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Abstract

We introduce a new family of energy-based probabilistic graphical models for efficient
unsupervised learning. Its definition is motivated by the control of the spin-glass properties of the
Ising model described by the weights of Boltzmann machines. We use it to learn the Bars and
Stripes dataset of various sizes and the MNIST dataset, and show how they quickly achieve the
performance offered by standard methods for unsupervised learning. Our results indicate that the
standard initialization of Boltzmann machines with random weights equivalent to spin-glass
models is an unnecessary bottleneck in the process of training. Furthermore, this new family allows
for very easy access to low-energy configurations, which points to new, efficient training
algorithms. The simplest variant of such algorithms approximates the negative phase of the
log-likelihood gradient with no Markov chain Monte Carlo sampling costs at all, and with an
accuracy sufficient to achieve good learning and generalization.

1. Introduction

Machine learning has emerged as a disruptive technology transforming industries, society and science. Its
perhaps most remarkable recent developments are based on supervised and reinforcement learning in deep
neural networks. Yet unsupervised learning is expected to be much more important in the long term [1, 2].
Energy-based models, with their ability of unsupervised learning of probability distributions for generative
purposes, are promising building blocks of future machine learning systems. Among them, Boltzmann
machines (BMs) have especially prospective properties: their latent variables allow for deep neural network
architectures while the learning algorithm is remarkably simple [3-5].

Training BMs is nevertheless hard due to the need of obtaining samples from the models built.
Specifically, a set of averages with respect to training data and the defined model needs to be determined at
every learning step. In general, such averages cannot be computed exactly for large networks because of the
large dimension of the vector spaces involved. Instead, they are estimated, for instance, by sampling through
Markov chain Monte Carlo (MCMC) methods. Initial sampling heuristics relied on short-step Gibbs or
Metropolis—Hastings methods, which were soon complemented with features such as persistent chains [6] or
with replicas of the original chains [7]. These improvements come, however, associated with increased
memory and computational costs. Given that energy-based models are closely related to problems of
statistical physics, the powerful methods developed for statistical physics are among the most promising for
dealing with the problem of training BMs. These include modern MCMC algorithms for physical systems
like Parallel Tempering [8] or Simulated Annealing [9]. The problem of training BMs is so relevant and
challenging that special hardware systems exploiting specific physical processes have been developed to deal
with the task of sampling. These include systems operating in the regime of classical physics [10, 11], as well
as based on purely quantum or hybrid classical-quantum machines [12, 13]. While these routes are
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promising, they have important drawbacks when faced with practical applications, mostly due to the
immature state of these novel computing platforms.

The problem of training BMs can be framed in the context of statistical physics and benefit from its
associated theoretical body. Indeed, the connection between BMs and statistical mechanics is known since the
initial developments in the field [3]. From this point of view, neurons in BMs play the role of physical spins
of an Ising model, the weights represent the coupling strengths between spins, and the biases of the neurons
are local fields affecting each individual spin. Once set this analogy, it is natural to identify the BM initialized
with independently drawn random weights with the Sherrington—Kirkpatrick spin-glass (SKSG) model [14].
Thus, the difficulty of training BMs through sampling is connected to the difficulty of determining the
ground state energy of the SKSG model on non-planar graphs, which is an NP-complete problem.

In this work we find that the typical initialization of BMs with random weights equivalent to the SKSG
model is an unnecessary bottleneck in the process of training. We consequently propose a radically different
approach: we regularize the couplings in the Boltzmann machine in order to avoid a spin-glass behavior at
any point of training. Thus, this indicates an alternative to pursuing the paramount problem of efficient
sampling in the SKSG model. We call this method Regularized Axons (RA), and the family of models that it
gives rise to, RA-BMs. Moreover, RA provides proxies of low-energy configurations, which suggest new
methods for estimating the gradient of the log-likelihood function that is optimized during training. In
particular, we show a simple case where MCMC sampling is not necessary for successfully learning a dataset.
This method, which we term training via Pattern-InDuced correlations (PID), thus reduces the numerical
effort of training to a minimum. Although in this work the numerical examples focus on restricted BMs
(RBMs), the main ideas remain applicable to any energy-based model with an energy function similar to an
Ising model with random weights and, in particular, deep BMs.

We first show in a conventional academic example that during training of standard RBMs two main
phenomena occur: on one hand, the ability to access low-energy states rises dramatically, and on the other,
the models’ weights evolve in such a way that standard RBM models resemble RA-RBMs after training. These
phenomena signal essential differences between a well-trained model and the SKSG model. Then, we show
that avoiding the spin-glass regime during training via RA allows to obtain well-trained models. We do this
by demonstrating on several examples of increasing complexity that models with RA are capable of fast and
successful learning and generalization, where in some instances PID contributes by reducing further the
numerical effort. With this, we conclude that the regularization we impose is not restrictive when it comes to
the expressive power of the model.

This manuscript is organized as follows: after a short introduction to the formalism of Boltzmann
machines in section 2, in section 3 we describe the technical results of our work: RA for regularizing BM
models, and PID for training them. Section 4 is devoted to their justification, based on arguments coming
from the theory of statistical physics. In section 5 we empirically test the performance of RAPID in various
datasets, showing its efficient learning and its generalization ability. We conclude with a discussion and point
out relevant remarks in section 6.

2. Preliminaries: Boltzmann machines

We begin by recalling the standard BM, which consists of N binary neurons o (here we use values o; ==1,
which are standard in the physics of spin systems), separated into two disjoint sets of V visible and H hidden
neurons, which will be referred to respectively as v and h, so that o = (v, h). The energy of a given
configuration of neurons is defined as

N N
E(U):*ijdiajfzbiai, (1)
i i

where the weights W;; describe connections (axons) between neurons, while b; are local biases. Alternatively,
such BM setup describes spin systems where the weights describe interactions between pairs of spins and the
biases are local magnetic fields. Different architectures of connections (i.e. different graphs whose vertices are
neurons and edges denote non-zero weights) can be considered. For example, in RBMs, there are only
connections between visible and hidden neurons, and all visible-visible and hidden-hidden connections are
set to zero. However, in the most general case the neural network is fully connected. In the following, and
throughout the whole manuscript, we will neglect biases, as the main issues we discuss are related to the
distribution of weights.

The probability of a model having a visible configuration v, P4 (v), is given by a Boltzmann
distribution:
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Zh e—E(v,h)
" S
The goal of the training is to determine the parameters W; of the energy function (1) such that Ppqdel(v)

represents as close as possible the distribution Pg,, underlying some training dataset 7. This is usually done
by minimizing the negative log-likelihood (NLL),

Pmodel (U) (2)

L=— Z Pdata(’U)longodel(U)v G)

veT

with respect to the parameters of the energy function. Let us collectively denote these parameters by 6. As
Pyata is independent on these parameters, the minimization is only performed to log Pyoqe1- The derivative of
this term takes the form of

80(_10gpmodel) = <60E>data - <86E>modelv (4)

where the bracket (-) denotes the expectation value with respect to the probability distributions Pgat, 0 Prodel
for the data and model averages, respectively. Sampling from such distributions is the main challenge of BMs,
as discussed previously. In fact, RBMs were introduced in order to facilitate the computation of (-)ga [15].
However, even for RBMs, the computation of {-) e is still very difficult if the weights are random.

3. RAPID—Regularized Axons and Pattern-InDuced correlations

This section contains our main technical contribution, the definition of a family of energy-based
probabilistic graphical models that avoids the training difficulties that stem from spin-glass phenomenology.
This family, which we call Boltzmann machines with Regularized Axons, or RA-BMs, is introduced in
section 3.1. The procedure of regularizing the Ising model couplings (i.e. the BM weights) defines a simple
form of the space of configurations with low energy, which can be used for approximating averages under the
model distribution in a very resource-efficient manner. We employ such property in section 3.2 to define an
algorithm for training via Pattern-InDuced correlations (PID).

3.1. Regularized Axons
We employ a regularization of the weights of the BM by constructing them from a number K of
configurations called patterns, each described by a set of variables {E(k) }K_| where

& e {141} Vk=1,... . Ki=1,. N;

K
_ 1 ) £(8)
W = \/E;S’ & (5)

Note that, with this form, the weights are naturally constrained to lie in the interval [—\/I><, \/I><] Such form
of the weights is well known in machine learning from the Hopfield model of associative memory [16, 17],
which implements the Hebbian rule so that ‘neurons wire together if they fire together’ [18]. Contrarily to
the original Hopfield model, our patterns do not represent memorized data. We discuss in detail the
differences between the Hopfield model and our proposal in section 5.3. Here, we just note that the patterns
are the trainable parameters of the model. For BMs with restricted connectivity like RBMs or deep BMs, one
should notice that some W;; will be set to 0 and not calculated according to equation (5).

Importantly, if one considers K < N, then the patterns are explicit low-energy configurations of the Ising
model associated to the neural network with weights given by equation (5) [19]. Furthermore, the condition
K < N ensures that at low temperatures the model is not in the spin-glass phase [20, 21], which is the
primary motivation for such regularization. We refer the reader to section 4.3 for more details on these
statements. Therefore, in a typical training instance of an RA-BM, one would proceed to first choose a
number of patterns K high enough to faithfully learn the data (this is, to ensure that the model has enough
plasticity), and only then choose the number of hidden neurons in such a way that K < N.

3.2. Training via Pattern-InDuced correlations

For weights regularized via equation (5), the patterns {& (k) }« are themselves low-energy configurations of
the spin model of equation (1) when K < N. Recalling that Boltzmann distributions of the form (2) give
exponentially larger weights to low-energy configurations, averages under the model distribution, and in
particular the negative phase of equation (4), can be well approximated by the corresponding averages over
the values of the spins in the patterns. This is,

3
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K
(10D i = 2 D MED), (©
k=1

where f(o) is an arbitrary function of the neurons in the model. We refer to this procedure as estimation
through Pattern-InDuced correlations, or PID.

As training progresses, the patterns {£€ (k) }+k can acquire non-trivial overlaps with each other, losing the
guarantee that they represent an exhaustive set of low-energy configurations of the Ising model associated to
the BM. Importantly, due to their initial construction, such patterns still lie close to different energy minima
each. This ensures a fair calculation of averages, and implies that the patterns serve as ideal seeds for
iterations of Gibbs sampling. In section 5 we show via examples how RA-RBMs trained with PID without
Gibbs sampling are capable of learning simple datasets, while as few as a single Gibbs step is enough to learn
complex ones.

The algorithmic form of RAPID, the training of an RA-BM via PID, is presented in algorithm 1 for the
particular case of an RBM architecture. The highlighted step is the calculation of the negative phase by means
of PID, and the remaining is common to any RA-RBM. The general-case algorithm for arbitrary, deep or
fully connected BMs, can be straightforwardly obtained from algorithm 1.

Algorithm 1: Learn dataset with an RA-RBM and PID.

Input: dataset X = {v "},
number of patterns K,
hidden layer size H s.t. K < H + length(v®),
learning rate A, number of epochs E
V + length(v (")
for k=1to K do
Initialize 55” e{-1, —I—I}V randomly
Initialize §§lk> € {—1,+1} randomly
¢® « concatenate(£), §§lk))
end for
We s el
fore=1to E do
for v in X' do
h + get_h_from_v(v, W)
p® « get_phase(v, h,£V)
n') « get_phase(¢,,€,,£")
£® £ L 2\(p® — n®)
W e el
end for
¢®  binarize(¢®)
Wi S i 6068,
end for

Note that the function get_phase() is typically the average of the gradient of the free energy. In
appendix A we give its explicit form for an RA-RBM.

An important aspect to notice is that, after an update, the parameters £ Q) depart from taking values from
{—1,+1}". Thus, they do not represent exactly spin configurations, although they usually remain close to
=+1. In order to solve this problem, we binarize the parameters back after each epoch of training (see the
third-to-last line of algorithm 1). Different procedures, such as those we propose in appendix B and use in
the experimental analysis of section 5, can be employed. Also, it must be noted that RA and PID are
independent results and, in particular, it is possible to replace PID with other techniques for approximating
the negative phase of the parameter updates.

In summary, the novelty of the combination of Regularized Axons and training via Pattern-InDuced
correlations, RAPID, comes from: (i) avoiding the SKSG phase at any moment of training by utilizing
weights constructed via equation (5) while scaling H to keep K < N and (ii) exploiting the patterns
introduced in equation (5) for approximating the low-energy space of the associated spin model in an
efficient way and using them to approximate the negative phase. As we show in section 5, this recipe is
sufficient for employing RBMs to learn relevant probability distributions.
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4. Physical explanation

In this section we explain the theoretical justification for RA-BMs, which originates in the field of statistical
physics.

4.1. Hardness of sampling and spin glasses

Perhaps the most profound result stemming from the perspective of statistical physics in BMs is the
understanding of the origin of the hardness of sampling the models. The Boltzmann probability distribution,
equation (2), is dominated by contributions from low-energy configurations, and a good sampling technique
must probe such configurations well. However, determining the lowest-energy configuration—also known as
ground state—of any Ising model defined on a non-planar graph with independently drawn couplings is an
NP-complete problem [22]. An example of such models is the usual starting point of a BM. At the beginning
of training, when typically the couplings between neurons are drawn at random, a BM is equivalent to the
Sherrington—Kirkpatrick spin-glass model [14], and any known algorithm for finding its ground state is
ineffective for moderate network sizes.

At finite temperatures, the famous Parisi’s replica symmetry-breaking solution of the SKSG model [23]
reveals that spin systems can exist in two phases: spin-glass at low temperature, and paramagnetic at high
temperature. Sampling in the paramagnetic phase is easy, as expectation values are dominated by thermal
noise. However, this also means that a BM operating in such phase is unable to faithfully reproduce any
probability distribution different than the aforementioned thermal noise. On the contrary, sampling in the
spin-glass phase is difficult as the free energy landscape is composed of local minima separated by large
energy barriers. Moreover, as the temperature is lowered, more minima and barriers arise. Eventually at zero
temperature their number scales exponentially with the size of the system, giving rise to an ultrametric
landscape [24, 25]. In this landscape, simple MCMC sampling algorithms which imitate thermal
fluctuations, like Gibbs sampling, get trapped in the phase space (i.e. they present poor mixing) due to the
height of the free energy barriers to be overcome. On the other hand, global algorithms have to deal with an
exponential number of local minima, leading to exponentially large times for reaching the solution. Note
that this is not a deficiency of particular sampling algorithms, but rather a manifestation of the glassy nature
of the spin system. Indeed, as the temperature approaches zero, sampling must be more and more difficult
since finding the ground state of a spin glass at zero temperature is an NP-complete problem.

The standard way of avoiding spin-glass complexity in BMs consists in reducing the magnitude of the
initial weights [26] such that the effects of temperature will dominate and the system will be in a
paramagnetic phase. As a trade-off, the training signal is weaker as it is masked by thermal noise. This can be
especially troublesome in deeper layers of, e.g. deep BMs. Indeed, the efficient training of deep BMs is
perhaps the biggest challenge in the area of energy-based models.

Recent advances in analog quantum computers have led to another way of dealing with spin-glass
complexity, namely quantum-assisted sampling [12, 13]. The use of quantum resources for sampling BMs is
advocated by theorems stating the intractability of sampling in BMs [27], which go beyond the case where
the associated Ising system is in a spin-glass phase.

Given the above, we take a different approach: instead of dealing with intractable models—inside or
outside a spin-glass phase—we define regularized models where low-energy states are readily accessible. It is
important to point out that, for any given probability distribution, there is a large number of different BMs
which can approximate it [28]. We argue, and support experimentally in section 5, that the models with
regularized weights arising from RA is within such set and hence one can avoid dealing with intractable ones
without losses in representability power.

4.2. The initialization of BMs as an SKSG model is a bottleneck of training

The paramount difficulty of sampling a spin-glass at low temperatures, and the thermal noise that arises
when one attempts to solve that problem by moving to the paramagnetic phase, beg the question: is there a
strong reason why one would need to initialize BMs with weights leading to an SKSG model in the first place?
Below we answer this question in the negative.

Since BMs in the paramagnetic phase cannot faithfully represent any probability distribution but those
close to thermal noise, let us focus our discussion on the SKSG phase. Indeed, the key point we raise is that
BM:s reproducing typical training data probability distributions are associated to Ising models outside the
SKSG phase. After a theoretical ‘perfect’ training of a BM (note that this is not desired in practical scenarios
because it corresponds to the memorization of the training set), the only lowest-energy neuron
configurations should be those corresponding to training datapoints, all other having significant higher
energies. From the theory of Hopfield networks [29, 30] it is known that the maximum number of
memorized and retrievable configurations scales linearly with the number of neurons in the system, and not

5
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exponentially, as in the case of SKSGs. The SKSG phase has simply too many minima to allow for stable
memorization. This argument carries over to the case of practical scenarios, where the main objective is
generalization instead of memorization, and successful training means that the neuron configurations
representing retrievable features of many training datapoints conform the low-energy spectrum of the
associated Ising model.

Furthermore, one can analyze the spin-glass behavior of a spin system by studying whether the
distribution of samples drawn from it is ultrametric [25]. If the training data are not strongly ultrametrically
distributed (which is the case for standard datasets), the distribution of sampled outputs of a BM properly
trained on it should neither be ultrametric. On the contrary, BMs in the SKSG phase necessarily produce
strongly ultrametrically distributed outputs, much more than the training data [31]. In order to reduce the
ultrametricity of the outputs, BMs initialized in an SKSG phase must abandon it throughout training.

These arguments strongly suggest that, even if one initializes a BM as the SKSG model, the training
process will drive the weights outside it, and thus, the glassy model is an unnecessary feature of current
initialization and training methods. The experiments we report on in section 5 support such scenario: during
training of standard RBM models, the ability to access the low-energy states via Gibbs sampling rises
dramatically in the later phases of training, while the spectral decomposition of the model weights, detailed
in section 5.1.4, shows a departure from the SKSG model.

4.3. The rationale behind RA

The SKSG phase is related to the so-called phenomenon of spin frustration, which occurs when there is no
configuration that minimizes the energy of all pairwise interactions at the same time. The difficulty of
finding the ground state and the exponential number of low-energy minima characteristic of the SKSG
model are directly related to a strong frustration, which typically appears when the couplings between the
neurons in the model are randomly distributed.

However, not all models with random weights exhibit frustration and spin-glass phenomenology. In
[32], Mattis introduced a model with random weights but no frustration: he considered a set of N variables
&; taking values 11, and defined the interaction between spins as Wj; = &;§;. Importantly, the configurations
&= (&,...,&v) and —€ correspond to the unique ground states of the spin system with couplings given by
Wi, as all pairwise interaction energies are minimized. Furthermore, sampling in such model is easy. RA, as
given by equation (5), can be seen as a generalization of Mattis’ approach. Indeed, it interpolates between
Mattis’ original procedure, where for K = 1, 2 the system is unfrustrated but with poor plasticity (so it cannot
learn complex datasets), and K— oo where the weights are uncorrelated random Gaussian variables leading
to the SKSG model where standard RBMs typically begin training.

The properties of Ising models with random RA couplings have been studied in the context of the
Hopfield model of associative memory [16, 17]. In particular, it is well known that the ratio K/N is the
parameter that determines the phase of the associated Ising system [20, 21]. In general, there exists a
threshold value beyond which the model at low temperatures is in a spin-glass phase where computing or
approximating (-)model i hard. In contrast, below the threshold it is easy to access to the low-energy
configurations and thus (-)edel is €asy to approximate. This is the motivation to suggest, as a general
procedure, to first choose a number of patterns K large enough to faithfully learn the relevant features of the
data, and after that the number H that makes the ratio K/(V + H) low enough to avoid the spin-glass phase.

5. Experiments

We proceed now to analyze the performance of RA-BMs and training using PID—with and without
supplementary Gibbs sampling—in learning different datasets. To compare it with BMs trained through
standard methods we will focus on RBM architectures. The models employed in this section, which can be
found in [33], are implemented in PyTorch [34] via the ebm-torch module [35], and run on a workstation
running Ubuntu Server 16.04 LTS, equipped with an Intel Xeon v3 E5-1660 (3 GHz) CPU, 64 GB of RAM,
and an NVIDIA Titan Xp 12 GB GPU card.

5.1. Benchmark with exact training: 4 x 4 bars

As a first example we trained RBMs with a small number of visible neurons, V = 16, and relative to that, a
large number of hidden neurons, H = 1000. The small V, along with the restricted architecture, allows for the
exact calculation of the loss function, equation (3), and thus to employ exact stochastic gradient descent.
Furthermore, the ground state energy can be exactly determined at any moment of training, irrespective of
whether the system is in an SKSG phase or not. Therefore, we can meaningfully compare RAPID with the
training of exactly solved RBMs. Moreover, we also compare it against standard methods employed for
training larger RBMs such as contrastive divergence (CD) and persistent contrastive divergence (PCD) with

6
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Figure 1. Comparison of untrained models: Gibbs accessibility for untrained models as a function of the measured standard
deviation of the weights. The blue line represents RA-RBM models with V' =20 and H = 1000, whose weights are computed via
equation (5) with K = 10 Bernoulli-random patterns. The remaining lines represent standard, unrestricted RBM models of the
same size, with weights sampled from (orange) a Gaussian random distribution with mean zero and (green) a uniform
distribution centered at zero. The black star denotes the point corresponding to the Glorot initialization [36] for the specified
values of V and H. The shaded areas represent the standard deviations over 100 independent executions. The inset shows the
Gibbs accessibility as a function of the number of visible neurons in the model, at the (fixed) standard deviation of weights equal
to 10.

10 Gibbs steps and, in the case of PCD, 2048 fantasy particles. Our initial benchmark problem is learning the
Bars dataset, consisting of 4 x 4 images with full vertical bars, containing a total of 14 inequivalent images.
For such example, we choose K = 8 for RAPID.

5.1.1. Gibbs sampling ground state accessibility

From the training perspective, the most important aspect of the model being in the SKSG regime or not is
how hard it is to obtain a faithful distribution of states via sampling. To estimate this, we assess the ease of
reaching the ground state (GS) via Gibbs sampling starting from random visible configurations. For doing
so, we initialize the visible neurons in a random configuration and we use Gibbs sampling to extract a
representative configuration of the model. We perform 10 Gibbs steps, after which we calculate the energy of
the resulting configuration in the visible and hidden layers. We define the ratio of such energy to the true GS
energy as the Gibbs sampling GS accessibility or, shortly, the Gibbs accessibility.

In figure 1 we show the Gibbs accessibility for untrained, randomly initialized models with varying V and
constant H, as a function of the standard deviation of the models’ weights. The standard deviation of weights
defines the scale of system energies, and through it, the impact of temperature and thermal fluctuations on
the model’s dynamics. Note that, from equation (2), the temperature of the associated Boltzmann
distribution is implicitly set to 1. Thus, from now on, any mention to high and low temperature will be
referring to low and high standard deviation of the weights’ distribution, respectively.

The first notable observation is that, except for extremely small energy scales corresponding to models in
paramagnetic phases due to the very high temperatures, the Gibbs accessibility is higher for RA-RBMs than
for RBMs initialized in a standard way. Therefore, sampling low-energy configurations from models with RA
is easier than sampling low-energy configurations from unregularized models. Moreover, the difficulty of
sampling low-energy configurations in unregularized models is not affected by whether the values of the
weights are drawn from Gaussian or uniform distributions.

Next, focusing on the variation of the Gibbs accessibility with the energy scale, one observes that small
weights lead to system dynamics dominated by thermal fluctuations, and thus exploring high-energy
configurations. In such regime, all models are in their respective paramagnetic phases and the Gibbs
accessibility is low for all of them. Learning in a regime of small weights is usually slow, but typical guidelines
for training RBMs suggest to start in this regime [26]. Even modern approaches to weight initialization
suggest initial parameter values that give rise to models where the access to the low-energy spectrum via
sampling is poor. For example, the well-known Glorot initialization [36] (denoted by a star in figure 1)
generates initial models where Gibbs sampling is only capable of reaching configurations whose energy is not
lower than three times the energy of the ground state in small models.

As the standard deviation of weights is increased, the impact of thermal fluctuations decreases.
Eventually, for large weights the thermal fluctuations are negligible. In this regime, the Gibbs accessibility is
independent of the energy scale, as shown by the plateau in figure 1. While the behavior of standard RBM
and RA-RBM models is similar when increasing the energy scale for a fixed number of neurons, the fact that
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Figure 2. Characterization of the low-energy space: accessibility of the GS in RBMs, using different training methods. (a) Smallest
energy, relative to the ground state energy, of the configuration obtained after 10 steps of Gibbs sampling, beginning from
random visible configurations. (b) The method accessibility measures how well the negative phase captures the low-energy
behavior of the exact Boltzmann averages, by comparing the energy of the lowest-energy configuration employed to compute the
negative phase with that of the ground state. In all cases, the models tested have V' =16 visible and H = 1000 hidden neurons, and
are trained in the 4 X 4 Bars dataset. For the case of RAPID (in blue), we employ K = 8 patterns. The shaded regions denote the
standard deviations after 100 instances of independent training.

the value at the plateau is different is a signature of the fact that standard RBM models are in an SKSG phase
where reaching the ground state through sampling is more difficult than in RA-RBM models, which are
instead in a ‘few-minima’ phase where the number of energy minima scales polynomially with the system
size, instead of exponentially. Crucially, this different behavior accentuates when, for energy scales in the
plateau, one considers models with an increasing number of neurons (shown in the inset of figure 1). In the
case of standard RBMs, the system is in a low-temperature SKSG phase where sampling the ground state is
hard due to the existence of an exponential number of minima. Indeed, the Gibbs accessibility quickly
decreases when one increases V, as a consequence of the problem of finding the ground state in an SKSG
phase being NP-complete. Contrary to that, for our regularized RA-RBM the Gibbs accessibility stays
constant when increasing V. This strongly suggests that such model is not in the SKSG phase, but in a regime
at low temperature where sampling low-energy configurations is easy while the signal is not dampened with
thermal fluctuations, and where the number of minima is controlled not by H or V, but by K.

Next, we analyze how the Gibbs accessibility varies with training, which is depicted in figure 2(a). For
RBMs trained with CD, PCD, and exact gradients, the models are initialized in accordance to the standard
procedure [26], thus being initially in a paramagnetic phase at high temperature. As discussed above, this
initialization has the consequence that, during the first epochs of training, Gibbs sampling does not reach
low-energy configurations. This effect is prominent in figure 2(a), and in stark contrast to the case of
RA-RBM:s, for which equation (5) initializes the model in a phase where the ground state is easily accessible
via Gibbs sampling.

After training, figure 2(a) shows that all standard RBM models end up in a regime where Gibbs sampling
is efficiently reaching the low-energy sector. The speed at which they reach this regime is directly related to
the quality of the estimation of the negative phase, this is, to the ability of drawing samples according to the
Boltzmann distribution of equation (2). In contrast, RA-RBM models are always in a regime of good
sampling, which allows for large reductions in the number of epochs needed for successful training
(see section 5.1.3).

5.1.2. Method ground state accessibility

In figure 2(b) we consider a quantity more relevant during the training process: the proximity of the
configurations employed by each method to compute the negative phase, (9pE)model> to the respective
ground states. For the various training methods, we define the method GS accessibility as the ratio of the
lowest-energy configuration employed in the computation of the negative phase to the ground state energy.
Note that, when employing the exact gradients, we have an explicit expression for P4l and therefore there
is no need of taking any samples from the model. This is the reason why there is no curve in figure 2(b) for
the exact training method.

For CD, the Gibbs sampling and method accessibilities are very similar, since the method for computing
both is, in essence, the same. The method accessibility of figure 2(b) is slightly better due to the fact that, in
that case, the initial configurations before sampling are images from the training set instead of the random
configurations used when computing the Gibbs accessibility of figure 2(a). A similar phenomenon can be
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Figure 3. Learning accuracy: Hamming distance between reconstructions of partial images and expected results in the (a) training
and (b) test sets of the 4 X 4 Bars dataset. The shaded areas around the lines denote the standard deviation of 100 independent
training instances. The parameters of the models are the same as those in figure 2 (V = 16, H = 1000, and K = 8 in the case of RA).

observed in the curves for PCD. In this case, the method accessibility is better than the Gibbs accessibility due
to the fact that the fantasy particles employed in the sampling are always close to the ground state. In the case
of RAPID, it is apparent that, at late stages of training, conventional methods seem to provide a better
characterization of the ground space than the pure PID defined in equation (6). Nevertheless, this is
counteracted by the greatly better characterization provided by PID in the initial training epochs. Indeed,
this improved accessibility to the low-energy space of configurations at the initial stages of training leads, as
explicitly shown in figure 3, to achieve successful learning much before the conventional methods surpass
PID in method accessibility.

We observe that for PID the method accessibility does not improve with training. While, as we show
below, this is not an issue for small datasets, it may constitute a problem when scaling the method and using
it for learning more complex data. We note that the results of figure 2 are obtained with the pure PID
described in equation (6), where no MCMC is employed for computing (-)model- A straightforward way of
impr