN processor has been proposed [217], providing 8×–128× storage reduction. Also,
to solve the problem of huge computations and storage of CNN and DNN, a binarized depth-wise separate
convolution neural network has been designed [218]. This lightweight NN architecture reduces memory foot-
print and computations compared with traditional CNN for the task of keyword spotting. In addition, an RNN
accelerator, on-chip incremental-learning enhanced artificial neural network (OCEAN) in [219], implements
both inferencing and training on the same hardware by utilizing a mixture of analytical and numerical gradient
decent. OCEAN achieved on-chip RNN training with a low cost of hardware overhead.

13.3.3. Analog/mixed-signal in-memory computing-based SoC
Exploiting analog computing within memory bit cells, IMC circuits feature both good energy efficiency and
less data movement. IMC-based machine learning SoC targets extending macro advances to system perfor-
mance. For example, an IMC-friendly dynamic sparsity scaling (DSS) architecture was designed in [220]. This
accelerator realized activation and weight sparsity-aware acceleration and lower power by DSS. Moreover, to
reduce more off-chip data accesses in IMC, an attention-based context-breaking method is presented in [221].
It reduces data movement up to 30.3% by removing weak context connections in RNNs. In addition, time-
domain analog computation with less toggle activity provides an alternative in [222]. Figure 18 shows that with
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Figure 18. Energy efficiency survey on IMC- and NMC-based machine learning SoCs.

the assistance of analog/mixed-signal computing, SoTA IMC SoCs achieve nearly ten times energy efficiency
improvement than NMC SoCs.

13.4. Concluding remarks
As one of the most representative domain-specific architectures and corresponding chips, machine learning
SoC aims to break the power wall and memory wall of HPC hardware. A bunch of verified silicons demonstrates
that reconfigurable data flow optimization, algorithm–circuit–architecture codesign, and analog/mixed-signal
IMC helps to improve overall SoC performances.
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14.1. Status
The human brain consumes only approximately 20 W of power to perform complex tasks that outperform
SOTA supercomputers by several orders of magnitude in energy efficiency and volume. Neuromorphic com-
puting emulates the principles of computation of the human brain, which utilizes asynchronous events as
information carriers. Compared to conventional computers with centralized processing architecture, neu-
romorphic computing is distributed, massively parallel, and adaptive. With this approach, neuromorphic
computing can overcome the von Neumann bottleneck.

Since the early 2000s, endeavors of emulating the human brain have promoted the design of large-scale
neuromorphic chips. More recently, spiking neuron networks (SNNs) that exchange information via spikes
have gained increasing attention in the field. SNNs are naturally compatible with neuromorphic hardware due
to their spatiotemporal dynamics, diverse coding schemes, and event-driven characteristics [223]. In addition,
SNNs feature extremely low power consumption, just like the brain does [224].

Thanks to the SNN-based neuromorphic chip’s low power consumption and low chip area requirements,
performing real-time pattern recognition tasks in an edge computing scenario has become possible. For
instance, object recognition and classification with SNN chips are advantageous in energy consumption and
area compared with CPUs.

Previous research on neuromorphic chips mainly investigated spike-driven computation. Specifically,
learning with ‘spikes’ has been demonstrated by different academic and industrial research groups. Table 5
shows a summary of representative neuromorphic platforms, with focus on many China-based groups (rows
4–7). In 2014, IBM introduced the TrueNorth chip with one million neurons [225]. The proof-of-concept
chip possesses the majority mathematical functionality but occupies an area of 430 mm2, which is too large
and expensive for IoT applications [226]. Most of the successive neuromorphic chips comprised less than
200 000 neurons, as the neuron density is often restricted to ∼2000 to 3000 neurons per mm2. The current
mainstream to design effective neuromorphic hardware exploits digital and asynchronous hardware. In this
domain, asynchronous circuits can consume up to ten times less power but can require a larger overhead area
than synchronous circuits. To break the bottleneck of neuron density, Intel Loihi 2 was manufactured by the
latest Intel 4 technology node, and the neuron density reaches 32 000 mm2, which is 15 times larger than its
first generation [227].

14.2. Current and future challenges
Nevertheless, all of these research chips are facing the same problem toward IoT commercial applications—the
chip area is too large and the cost is too high. Currently, estimation of chip price lies in the range of 10 to 50 US
dollars per million neurons. This is because most of the aforementioned chips are designed based on general-
purpose architectures. Such architecture is highly reconfigurable and can be adapted to various computational
models, which has tremendous advantages for research purposes but does not fit well with application-specific
market-oriented products. As a matter of fact, edge applications are very sensitive to the cost and power con-
sumption of solutions. The demand for low-power applications requires a dedicated solution with optimized
architecture to save power consumption and manufacture cost with a constraint to the number of neurons
and chip size. Moreover, many real-time tasks also require dedicated input/output (I/O) interfaces to form
a complete SoC to process various signals and be compatible with common analog and/or digital sensors. A
neuromorphic application-specific design approach that can directly support these sensors with adequate I/O
interfaces is urgently needed for commercial applications.

14.3. Advances in science and technology to meet challenges
Multiple steps are required to make such a market-oriented chip design approach successful. First, a clear
definition of the system is necessary to define the fundamental neuromorphic chip specifications, such as power
consumption, cost, computing capacity, extendibility, I/O interface, in/out protocol, etc. Then, a market-
oriented definition based on real applications further defines the algorithm development/optimization and
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Table 5. Summary of existing neuromorphic computing platforms.

Power Craft Area Number Neuron Method Cost/million neurons
(mW) (nm) (mm2) ofneurons density(mm2) per chip (US dollara)

IBM TrueNorth [225] 63–300 28 430 1 × 106 2.3 × 103 Syn + Asyn full 30.3
digital

Intel Loihi [60] 74 14 60 1.3 × 105 2.2 × 103 Asyn full digital 44
Intel Loihi 2 [227] / Intel 4 31 1 × 106 3.2 × 104 Asyn full digital 7.65b

Tsinghua Univ. Tianjic [61] 400–950 28 14.44 4 × 104 2.8 × 103 Syn full digital 23.4
Zhejiang Univ. Darwin-1 [185] 58.8 180 25 2 × 103 –3.2 × 104 82–1311 Syn full digital /
Zhejiang Univ. Darwin-2 ∼1000 55 / 1.47 × 105 / / /
SynSense <1 22 12 1 × 106 8.3 × 104 Asyn full digital 0.86
DYNAP-CNN [228]

aBased on 12 inch wafer without considering mask price: 28 nm from Semiconductor Manufacturing International Corporation, 22 nm
from GlobalFoundries, and 14 nm from TSMC.
bIntel 4 refers to TSMC 5 nm.

Figure 19. Neuromorphic SoC developed by SynSense; left: smart vision SoC integrates dynamic vision sensor and
neuromorphic processor; right: SoC development kit.

modeling. Finally, an algorithm and circuit codesign effort are crucial for efficiently contributing to the pro-
duction of the most efficient neuromorphic architecture implementation.

Such an approach has been recently implemented by SynSense with the release of the DYNAP-CNN [228]
neuromorphic chip. This approach has led to 30–50 times higher neuron density, 30–50 times lower cost,
10–100 times reduction of power consumption, and ten times higher computation efficiency compared to
general-purpose neuromorphic research chips, like TrueNorth [225], Loihi [60], and Tianjic [61].

Similarly, the market-oriented SoC solution ‘SPECK’, shown in figure 19, has recently been demonstrated.
Driven by market demands, a complete end–end event-based dynamic vision neuromorphic intelligent SoC,
with an embedded SNN architecture comprising a total of 32 700 spiking neurons, has been realized. The SoC
is fully configurable and has been optimized to run SNNs that can be used for human behavior detection,
gesture recognition, motion detection, and various types of intelligent vision-based scenarios.

14.4. Concluding remarks
Neuromorphic computing technologies are ideal for intelligent edge computing tasks that are power and/or
size constrained. Market-oriented neuromorphic SoCs need to be driven by both real-world applications and
algorithm codesign. For a complete neuromorphic solution, considerations need to be made on cost, power
consumption, and inter-chip communication at the system level. This covers a significant number of special-
ized designs in circuit structure, power management, compatible algorithm development, and optimization.
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