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Abstract

Energetic materials (EMs) are a group of distinctive materials that release an enormous amount of
amassed chemical energy in a short time when incited by external mechanical or thermal factors. They
comprise of propellants, explosives, and pyrotechnics. Unlike conventional micro-energetic
materials, nano energetic materials (nEMs), due to their smaller particle size ranging from 1-100 nm,
exhibit higher specific surface area (~10-50 m* g '), reduced ignition temperatures from 2350 K to
approx.1000 K for particle size from 100 pm to 100 nm respectively, higher energy densities (up to 50
MJ kg~ "), burning rates ~30.48 mm s~ ' at 6.894 kPa with specific impulses up to 542 s (5320 m s~ ),
low impact sensitivity (<4-35 J). Such exceptional properties of nano energetic composites, i.e.,
thermites (a combination of metal-fuel /metal oxide particles), find applications, namely in,
munitions, pyrotechnics, energetic micro-electromechanical system (MEMS) chips. This review
provides valuable insight into the synthesis methods of nano energetic composite systems (e.g., Al/
CuO, Al/KMnOy,, Al/Fe,03, Al/SnO,, Silicon-based systems), their characteristic properties,
behavior under certain conditions and applications. Furthermore, the review converses about the
advancements made in the last few decades by many researchers, along with the technological gaps
that need to be addressed for futuristic applications.

1. Introduction

Energetic Materials cataloged as Propellants, Pyrotechnics, and Explosives [1, 2] are materials that are capable of
providing a large quantity of energy by releasing their stored chemical energy when instigated by external factors
like impact, friction or shock.

Historically, humans got familiarized with the energetic materials in 220 BC when few Chinese alchemists
faced an accidental explosion due to the unintentional production of black powder, also known as Gun powder.
Using Roger Bacon’s experimental details from 13th century as a reference, Berthold Schwartz further validated
the composition of black powder and also scrutinized its properties [3]. By the beginning of the 17th century, the
Gun powder was used in detonating mines but had the risk of mine explosions. The need to develop more
benign substitute explosive materials led to the discovery of nitroglycerine (NG) and dynamite in the 19th
century followed by the development of nitrocellulose (NC), trinitrotoluene (TNT) in the 20th century and
various energetic organic nitrate/nitramine compounds like cyclotrimethylene trinitramine (RDX),
cyclotetramethylene tetranitramine (HMX), triaminotrinitrobenzene (TATB), in the later years [4—6]. Though
energetic materials have been around for a while, the continuous need for enhanced, efficient, safe, and secure
energetic materials drives researchers to keep on exploring the world of energetic materials and advance from
the conventional energetic compounds to advanced EMs.

Many researchers contributed to understanding the molecular structure [7], the chemical reactions [8], the
physicomechanical [9], and optical properties [10], the hazards associated with EMs[11], and the development

© 2020 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Combustion enthalpies of monomolecular compounds and metallic fuels [41]. Reprinted with permission. Copyright
Elsevier 2008.

of modern energetic materials. Owing to the limited energy densities (ex. 2094 ] g~ ' for TNT) of conventional
EMs [12], researchers moved towards the usage of high energy density materials (approx. 30 kJ g '), i.e., metals
as fuels in the synthesis of EMs. With the advent of nanotechnology, nanoparticles of the order of 100 nm or less,
because of their exceptional property of high specific surface area, replaced the micron-sized metal particles,
thusleading to the fabrication of nanothermites (a mixture of fuel and oxidizers with particle size ranging in
nanometric scale), a new realm of nano energetic materials [13]. Building upon the foundation led by the
researchers several decades ago, the transition from conventional energetic compounds to advanced
nanoenergetic materials took place.

Last two decades have witnessed a remarkable development in the domain of energetic materials. There has
been a gradual shift from the usage of nitrocarbon energetic materials such as TNT, RDX, CL-20 to
microstructured composites to nanothermites. This paper starts by giving a holistic view of the classification of
EMs and then introducing the nanothermites and elaborates the trends in the fabrication methods involved in
processing of nanothermites as well as it emphasizes mainly on the most commonly used Al-based
nanothermites and their exceptional properties that render them suitable for miscellaneous applications in
military, aerospace and civilian sector. Furthermore, it addresses the challenges that need to be resolved in
pursuit of the enhanced NEMs for future development.

2. Classification of energetic materials

2.1.Monomolecular energetic materials

Monomolecular EMs, also known as Explosives or Homogeneous reactive materials [ 14], is a single molecular
fusion of fuel and oxidizer constituents. NG [5], TNT [6], NC[15], HMX [15], RDX[16],
hexanitrohexaazatetracyclododecane (CL-20) [17], hydroxy-terminated polybutadiene (HTPB) [18-20],
Ammonium Perchlorate (AP) [18, 21], Ammonium Nitrate (AN) [22], triaminotrinitrobenzene (TATB) [23] are
some of the monomolecular energetic compounds [24]. But their limited energy density and difficulty in
tweaking their performances for safety, sensibility, and stability reasons [25] led to development of a new class of
energetic composite materials, i.e., nanothermites.

2.2. Composite energetic materials

Composite Energetic materials, also known as Heterogeneous Reactive Materials [ 14] are physical mixtures of
metal-fuel powders, namely, Aluminum [26], Titanium [27], Zirconium [28], Boron, Magnesium [29], Silicon
[30-32], Chromium and oxidizer powders, namely, CuO [18, 33].

Fe, 03 [34-36], Bi,05[37, 38], WO3 [39] etc. which undergo exothermic redox reaction thus liberating a
significant amount of energy with temperatures around 3000 K or more [40]. As compared to monomolecular
EMs, composite EMs have high combustion enthalpies (figure 1) [41] and energy densities (figure 2) [42]. Their
ability to be tailored as per the properties required for the application makes them a promising candidate for a
variety of applications.

2.2.1. Al-based energetic materials

Ofall the metals, Aluminum ordinarily serves to be a suitable candidate as metal fuel. Earth’s crust is rich with
aluminum, thus making it the third most copiously found element. It has high reactivity and characterized by
high heat and efficient combustion, a high specific energy density of approximately 30 k] g~ ', high enthalpy,
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Figure 2. Energy densities of selected monomolecular compounds and thermites [41].

high calorific value, and so forth [ 16, 43, 44]. Alaugments the material’s reactive power by escalating the
combustion velocity by virtue of its high thermal conductivity [45]. Since it is non-toxic and shows excellent
catalytic behavior, Aluminum is perpetually employed as a competent metallic fuel in composite EMs [1, 46, 47].
The aluminum powder acts as a crucial element in pyrotechnics, rocket propellants, and explosives. The
factors like particle size and aluminum content should be considered judiciously as it affects the burning time,
ignition delay time, viscosity of a rocket propellant mixture, specific impulse (I,p), and ignition temperature.

2.2.1.1. Micron-sized particles

Several researchers have fabricated energetic composite materials by incorporating micron-sized particles
[48,49]. Gibot et al [50] assessed the pyrotechnic performance for Al/SnO, energetic composite system
comprised of SnO, with particle size <10 pm and Al particles with size ~50 nm with the equivalence ratio (¢)
ranging between from 0.8 to 1.8. The combustion velocities ranged from 480 m s~ to optimum value of
approximately 580 m s~ for equivalence ratio between 1 to 1.4. Equivalence ratio [48, 50, 51] is computed as:

_ (F/A)act

¢ (F/A)st

()]
where F = fuel, A = oxidizer, act and st in the subscript indicate the real and stoichiometric ratios, respectively.

In another study, Kang et al [28] successfully synthesized micron-sized Potassium Perchlorate and
Zirconium (KClO,/Zr) composite by employing a chemical solution - deposition method. As the amount of
KCIO, varied (38 wt%, 42 wt %,71 wt %), different structures were observed, as shown in figure 3. (~6 ym)
KClO,/Zr (3-6 pm) composites displayed an extended light-radiation period and greater light-radiation
energy/power. Whereas, Brown et al has enlisted experimental burning rates for a variety of binary pyrotechnic
combinations with different compositions having different fuel particles size (in microns). For instance,
reduction in the fuel particles radius from 14 pm to 2 pum while keeping the constant oxidizer particle radius in
the Sb/KMnO, (13 pum) system [30], led to a rise in the burning rate ranging from 2 mms ™' to8§ mms ™",
Similarly, the decrease in the fuel particle radius of Mo from ~18 ym to 7 yum in the Mo/ peroxide systems like
Mo/SrO,(~2 pm), Mo/BaO,; (~5 pm) showed a substantial boost in the experimental burning rate values.
Thus, itis ascertained that diminution in the particle size leads to a significant improvement in the desirable
properties of the composite systems. Unlike the inadequacies like high ignition temperature, particle
agglomeration, low energy release rate of micron-sized particles, researchers moved on towards using
nanoparticles (figure 4) [52, 53].

2.2.1.2. Nano-sized particles/Nanothermites
Nanothermite is a metastable intermolecular composite (MIC) [54-56] comprising of metal oxides and metallic
fuel with their particle size ranging in the nanometric scale (1-100 nm).

Standard equation of a thermite reaction [57] is as follows:

Some of the thermite reactions along with their adiabatic reaction temperature, heat of reaction and generation
of gas have been given in table 1 [12]. The parameters, namely, ignition temperature, reaction rate, combustion

3
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Figure 3. (a) Surface of Zr powder of 3 im, (b) Zr particles showing even surface, (c) KClO,/Zr (3 um) (71/29, wt.%) composite, (d)
embedded structure of Zr particles in KCIO, matrix (e) KClO,/Zr (3 um) (38/62, wt.%) composite (f) thin shell of KClO, with
nanometer particles [28]. (Open access CC BY 4.0).

velocities, ignition time and decomposition temperature in pyrotechnic mixtures get influenced by the reduced
size of the fuel and oxidizer particles and show significant improved properties. Nanothermites/MICs are also
called as Superthermites depending upon the extent of reactivity. Nanoparticles, unlike microparticles, increase
the intimate interaction between oxidizer and fuel, that lessens the diffusion distance for mass transport, thus
accelerating the reaction or burning rate [42] and reducing the mechanical sensitivity and ignition time [12].
They have increased ignition sensitivity due to its high specific surface area [58], the surplus energy of surface
atoms, and strong surface activity. Pantoya et al performed a study on the effect of nano and micron fuel particles
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Figure 4. Pros and cons of micron-sized and nano-sized particles for application in the energetic composite.

Table 1. Thermophysical properties of Thermite reaction [12]. Reprinted with permission. Copyright Elsevier 2017.

Adiabatic reaction temperature (K) Production of gas Heat of reaction
Reactants
Constituents Density Without phase changes gofgas/g Moles of Gas/100 g kJ cm ™’ kg!
2Al + Cr,05 4.190 2789 0 0 10.9 2.6
2Al + 3CuO 5.109 5718 0.3431 0.5400 20.8 4.1
2Al + 3Cu,O 5.280 4132 0.0776 0.1221 12.7 2.4
2Al + Fe,O5 4.175 4382 0.0784 0.1404 16.5 4.0
8Al + 3Fe;0,4 4.264 4075 0.0307 0.0549 15.7 3.7
4Al + 3MnO, 4.014 4829 0.4470 0.8136 19.5 4.8
2Al + MoOs; 3.808 5574 0.2473 0.2425 17.9 4.7

on the combustion velocities as shown in figure 5 which shows the dependence of combustion velocity on the Al
particle size [48].

However,the synthesis of the nanoparticles can be done using various processing techniques. Aluminum
nanoparticles were synthesized by the vapor phase condensation method by Schefflan et al[59]. The vapor
depostion method produces nano-sized metal particles by cooling the gaesous form of the metal that is carried
away by an inert gas. Whereas, Electrical Explosion of Wires (EEW) [41, 60, 61] tecnhique was one of the other
methods used to obtain ultra fine metal powders. This method is characterized by high voltage source to
generate high current pulses of about thousands of amperes, high plasma temperatures(~10000 K), pulse
duration ranging from ps to nanoseconds. Accordingly, it proves to be more advantageous than other
evaporation methods as the electrical energy gets directly transmitted into heat. Furthermore, Elbasuney et al
employed the hydrothermal synthesis method for fabricating colloidal CuO and Fe,O; nanoparticles for their
integration in the energetic systems [12], as shown in figure 6. CuO and Fe,O; are the most commonly used
metal oxides for energetic applications.

Similarly, the hydrothermal method [62] was also used to prepare nano-bismuth oxide particles having size
of around 47 nm by Wang et al. This method involved preparing a mixture by adding 2.425 g of Bi(NO3);-5H,0
to 10 ml of (CH,OH),, which is further stirred with C,HsOH for 30 min. This solution is then transferred to
autoclaves and heated for 10 h at ~160 °C. Upon cooling, they were washed with deionized water and alcohol,
respectively. Drying for 6 h at 60 °C and calcination for 2 h at 325 °C eventually produces nano Bi, O3 particles.

On the other hand, Chowdhury et al synthesized nano Fe,O; particles by polymer matrix encapsulation
technique for their use as an oxidizer for energetic applications [63]. Depending on the Fe* concentration, the
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Figure 5. Combustion velocity as a function of Al particle on log scale [48]. Reprinted with permission. Copyright John Wiley and
Sons 2005.

Figure 6. SEM micrographs of (a) Fe,O3 and (b) CuO nanoparticles [ 12]. Reprinted with permission. Copyright Elsevier B.V.2017.

Fe, O particle of 30 nm size shows the specific surface energy of 24 m* g ' to 126 m* g~ '. Cheng et al fabricated
novel Fe,O; nanotubes—Al nanoparticles superthermites by employing the surfactant self-assembly process,
which is a remarkable method as the relative arrangement of the fuel with oxidizer shows upgraded reaction and
burning characteristics [64]. Kim et al analyzed the combustion and ignition properties of Al microparticles
(MPs)/Al nanoparticles (NPs)/Fe,O; nanoparticles (NPs), as depicted in figure 7 [34].

Some of the different composite systems reinforced with nanoparticles of metal fuel or oxidizers, their
comparison and influence on the properties and have been discussed. Sanders et al analyzed the optimization of
composites like AL/MoQ3, Al/CuO, Al/WOs3, and Al/Bi,O; as regards to the propagation speed (or burn rate)
pressure output. It was concluded that the propagation depends on the state of the products and produced gas.
Higher gas generation and liquid or gas products leads to higher propagation speed [65]. Besides, Glavier et al
[66] performed a comparative analysis of burning rates, pressure peaks, and pressurization rate of the
nanocomposites. The burning rate varied from 65 m's ™' (Al/CuO foils) to 420 m s~ ' (Al/Bi,O3). The
pressurization rate was maximum for Al/Bi, O3 nanocomposite with a value of approximately 5760 kPa.jus ™' at
30% TMD. Whereas the pressure peak of 41.7 MPa were reported to be highest at 50% TMD for Al/CuO.
Figure 8. displays the SEM images for all the four energetic composite system.

Bockmon et al showed the impact of particle size on the pressure and combustion velocities of Al/MoO3
metastable interstitial composites. Upon reducing the particle size from 121 nm to 44 nm, the combustion
velocities showed a rise in the combustion velocity values from 600 m s 1t01000 ms~}, respectively, as shown

6
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Reprinted with permission. Copyright Elsevier 2018.
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Figure 8. SEM images of (a) Al/PTFE, (b) Al/MoOs, (c) Al/Bi, O3, (d) Al/CuO NPs [66]. Reprinted with permission. Copyright
Elsevier Inc. 2015.

in table 2 [40]. Additionally, Granier and Pantoya [67] performed a comparative analysis of the ignition times for
the nanoAl/MoQ; and micro Al/Mo4; energetic systems. The results reveal that the ignition times reduce
significantly from 6 s for micron-sized (~20 pm) Al particle composites up to 12 ms for nanothermites

(~17 nm). As depicted in table 3 [67], the burn rates showed an increase from 4 m s~ ' to 12 m's~ ' when the size
of aluminum particles was reduced from 200 nm to 50 nm.

2.2.2. Si-based energetic systems
Aluminum nanoparticles having average size of 80 nm show high electrostatic discharge sensitivity and at a very
low discharge energy level of 0.98 m], it tends to ignite. Thus, Thiruvengadathan et al [51] developed Silicon-
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Table 2. Combustion velocity and pressure values for Sample A (particle diameter = 44 nm), Sample B (particle diameter = 80 nm),
Sample C (particle diameter = 121 nm) [40]. Reprinted with permission. Copyright AIP Publishing 2005.

Density Sample A Sample B Sample C

Average (Avg.) velocity (m s~ h 959.3 988.7 684.4

Standard deviation (Std. dev.) 354 135.6 81.8

Low Pressure (MPa) 10.8 12.4 10.9
Std. dev. 0.8 3.6 1.3

Mass rate (g s~ ") 2308 2665 1794

Avg. velocity 916.0 988.3 784.7

Std. dev. 59.4 56.9 57.0

Medium Pressure (MPa) 17.5 16.5 12.4
Std. dev. 1.4 2.5 1.8

Massrate (gs ") 2805 3230 2522

Avg. velocity 950.7 948.7 765.3

Std. dev. 46.1 37.0 22.5

High Pressure (MPa) 22.1 17.9 18.6
Std. dev. 45 1.2 1.8

Mass rate (g s’l) 3600 3607 2856

Table 3. Ignition time and Combustion wave speed of Al/MoOj3 influenced by
the particle size [67]. Reprinted with permission. Copyright Elsevier 2004.

Al particle dia-

Burnrate Ignition time
meter (nm)
Std. Std.

Average deviation Average deviation

(ms ") (ms™ ") (ms) (ms)
17.4 2.16 1.39 24.21 8.76
24.9 3.23 1.27 21.73 12.60
29.9 1.64 0.14 18.39 10.38
39.2 3.17 1.75 21.93 12.00
52.7 11.23 4.12 15.55 6.57
75.9 6.81 0.73 20.76 6.90
100.9 5.55 1.65 14.56 4.69
108 6.40 0.96 17.31 4.37
153.8 6.04 1.33 25.49 11.88
202 8.26 5.48 12.40 2.68
3000-4000 1.20 0.85 89.43 52.82
10,000-14,000 29.92 17.14 1384.13 736.05
20,000 22.91 14.89 6039.43 847.18

based nanoenergetic composite that displays decreased sensitivity and because of its property of surface
passivation are capable of replacing aluminum nanoparticles in specific applications requiring lower
combustion performance. The highest pressurization rate of ~2.7 MPa /s and combustion wave speed from
1200 to 1500 m s~ ' were reported as a function of equivalence ratio (¢ = 0.9).

Brown et al [30] did a comprehensive study on Si-based and other fuel/oxidant systems. It was assumed that
particles of fuel and oxidant are spherical in order to calculate the total number of point of contact (Ny) between
them and compare it with the experimental burn rates of Si/Pb;O,4, Sb/KMnO,, Si/Fe,03, Si/Sb,03, Si/KNO;
pyrotechnic mixtures. The results of those fuel/oxidant systems have been represented in tables 4—6 [30]. It was
concluded from the results that a minute variation in size of particle dramatically influences the contact points of
fuel-oxidizer, and accordingly shows a significant influence on combustion velocity.

2.2.3. Hybrid/other composite systemms
Recently, Wang et al [68] succeeded in incorporating ammonium perchlorate (AP) to a composite of
fluoropolymer named polytetrafluoroethylene (PTFE) and Aluminum. This 9 wt% addition of AP to PTFE/Al
energetic composite displayed substantial escalation in the output of energy (8863 J g~ '), burn rate (1626 m s ")
and pressurization rate (340 MPa ms ™~ ') as compared to pure PTFE/Al which has output of energy of 2019] g~ ',
burn rate of 260 m s~ ' and pressurization rate 29.3 MPa ms ™' (figures 9—11).

A far greater burn rate and totally different flame structure are seen for PTFE/Al with AP, which shows that
introduction of AP possibly enhances energy output [68] and combustion kinetics. Zamkov et al [69]

8
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Table 4. Calculated point of contact (Ny) and experimental burning rates () for Si/Pb;O, system [30].
Reprinted with permission. Copyright John Wiley and Sons 1999.

Pb3O4r = 2.5 um

Sisample (A) Sisample (B) Sisample (C)
1.0 pm 2.0 pm 2.5 pm
r
1:2.5 1:1.3 1:1
Tfuel* Toxidant
%Si v Ng N Ng N Ng
(mm s ") (x10°%) (mm s ") (x10°%) (mm s ") (x10%)

5 108.9 18.3 46.1 4.3 424 2.8
10 222.2 26.6 94.4 7.0 64.6 4.8
15 257.4 30.2 100.6 8.7 71.5 6.1
20 249.9 31.7 108.7 9.8 79.9 6.9
25 138.8 31.8 134.3 10.3 98.7 7.4
30 139.0 31.1 163.0 10.5 114.8 7.7
35 127.1 29.9 116.6 10.4 86.6 7.7
40 114.7 28.4 89.4 10.2 72.3 7.6
45 94.4 26.6 69.2 9.7 53.2 7.3
50 59.3 24.6 38.8 9.2 — 7.0
55 — 22.5 — 8.5 — 6.5
60 — 20.2 — 7.8 — 6.0
65 — 17.9 — 7.0 — 5.4
70 — 15.5 — 6.1 — 4.7
75 — 13.0 — 5.2 — 4.0
80 — 10.5 — 4.2 — 3.3
85 — 7.9 — 3.2 — 2.5
90 — 5.3 — 2.2 — 1.7
95 — 2.7 — 1.1 — 0.9

Table 5. Calculated point of contact (Ny) and experimental burning rates (v) for Si/SnO,, Si/Fe, 03, Si/Sb,03, Si/KNOj; system [30].
Reprinted with permission. Copyright John Wiley and Sons 1999.

Sisample(3) Ifyel = 1.7 pm

Si/Sn0O, Si/Fe,0;5 Si/Sb,05 Si/KNO;
3.8 5.7 1.4 0.25
Tfuel/ Toxidant
%Si v Nr N Ng v Ng N Ng
(mms™') (x10'%) (mms™') (x10'%) (mms™') (x10'%) (mms™ ") (x10'%)

10 — 11.6 — 23.5 — 2.68 — 0.704
15 — 16.9 — 34.7 — 3.69 — 0.907
20 5.25 21.7 2.33 45.5 1.56 4.50 — 1.03
25 7.54 26.0 3.67 55.8 3.25 5.13 — 1.10
30 11.6 29.8 3.82 65.6 6.30 5.58 1.65 1.13
35 14.8 33.0 3.60 74.7 8.71 5.89 — —
40 17.1 35.6 4.54 83.1 8.52 6.05 2.78 1.10
45 15.7 37.6 — 90.5 8.73 6.08 — —
50 12.8 38.8 — 96.9 7.25 5.98 4.96 0.995
55 9.11 39.2 — 102 — 5.78 — —
60 — 38.7 — 105 — 5.46 8.43 0.844
65 — 37.3 — 107 — 5.06 — —
70 — 35.0 — 106 — 4.56 10.7 0.661
75 — 31.5 — 102 — 3.98 17.1 0.560
80 — 27.0 — 93.7 — 3.32 20.6 0.455
85 — 21.4 — 80.1 — 2.58 34.5 0.346
90 — 14.8 — 59.8 — 1.78 — 0.234

investigated the chemistry involved in Al/Teflon”" nanoenergetic material using Ultrafast mid-infrared (IR)
spectroscopy, where Teflon™" is a copolymer of tetrafluoroethylene (TFE) and 2,2-bis(trifluoromethyl)-4,5-
difluoro-1,3-dioxole (dioxole). As compared to the theoretical value of heat of combustion of 8 kJ cm > for

TNT, Al/Teflon mix shows a significantly high value of 21 kJ cm >,
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Table 6. Calculated point of contact (Ny) and experimental burning rates (/) for Sb/KMnOj syste [30].
Reprinted with permission. Copyright John Wiley and Sons 1999.

KMnOyr = 13 um

Sb sample (1) Sb sample (3) Sb sample (4)

13 pm 9 pm 3 pum

r
1.0 0.69 0.23
rfuel/roxidant
%Sb v Ngr v Nr v Ngr
(mm s ") (x107) (mm s ") (x107) (mm s ") (x107)

10 — 1.6 — 3.4 — 50
20 — 3.1 — 6.4 — 86
30 2.0 43 2.5 8.8 6.5 105
35 2.5 — 4.3 — 8.4 —
40 5.5 5.3 7.0 10.6 12.5 111
50 10.0 6.0 11.5 11.6 19.0 106
60 11.0 6.3 11.0 11.8 20.5 94
70 9.5 6.1 11.0 10.9 22.5 77
80 — 5.2 — 8.8 — 54
90 — 3.3 — 5.3 — 29

ignition
E . . L— |
N PMMA tube | P e AP
igniter G
High P | Pressure
: transducer
speed 3
camera |

Figure 9. Schematics of pressure and combustion testing setup for composite PTFE/Al [68]. Reprinted with permission. Copyright
Elsevier 2020.

Zhu et al did the latest study on hybrid nanothermite composites fabricated on a substrate (silicon) by
lodging CL-20 with arrays of CuO/Al nanothermite. The properties of heat release were upgraded with 18.2%
decrease in activation energy of integrated CL20 and increase in the total heat of reaction. The synthesized
nanoenergetic composite shows an appropriate behavior of burning with an intense yet stable combustion
flame [70].

3. Synthesis and properties of energetic materials

3.1. Evaporation-assisted (Vapor deposition)

Layered vapor deposition usually is an adaptable process as nearly all the recurrently used metalloids, metal
oxides and metals are able to be made by selecting appropriate deposition factors with easy control over the layer
thicknesses. In the interim, the dense and distinct reactive multilayer nano foil (RMF) geometry makes the
theoretical modeling more simple and boosts accuracy but this technology has some constraints. This method is
expensive and challenging to scale up. Moreover, the problem of premixing becomes severe with minimal
bilayer spacing. The interfacial free energies, chemical, and elastic strain can obliterate the structure of the layers.
Conclusively, when total RMF is exceptionally thick, the unpredictability is a matter of concern, when reactants
with diverse properties or with substrates are deposited. Manesh et al employed a magnetron sputter deposition
method to prepare alayered Al/CuO films of thickness upto 3 pum [71]. Likewise, Petrantoni et al [72] deposited
micro/nanostructured thermite of Al/CuO on SiO, wafers as displayed in figure 12 [72].
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Figure 10. FE-SEM images of (a) PTFE/Al with AP, (b) TEM image of PTFE and nano AP, (c) PTFE/Al with nano AP, (d) AP in PTFE/
Al display irregularity of size ~50 nm [68]. Reprinted with permission. Copyright Elsevier 2020.

Ferguson et al made use of the atomic layer deposition (ALD) process to sequentially deposit thin and
uniform layers of SnO, onto Al nanoparticles (diameter ~50 nm) to prepare the Al/SnO, nanothermite with the
help of H,O, and SnCl, reactants in a fluidized bed reactor [73]. ALD is considered to be an ideal process due to
its self-terminating surface chemical reaction mechanism that involves purging in of inert gases after every pulse
of the precursors which lead to high conformality and uniformity in the thickness of the thin deposited films.
Upon ignition, it was observed that the SnO, coated Al particles reacted intensely as compared to uncoated Al
particles thus demonstrating that ALD method can be utilized in fabrication of improved thermite systems.

3.2. Sol-gel technique

The sol-gel process includes chemical reactions taking place in the solution for initial production of
nanoparticles called as ‘sols’ that are connected in a 3D solid system, called as ‘gel’, and the remaining solution is
filled in the open pores. Figure 13 represents the sol-gel methodology [74, 75]. Primarily there are three steps in
sol-gel procedure; hydrolysis, condensation and drying. The sol-gel process is comparatively an easy method
executed at low temperatures, relatively economical and it has the potential of producing utterly novel energetic
materials with sought after properties [74].

Comparative study of sol—gel Ta/WQO3 nanocomposites with conventional powder mixtures was done. This
study revealed that the heat released by sol—gel composite was approximately 30% to 35% greater as compared
to the powder mixture due to the carbon presence in the sol—gel composite. In addition, Ta/WQOj;
nanocomposite produced by the sol—gel were found to be unresponsive to spark, friction and impact
ignition [76, 77].
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M A
L 1
AP mass (%6)

Figure 11. Flame propagation pictures of (a) PTFE/Al, (b) PTFE/Al with (6 wt%)AP, (c) PTFE/Al with (9 wt%)AP, (d) PTFE/Al with
(14 wt%)AP, (e) quantity of AP affects burn rate of PTFE/Al [68]. Reprinted with permission. Copyright Elsevier 2020.

Figure 12. Cross-sectional SEM images of multilayers magnetron sputtered (a) 3 layers of 1 zzm each of CuO/Al/CuO, (b) 10 layers of
100 nm each of CuO/Al[72]. Reprinted with permission. Copyright AIP Publishing 2010.

3.3. High-energy ball milling: arrested reactive milling (ARM)

Ward et al produced micron-sized energetic composite powders using arrested reactive milling of Aluminum
and metal oxides like MoO3 and Fe,0; [78]. Arrested reactive milling [41, 58, 79] works on the principle of
discontinuing the exothermic reactions just before the mechanical initiation due to high-energy milling [80] of
powders (figures 14 and 15) [58].

3.4. Electrophoretic deposition

Electrophoretic deposition [31, 81, 82] is an effective method used to make films on different surfaces of the
conductive materials. Figure 16 shows the electrophoretic deposition setup arrangement [83]. The composition
and quality of deposited coatings can be quantitatively altered by regulation of concentration of charged
particles, time of deposition and field strength. It has extensive use for deposition of charged particles over
irregular substrate surfaces the and as anticorrosive coatings. Lately, Wang et al explored the exothermic and
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Figure 13. Schematics of sol-gel technique.
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Figure 14. Photodiode and temperature ranges of arrested reactive milled Al/MoO3; nanocomposites during the ignition tests [58].
Reprinted with permission. Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2006.
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Figure 15. Backscattered electron (BSE)-SEM images of particle cross section of mixture of Al, MoO; powders [58]. Reprinted with
permission.Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2006.
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Figure 16. Schematic of Electrophoretic Deposition Setup [83]. Reprinted with permission. Copyright Elsevier B.V.2013.
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combustion properties of the Si/CuO based energetic systems produced by Electrophoretic deposition method
[31]. The heat release valuei.e., 244.3 kJ kg71 was highest when the equivalence ratio was 1.0.

3.5. Solvent—non-solvent crystallization method

Comparing with the other few techniques available (figure 17) [84], this method has many advantages, like low
cost, easy control over the process, simple crystallization principle, low operating temperature and wet state.
Many NEMs prepared by this technique find application in slapper detonator and various other explosive
devices. The liquid phase crystallization theory is the theoretical base for solvent/non-solvent process for the
preparation of NEM. The solution has three different regions and three different states due to dissimilar
concentrations during certain temperature and pressure conditions: unstable region, metastable region, stable
region and supersaturated state, saturated state, unsaturated state. Making the solution attain state of super-
saturation and nucleate swiftly in a very little time by combining non-solvent or weak solvent(commonly called
non-solvent) and energetic material solution (liquid) strongly and quickly under precise conditions, is the key in
making of NEM with solvent/non-solvent method. Nano scale energetic particles are prepared [84] by keeping
under control the crystal nucleation and growth process and restraining the growth speed of crystal nuclei. Using
this technique, a novel nanoenergetic composite was synthesized by coating Al/CuO with nano potassium
perchlorate (KCIO,4) and was found to have three times the burning rate of conventional compounds [85].

3.6. Powder mixing or mechanical/ultrasonic mixing

The ease of availability of n-Al powders enables them to be used widely for most of the metal-based reactive
nanomaterials by utilizing simple powder mixing method. By means of commercially accessible ultrasonic cell
disruptors or high intensity ultrasonic actuators the mixing is stereotypically carried out. In the lab assessments
itis comparatively effective whereas the processing of large batches by ultrasonic mixing of nanopowders is very
hard to scale up and may cause poor quality of mixing. Lately, nanothermites were synthesized by mixing the
Fe, O3 and Al nanopowders through the rapid expansion of a supercritical dispersion (RESD) technique. Relative
to the conventional ultrasonic mixing a much better mixing was accomplished. The RESD method is well-
matched for continuous operation than ultrasonic mixing [41], in addition to giving a better mixing quality.

3.7. Self-assembly

For preparing reactive nanocomposite compositions with functionalized nanosized oxide particles and starting
with nanosized aluminum powder, the self-assembly [62] methodology was taken into consideration. The metal
particles were set over the outside surface area of oxide nanorods or in the ordered pore structure of the
mesoporous oxidants in composites to create ordered assemblies. For instance, in an Al-CuO system, the self-
assembly was attained with initial functionalization of CuO nanorods by using poly(4)-vinyl pyridine (P4VP), a
monofunctional polymer. The nanorods gets ordered within the material since Al nanoparticles hold on to the
functionalized nanorods. Better hold on the material properties along with the better reaction rates in practical

15



10P Publishing

Nano Express 1(2020) 032001 SKabraetal

Table 7. Thermal behavior Al/CuO nanothermites with variation in the
binder contents [89]. Reprinted with permission. Copyright John Wiley and

Sons 2019.

Binder Heat

content First exothermic Second exother- release
[wt %] peak (s) [°C] mic peak (s) [°C] Dg 'l
10 364.8 622.5 292.6

15 372.8 620.4 245.3

20 364.8,380.9 616.4 189.4

25 348.7, 616.4 164.3

372.8,434.8

applications render the ordered nanocomposites more appealing compared to others. The inadequacies of this
technique comprises of the high price of customized oxides, the existence of functionalizing agents that are
usually responsible for reducing the energy density in energetic formulation, and the intrinsically high porosity
of the materials [41, 62] produced.

3.8. Additive manufacturing: 3D printing

A printable reactive ink consisting of micron (75 micron sieve) and nanoscale aluminum (80 nm) solid
inclusions based on the fluoro-polymer (THV-a polymer of tetrafluoroethylene, hexafluoropropylene and
vinylidene fluoride) was created with its rheology suitably altered for direct-write assembly. Using usual pen type
technique [86] the reactive inks were printed. Shen et al formulated a colloidal ink comprising of 90 wt% Al-
CuO and the remaining 10 wt % of polymers like polystyrene, nitrocellulose and hydroxy propyl methyl
cellulose (HPMC) to ease the fabrication process of high density reactive composites without hampering the
combustion behavior and mechanical strength of the nanothermite [87]. Similarly, Wang et al used the direct
ink writing(DIW) methodology and developed ink containing 10 wt% hybrid polymer of HPMC and
polyvinylidene fluoride (PVDF) and 90 wt % nanothermite Al/CuO (Al = ~85 nm, CuO = ~40 nm). The
ability of DIW technique to build structures with such high particle loading without the loss of mechanical
strength along with the ease of adjustment of equivalence ratio, burn rate and rate of energy release has been
drawing a lot of attention [88]. Mao et al [89] introduced a formula for new Al/CuO nanothermite ink that
surpasses the existing limits and shortcomings of Al/CuO thermite and Direct-Ink-Writing (DIW). The
presence of binder, F2311, helps in formulating hydrothermal inks with sound rheology shear-thinning
properties, which proves to be useful in achieving the 3D printing of Al/CuO nanothermite. The printed
patterns with loading as high as 75-90 wt% nanothermite are capable of attaining adjustable burn rates varying
from32 mms ™' to352 mm s~ . Itis reported that the heat released increases with the loading of nanothermite
(table 7) [89]. The competence of this method to achieve high resolution and precise patterns of nanothermite,
makes it appropriate for different applications in micro energetic device with boosted combustion performance
(figure 18) [89]. For 3D printing, this new strategy can very well be used with other nanothermite inks. Westphal
et al have effectively deposited nanothermites like Al/CuO and Al/Bi,O; on silicon substrate by inkjet printing
and studied the effects of confinement and controllable fracturing performance that is generally employed in the
electromechanical system security [90].

In addition, Murray et al proved that nAl (80 nm)/CuO (50 nm) nanothermite [91] can be successfully
fabricated by reactive inkjet printing with improved safety, security and shelf stability. According to the high
speed thermal imaging results, a difference of ~200 K prevailed between the maximum reaction temperature of
samples printed with the dual nozzle and a single nozzle technique. Though wide range of energetic materials
can be synthesized using this method, the lack of bulk characterization techniques opens up opportunities for
researchers to work on providing solutions to this problem in the future developments.

4. Characteristics of nanoenergetic materials

4.1. Heat of reaction

Occurring at a constant pressure, the variation in the enthalpy of a chemical reaction or the difference in the heat
of formation of the reactants and products is called as the heat of reaction or enthalpy of reaction. It is used for
calculating the energy per mole either produced or released in a reaction. Table 8 shows the values of heat of
reaction for some of the Al-based nanothermites [39, 45, 92, 93].
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Figure 18. Al/CuO nanothermite by DIW 3D printing, (a) Schematic representation displaying the 3D printing, (b)Simulation
pattern of 3D pattern configuration, (c) Image of Al/CuO nanothermite with 3D multilayer grid(cubic), (d) Magnified image (50X) of
finely printed micro-architecture [89]. Reprinted with permission. Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim,

Table 8. Heat of reaction for nanocomposites [39]. Reprinted with

permission. Copyright Elsevier 2005.

Heat of Adiabatic
reaction [kJ Temperature
Chemical Reactions mol ] K]
2A1 4+ 3CuO — AlL,O; + 3Cu —1186.6 2843
2A1 + MoO; —AlLOs; + Mo —915.1 3820
2A1 + WO; —ALO; + W —851.0 3476
2Al + Fe,0; — AlL,O; + 2Fe —839.3 3135
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Figure 19. Ignition time of Al/MoOj as function of particle size [52, 67]. Reprinted with permission from Ref [67]. Copyright Elsevier
Inc. 2004.
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Figure 20. Burn rate as function of pressure of RDX monopropellant with particle size of 50 m, 5 gm and 50 nm [98]. Reprinted
with permission. Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2004.

4.2.Ignition time

The ignition time is the time taken by the hot gas to come in contact with the propellant and cause the emission
of light [94]. It is reported that the reduction in the fuel and oxidizer particles size reduces the diffusion distance
between them thus increasing their intermixing and reaction rates and leading to less ignition times. The effect of
particle diameter variation on the ignition time has been depicted in figure 19 [52, 67].

4.3.Ignition temperature

The ignition temperature is the temperature at which the energetic material combusts. It is another important
facet of nano-thermite characterization in determining the suitability of the thermite for a particular application.
This property is influenced by the particles size of the constituents of the thermite [95]. The reduction of size of
Al particles in Al/MoOj; thermite from 10-14 pm to 40 nm displays decrease in the ignition temperature from
955 °Cto 458 °C respectively [48, 54].

4.4. Burning rate and pressure

It has been demonstrated by several researchers that faster burning rates can be achieved by using nano-sized
particles instead of the micron-sized particles (figure 20) [96—-99]. The burn rate—pressure relationship plays a
vital role in determining the practicality of the nano thermite for a specific application. Mostly, as the pressure is
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Table 9. Sb/KMnO, compositions in Perspex tubes (Open
System)with their burning rates [101]. Reprinted with
permission. Copyright Elsevier 1986.

Burning Rate (mms ")

Sb particle size (1m) % Sb Perspex Aluminum
<8 30 2.7 £0.1 7.8 £0.1
<8 40 2.7 £0.1 84+ 0.1
<8 50 2.7 £0.1 9.9 £0.2
<53 30 1.3 £ 0.1 2.1 £0.1
<53 35 1.6 £ 0.1 2.5+ 0.1
<53 50 29 £ 0.1

elevated or reduced the burn rate increases or decreases. Also, temperature of the propellant has great influence
on burn rate and as temperature increases it increases and as temperature decreases it decreases. All other
parameters being same, the calorific value of the propellant influences the burn rate.

The Vielle’s Law [21, 100] i.e. the exponential form of burn - rate law, is given as:

r = aPc". (3)

where,
r = burn rate (largely depends on propellant’s initial temperature and chamber pressure)
a = coefficient that rely on the propellant’s initial temperature (usually,a = 0.002 to 0.05)
P. = pressure of the chamber
n = pressure index or exponent (function of propellant formulation)
Burning rate can be changed by altering the fuel /oxidant ratio or the particle size of the fuel (table 9) [101].

4.5. Lower impact sensitivity (impact, friction, electrostatic discharge)

Nanoscale thermites can be sensitive to both shock and impact or one of the two based on the metal oxide as
compared to the thermites on micron-scale that are typically rather insensitive to shock and impact. The impact
sensitivity can be classified into 4 classes: Insensitive (>40 J), Moderately sensitive (35-40 J), Sensitive (4-35]),
Very sensitive (<4 J) whereas the friction sensitivities are classified as: Insensitive (>360 N), Moderately
sensitive (80-360 N), Sensitive (10-80 N), Very sensitive (<10 N) [54].

4.6. Specificimpulse (I;,)

The foremost vital single ballistic property for rocket propellants [21] is the Specific impulse (). This property
is very crucial in determining the mass of propellant needed to suffice the ballistic requirements and is expressed
as the thrust per unit weight flow rate of propellant (w). I, of a propellant can be determined using equation (4).

Isp = E (4)
%

where
F = thrust; w = weight flow rate.

5. Applications

5.1. Nanoenergetic gas generators (NGG), microthrusters and micropropulsion system,
microelectromechanical systems(MEMS), microactuators

As per the intensive study done by Martirosyan et al the velocity of detonation of Al/Bi,O; reached up to

2500 m s~ " whereas the minimum activation energy of approximately 150 kJ /mol, for Al/I,O5 system makes
both the nanothermites suitable for applications as NGG [42]. Moreover the pressure impulses (~11 MPa) and
higher values of energy densities render their application in microthrusters [100, 102] and micropropulsion
systems. When compared with the hexane milling, the self-assembled nanoenergetic materials Al/Bi,O3 and
Al/1,0s, displays elevation in the pressure discharge. Minimal quantities as low as 2 to 10 mg of manufactured
nanoenergetic composites utilized in microthrusters are capable of producing a force ranging between 0.002 N
to0 0.6 N. For instance, 6000 N force can be generated by a group of 10,000 microthrustersona0.5 x 0.5 m
surface. Nanoenergetic composites also find applications in Microelectromechanical Systems (MEMS) [43, 45].
Table 10 shows the trend in the synthesis and development of novel energetic materials.
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Table 10. Trends in the synthesis methods of novel energetic materials.

Characterization techni-
ques and properties

Nano energetic composite Synthesis method examined Results References
Al/PTEE, Magnetic stirring and Energy and pressure output, Energy Output: Wang et al
Crystallization [6812020
Al/PTFE/AP Combustion properties Pure Al/PTFE=2019] g,
Al/PTFE/AP (9 wt%) = 8863 ] g~
Pressurization rate:
Pure Al/PTFE = 29.3 MPa ms !
Al/PTEE/AP (9 wt%) = 340 MPa/ms
Burnrate:
Pure Al/PTFE = 260 m s~ !
Al/PTFE/AP (9 wt%) = 1626 m s *
Nano Si/CuO Facile Electrophoretic Exothermic behaviors and The heat release of 259.9 kJ kg~ ' was found to be highest at equivalence ratio of 1.0 as compared Wang et al
deposition Electrophoretic deposition to the other ratios (¢ = 0.5, 1.5, 2.0). [31]2019
dynamics
XRD,SEM,EDS High ignition temperature and low combustion rate.
Al/CuO Direct Ink Writing Thermal behavior Theloading of nanothermite is up to 90 wt.%, and the highest value of burning rate obtained in Maoetal
(DIW) 3D Printing the study foris 352 mm s ', [89]12019
Superfine RDX /Al composite (mass ratio of Mechanical ball-milling Activation energy , Thermal Activation energy value of RDX in composite reduced to 70.8 kJ mol ' and compared with the Xiao etal
70/30) method Sensitivity superfine RDX (119.6 k] mol ") [16]2018
SEM, XPS,TGA,DSC, Increase in the thermal sensitivity of the superfine RDX/Al
DSC-FTIR
Rise in milling time decreases the decomposition temperature
CL20 embedded with CuO/Al core/shell Facile dissolution- heat release character- Improved heat release properties with an increased total heat of reaction and an 18.2% subsided Zhuetal
nanothermite recrystallization istics (DSC) activation energy of integrated CL20. [7012018
arrays. combustion phenomenon Displays a favorable burning behavior with a violent and steady combustion flame
(Open burn tests)
Ternary mixtures KCIO,@Al/CuO Solvent/non-solvent Electrical ignition test , Higher burning speeds Yanget al
synthetic approach pressure cell test [85]2017
Faster energy release velocity due to the decreased mass transfer distance and the rise of effect
contact surface area of reactants
Al/Bi,03/P4VP (poly-4-vinylpyridine) Self-assembly Pressure discharge The pressurization rates and peak pressures of Al/Bi,O3/P4VP and Al/Bi,O;/OA were 5590 Wang et al
properties kPa, 13.976 GPa s !and 4858 kPa, 12.146 GPa s}, respectively, better than those of Al/Bi, 05 [62]12017

Al/Bi,03/0A (Oleic acid)

(4559 kPa, 11.397 GPas™ ).
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Table 10. (Continued.)

Characterization techni-

ques and properties
Nano energetic composite Synthesis method examined Results References
Al/CuO Nanostructured energetic material combination of a solu- Thermal analysis NEM had lowered the apparent activation energy for the solid state exothermic reaction, signify- Zhouetal
tion chemistry method ing the superior structural design [103]2016
and electrophoretic
deposition
Ammonium perchlorate/Graphene oxide Recrystallization Combustion behavior 15% surge in the burning rate at a pressure of 80 atm Memon et al
(AP/GO) method/(fast crash) [104]2016
lowered the decomposition temperature of AP
Al/CuO and Al/MoO; mixing of powders by Dynamic pressure, linear Nano Al/nano CuO (¢ = 1.1) Weismiller
sonication propagation rates, and spec- etal[55]2011
tral emission, were
measured
Linear burning rate = 980 m s
Mass burning rate = 3.8 kgs™",
Energetic mass burning rate = 3.1kgs ™',
Nano Al/nano MoOs (¢ = 1.4)
Linear burning rate = 680 m s,
Mass burning rate = 2.0 kgs™',
Energetic mass burning rate = 1.4 kgs ™,
Al/Teflon — Ultrafast IR spectoscopy to The reactions of Al with CF, and CF; have the same apparent rate, thus it proved possible to Zamkov et al
study the reactions between explain the Al + Teflon** chemistry with the slower processes involving [69]12007

Teflon: a copolymer of tetrafluoroethylene (TFE)
and 2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-
dioxole (dioxole), the mass ratio of
Teflon™*/Al = 4.6

flash-heated Al nano-
particles and Teflon™"

Al + CF, or CF; and the faster involving Al + CFO.

The reactions with CFO were >10 times faster than reactions with CF, or CFs.
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Figure 21. Schematic of Gun Primer.

5.2. Gun primers and electric matches

By varying size of particles or by usage of different nanoscale materials and varying the ratio of fuel to oxidizer of
the composite, the super-thermite materials are made to be more sensitive towards thermal stimuli like resistive
heating thus rendering them capable of replacing the lead-containing compounds in the electric matches/
igniters as well as non-toxic gun or electric primers (figure 21) [54, 66, 105, 106].

5.3.Biocidal agent

Sullivan ef al examined the reaction and ignition of Al/AgIOj; thermites for plausible usage in various biocidal
applications. Its ignition temperature of the Al/AgIO; was found to be between 1175 K to 1255 K whereas the
pressurization rate outperforms that of Al/CuO [92]. Ivan Davila [107] composed a ternary-thermite system,
which acted as NGG, having composition 10/75/15 wt % of 1,05/Ag,0/Al The highly pathogenic
microorganisms or bacteria are destroyed by the mixtures ability imparted to it by the production of biocidal
gases from this composition. In this study, due to the production of a strong biocidal environment by the
gaseous silver and iodine produced from NGG combustion, the living strain cells of Escherichia coli (E. coli) K-12
were destroyed. Likewise, the potent biocidal properties of [odine-containing gases have been employed by
Wang et al and successfully prepared a reactive ternary composite system of Mg-B-I, by mechanical milling of
powders in two steps. Such reactive composites have potential to be used in munitions that can be used against
biological weapons [108].

5.4. Molecular delivery applications

Patel et alignited Co3;0,4/nAl and Co;0, (calcined at 400 °C)/nAl nanoenergetic composites and reported the
peak pressure/pressurization rates [ 109] and combustion front-wave speed. The heat of reaction was recorded
tobe1.02 k] gf1 for calcined Co30,4-400/nAl and 0.96 k] g71 for Co304/nAl nanoenergetic systems. The
C030,4-400/nAl and Co;0,4/nAl nanoenergetic composite propagated at a maximum flame-front speed of

830 + 75ms 'and 781 £ 50 m s ' respectively. The maximum peak pressure, nearly similar to the CuO-
based nanoenergetic system, was obtained at an equivalence ratio of 1.6, but due to low gas generation during the
combustion process the maximum pressurization rate with Co;O4/nAI (0.47 &= 0.1 MPa ps™ "y was much lower
to that of CuO/nAl nanoenergetics. The Co;0,4/nAl nanoenergetic system can create pressurization rate from
~0.03t00.19 MPa s~ ' whereas mild peak pressure ranging from 12.6 4+ 1 MPato 20 4 2 MPa that attributes
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to the low gas generation characteristics, and thus find application in low intensity pressure-pulse based
microporation of soft matters such as bacterial cells without analysis [109].

6. Conclusion

Comprehensive analysis of various fabrication approaches and research accomplishments so far has been
presented in the review paper. The reduction in size of particles to nanometric scale and its further incorporation
to prepare nanoenergetic composites have elevated the potential of conventional energetic compounds and led
to development of novel thermite systems. Nanothermites are a promising candidate for developing advanced
energetic systems with desirable high energy densities, faster energy release rates, lower impact sensitivity, high
burning rates, high specific impulse and so on for applications in Nanoenergetic Gas Generators (NGG),
microthrusters and micropropulsion system, microelectromechanical systems (MEMS). Al-based metastable
interstitial composites have been extensively explored by researchers by employing the traditional synthesis
techniques. However, nowadays, other metallic fuels like Si, Sb, Mn, Zr, and advanced synthesis processes like
Direct Ink Writing (DIW) 3D printing have grabbed the attention of the researchers. Despite the advantages of
the nanothermite systems, the safety and security issues hinders the usage of nanoenergetic materials to a certain
extent. Thus, a significant work can be done to broaden the scope of nanoenergetic materials for diverse future
applications.
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