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Abstract
The transition from conventional liquid electrolyte Li-ion batteries towards solid-state systems
requires a paradigm shift on how these batteries are fabricated and how the R&Dprocess can be
augmented in order to fulfil the ever-increasing demand for reliable and high-performance energy
storage systems. This work briefly looks over themain aspects of printed electronics and its potential
to accelerate the development of solid-state batteries. It emphasizes themain challenges related to the
fabrication of solid-state batteries and howprinted electronics can address them in a timely and
affordablemanner. Importantly, the proposed printed electronicsmethods and solutions highlight
the ability for immediate upscaling tomass production aswell as downscaling for rapid prototyping
and customdesigning.

Regardless of the application, batteries are ubiquitous - starting fromportable devices, smartphones, and
laptops, through electric vehicles of various sizes, ending at large energy storage systems to support smart grid
and renewable energy generators [1]. Thismultitude of applications create an ever-growing demand for capable,
energy-efficient, safe, sustainable, well-performing battery systems, and suitable fabricationmethods.
Moreover, formore dedicated applications, the battery fabrication technologies are expected to provide an
additional capability of tailoring the batteries, i.e., specific shapes and dimensions, flexibility, compatibility with
extremely fast charging-discharging, or extreme temperatures [2]. Nowadays, the sustainability aspect
concerning batteries throughout their lifetime has also become important in selecting battery vendors, favoring
solutions that aremore environmentally friendly at every step of the battery lifetime, starting fromproduction,
through its usage, and ending at recycling [3]. Expectedly, customers anticipate that the batterywill fulfill all the
technical requirements andwill be offered at an affordable price. Although state-of-the-art Li-ion liquid
electrolyte batteries offer satisfactory performance (for now), the researchers andmanufacturers spend
tremendous efforts on the development of next-generation batteries to fulfil the ever-growing customer demand
and overcome the limitations imposed by liquid electrolyte-based energy storage systems [4].

One of the very promising approaches that addresses the aforementioned needs is the replacement of liquid
electrolyte with its solid-state substitute. In this approach, the ionic liquid-soaked separator located between the
cathode and anode is replacedwith a solid layer ofmaterial with high ionic conductivity. Table 1 offers a
comparison of solid-state and liquid electrolytes with emphasis on theirmain advantages and disadvantages/
limitations [5].

In addition to the advantagesmentioned in table 1, the researchers highlight that solid-state electrolytes offer
compatibility with high-potential cathodes (>4.2V), higher energy density than conventional liquid electrolyte
batteries, and improved safety (lowflammability) at low costs [6, 7]. All these benefits and advantages of Solid-
State Batteries (SSBs) attracted numerous research institutes and private enterprises towards further R&D
efforts. This trend is especially visible in the Electric Vehicle (EV) arena, where several large automotive
companies with EV aspirations, such as Toyota, VW, BMW, Ford,Mercedes-Benz, andGeneralMotors have
alreadymademajor investments in the companies involved in the SSBs development (QuantumScape, Solid
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Power, and Factorial Energy). At the same time, enterprises recognize the challenges and aim to achieve full
commercial SSBs deployment in the second half of the decade.

Despite the great potential and strong involvement of resourceful companies, the current SSBs suffer from
several drawbacks such as poor selection and stability of suitable high ionic conductivity solid electrolytes,
undesired interfacial resistances, and internal and interfacial nano- andmicroscale degeneration of the
materials, to name a few [8–10]. Another challenge of SSBs is related to fabricationmethods,material
compatibility, and interactions during processing and layers formation [11, 12]. All these factors and undesired
interactions jeopardize the electrochemical performance of the SSBs and require further development and
optimization. Importantly, strong collaborative research efforts of scientists and engineers are needed to develop
SSBs systemswith state-of-the-artmaterials and architectures that offer superior performance but also are easy
in processing and fabrication. Figure 1 represents a pouch SSBs architecture with three printed layers: cathode,
solid-state electrolyte, and anode.

Researchers proposed a variety of solid-state electrolytematerials that provide sufficient ionic conductivity
[13]. Thesematerials and composites can be grouped into the following categories: oxides, polymers, sulfides,
halides, and hydrides, offering room temperature ionic conductivity in a range of 10−2

–10−4 S·cm−1, which is
comparable to organic liquid electrolytes (ethylene carbonate and dimethyl carbonate)–10−2 S·cm−1 [14–18].
The subsequent challenges related to undesired solid-solid interfacial interactions can be addressed by interface
engineering through surfacemodifications,material composition optimization, interfacial structure design, and
novel in situ characterizationmethods that provide in-depth information about the interface behavior during
battery cycling (charging and discharging) [19, 20].

Table 1.Main advantages and disadvantages of solid-state and liquid electrolytes in Li-ion batteries [5].

Solid electrolyte

Advantages Disadvantages

1. Excellent chemical and physical stability 1. Reduced contact areawith electrodes

2. Performwell as a thin film (≈1μm) 2. Interface stress due to charging and discharging

3. Ionic conductivity only (excludes electron)Transference number=1 3. Lower ionic conductivity than liquids

Liquid electrolyte

Advantages Disadvantages

1. Excellent contact area with the electrode 1. Poor physical and chemical stability

2. Can accommodate volume expansion at the electrode during cycling 2.May rely on the formation of Solid Electrolyte

Interface (SEI) layer
3.High ionic conductivity 3. Both ionic and electronic conduction. Trans-

ference number typically 0.5

Figure 1.Architecture of pouch SSBswith printed solid electrolyte and electrodes.
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The aforementioned challenges and solutions need to be consideredwhile selecting and developing a
suitable fabricationmethod and eventual upscaling efforts [21]. Further, a good understanding of the fabrication
processing, occurring phenomena, and its requirements will allow early-stage problemdetection and resolving.
It is essential becausemany promising solid-electrolytematerials demonstrate high ionic conductivity in
laboratory conditions, butwhen combinedwith additives and implemented into battery cell structure, the final
battery performance is below expectations.

Printed electronics has proven to be a suitablemethod for the fabrication of battery electrodes and has a high
potential to embrace the recent SSBs developments and accelerate the popularization and commercialization of
fully printed SSBs [22]. Printed electronics is a set of various printingmethods that use functionalized inks/
slurries and controlledmaterial deposition to create electronic devices, for instance, batteries [23, 24].

Themost common industrial battery coatingmethod - slot die coating–rather than printing techniques,
belongs to a category of coating techniques inwhich the slurry is transferred through a slot gap onto amoving
substrate. Although slot die coating is designed for coating uniform thin films atflat substrates and high-
throughput fabrication, it is not suitable formore complexmultilayer battery architectures [25]. In addition to
flexibility, selectivity, and vastmaterials compatibility, printed electronics is a unique fabricationmethod that
generates a negligible amount ofmaterial waste,making it a well-suited candidate for becoming one of the
future’s sustainable fabrication technologies. Inkjet-, spray- and screen-printing are themost common systems
used in the research and development of printed electronic components and systems because they offer high
adaptability and themost promising up- and down-scaling (prototyping) capabilities [26]. The effortless up-
and down-scaling of battery fabrication enables production of an entire spectrumof solid-state batteries of
different sizes and shapes, according to the product requirements. Printed electronics is also one of the
fabrication technologies that can fulfill the needs of battery applications by providing production capacity to
deliver billions of battery components and architectures at nominal costs. Recently, 3D printing gained the
interest of the research community as a suitable batterymanufacturingmethod [27].While 3Dprinting allows
printing of high-quality batteries, usage of 3Dprinting formass-production of batteries remains a significant
challenge due to difficulties in upscaling the process. Thanks to recent advancements in developing solid-
electrolytematerials, all functional layers (cathode, solid electrolyte, and anode) can be printed layer by layer
(figure 2) [28].

In printed batteries, the printing process can be split into three phases where cathode, solid-electrolyte, and
anode are printed consequently on each other. Regardless of the layer, the activematerial and additives are
dissolved/dispersed/suspended in a solvent (i.e., N-Methyl-2-pyrrolidone (NMP), water, Dimethyl sulfoxide
(DMSO), Dimethylformamide (DMF), etc), creating an ink/slurry that is used during the printing process. The
solvent in the printing processmainly serves as amaterial carrier. However, the solvent is also expected to
appropriately dissolve the additives and have negligible influence on the physicochemical properties of the active
material during and after the printing process [29]. Often the activematerial in the ink/slurry is accompanied
with additives (surfactants, co-solvents, binders, etc). Surfactants additions, such as isopropanol, 1-butanol,
1-pentanol, or Capstone FS 3100 aim to reduce the surface tension of the inks and consequently improve the
wetting andmaterial distribution on the surface [30]. Co-solvents serve a dual role in ink formulation–they
modify the surface tension of the inks and influence the drying process due to a variation in the boiling points of
the introduced solvents [31]. Binders, such as Polyvinylidene Fluoride (PVDF), Polyvinylpyrrolidone (PVP),
Styrene Butadiene Rubber (SBR) play a crucial role in battery fabrication.While during printing and drying, they
improve the homogeneity of the inks/slurries and adhesion between the activematerial particles and layers
beneath, during battery operation, they compensate the battery activematerial lattice expansion and contraction

Figure 2. (a)Printable ink formulation for different layers of solid-state batteries. (b)After the ink formulation, the solution is used to
either screen, inkjet, or spray print the battery layer. (c) First printed layer (cathode) ofmultilayer printing process. (d) Solid-state Li-
ion battery architecture consisting of printed cathode, solid electrolyte, anode, and twometallic current collectors.
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movements [32]. The binder-added flexibility also reduces tensionswithin the layers and at the layers’ interfaces
during fabrication (roll-to-roll process) and battery operation. Another group ofmaterials that can be
considered as activematerials are the additives that do not affect the printing process but play an important role
in battery operation, such as carbon black utilized to improve electronic conductivity within the electrodes.

Whilemost of the activematerials in the battery layers are in powder form, particle size is one of the critical
factors that need to be taken into account during the printing process development. For instance, different
cathode chemistrymaterials (LiMn2O4 (LMO), LiFePO4 (LFP), LiCoO2 (LCO), LiNiCoAlO2 (NCA),
LiNiCoMnO2 (NMC), etc) are composed of particles of various sizes, starting from tens of nanometers ending at
severalmicrometers [33]. Similarly, solid-state electrolyte activematerials (oxides, polymers, sulfides, halides,
and hydrides) are composed of various size particles ranging fromnano tomicrometers. As for anode active
material, graphite with particle sizes ranging from10 to 20μmis themost commonly usedmaterial but
alternatives are under development - silicon nanoparticles (<150 nm).Moreover, before and after printing,
different treatments (plasma andUV) can be applied to improvewettability, enhance interfacial contact, or
remove impurities before printing the next layer [34].

Various printingmethods have different requirements regarding the ink formulation (particle size, viscosity,
boiling point, surface tension, polarity, concentration, etc) [31, 35]. From the battery point of view, screen-
printing and spray-coating are themost suitable due to their flexibility and ability to print inks of various
viscosities and loadedwithmicrometer-sized particles (table 2). Thesemethods offer relatively high printing
speeds that are crucial for upscaling efforts. Also, essential from the perspective of developing energy- and time-
efficient fabrication processes is the ability to print inks heavy-loadedwith activematerials (high viscosity).
However, screen-printing belongs to contact-printingmethods, introducing some restrictions and limitations
such as the necessity for flat substrates, the inability to print on pressure-sensitive layers, andmore troublesome
design alterations. At the same time, spray-coating is a non-contact printingmethod deprived of screen-
printing’s limitations. Themost important limitation of spray-coating is a relatively large linewidth, which is
however, sufficient for battery applications.While inkjet printing allows high printing accuracy and theoretical
zeromaterial waste, it is often slower than the aforementionedmethods, and requires low viscosity inks,
composed of relatively small particles (�100 nm).With increasing particle size,material load, and viscosity, the
risk of inkjet nozzle clogging is rising significantly. Nonetheless, for custom architectures or high precision
applications (mini- andmicro-batteries) inkjet printing can be a viable option, especially for printing solid
electrolytes (nanoparticles).

One of themain advantages of printing technologies is the ability to createmulti-stack architectures
throughout the controlledmaterial deposition. Naturally, the interfacial interactions of various solvents and
materials need thorough investigation, but theflexibility and high compatibility of the printingmethodswith
several solid-state electrolytematerials and proven ability to print the electrodes provide encouragement and
positive reinforcement for further research [23, 37].

The selection ofmaterials and appropriate printingmethods are extremely complex and require a holistic
bottom-up approachwhere all three development phases (ink/slurry formulation, printing and drying, and
battery operation) are equally taken into account. This challenge requires strong collaborative efforts between
scientists and engineers to ensure that laboratory-scale promising solid-state electrolytematerials can be
successfully used to formulate stable inks/slurries and printedwithout compromising the performance of the
final product–SSBs.Our highlights will help to increase the visibility of printing technologies among battery
researchers and enable further developments towardsmore capable, sustainable, and environmentally friendly
batteries.

Table 2.Comparison of ink properties and printable functional features of different printing techniques: screen, gravure, flexography,
inkjet, EHD (electrohydrodynamic), and aerosol/spray [36].

Printing

techniques

Ink

viscosity [cP]
Layer

thickness [nm]
Resolution

[μm]
Line

width [μm]
Printing speed

[mms]−1

Alignment

accuracy [μm]

Screen 30− 12 000 1500–50000 100 40 50–300 ±10

Gravure 100–12 000 10–400 2 35 5–1000 ±10

Flexography 2–500 5–50 1 3 200–830 ±10

Inkjet 1–30 100–500 2 2–8 1.25–7000 ±2

EHD 1–10 000 20–180 2 2 0.2–8 ±1

Aerosol/Spray 1–2000 300–50000 20 50–150 0.1–500 ±5
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