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Abstract
We introduce a new family of energy-based probabilistic graphical models for efficient
unsupervised learning. Its definition is motivated by the control of the spin-glass properties of the
Ising model described by the weights of Boltzmann machines. We use it to learn the Bars and
Stripes dataset of various sizes and the MNIST dataset, and show how they quickly achieve the
performance offered by standard methods for unsupervised learning. Our results indicate that the
standard initialization of Boltzmann machines with random weights equivalent to spin-glass
models is an unnecessary bottleneck in the process of training. Furthermore, this new family allows
for very easy access to low-energy configurations, which points to new, efficient training
algorithms. The simplest variant of such algorithms approximates the negative phase of the
log-likelihood gradient with no Markov chain Monte Carlo sampling costs at all, and with an
accuracy sufficient to achieve good learning and generalization.

1. Introduction

Machine learning has emerged as a disruptive technology transforming industries, society and science. Its
perhaps most remarkable recent developments are based on supervised and reinforcement learning in deep
neural networks. Yet unsupervised learning is expected to be much more important in the long term [1, 2].
Energy-based models, with their ability of unsupervised learning of probability distributions for generative
purposes, are promising building blocks of future machine learning systems. Among them, Boltzmann
machines (BMs) have especially prospective properties: their latent variables allow for deep neural network
architectures while the learning algorithm is remarkably simple [3–5].

Training BMs is nevertheless hard due to the need of obtaining samples from the models built.
Specifically, a set of averages with respect to training data and the defined model needs to be determined at
every learning step. In general, such averages cannot be computed exactly for large networks because of the
large dimension of the vector spaces involved. Instead, they are estimated, for instance, by sampling through
Markov chain Monte Carlo (MCMC) methods. Initial sampling heuristics relied on short-step Gibbs or
Metropolis–Hastings methods, which were soon complemented with features such as persistent chains [6] or
with replicas of the original chains [7]. These improvements come, however, associated with increased
memory and computational costs. Given that energy-based models are closely related to problems of
statistical physics, the powerful methods developed for statistical physics are among the most promising for
dealing with the problem of training BMs. These include modern MCMC algorithms for physical systems
like Parallel Tempering [8] or Simulated Annealing [9]. The problem of training BMs is so relevant and
challenging that special hardware systems exploiting specific physical processes have been developed to deal
with the task of sampling. These include systems operating in the regime of classical physics [10, 11], as well
as based on purely quantum or hybrid classical-quantum machines [12, 13]. While these routes are
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promising, they have important drawbacks when faced with practical applications, mostly due to the
immature state of these novel computing platforms.

The problem of training BMs can be framed in the context of statistical physics and benefit from its
associated theoretical body. Indeed, the connection between BMs and statistical mechanics is known since the
initial developments in the field [3]. From this point of view, neurons in BMs play the role of physical spins
of an Ising model, the weights represent the coupling strengths between spins, and the biases of the neurons
are local fields affecting each individual spin. Once set this analogy, it is natural to identify the BM initialized
with independently drawn random weights with the Sherrington–Kirkpatrick spin-glass (SKSG) model [14].
Thus, the difficulty of training BMs through sampling is connected to the difficulty of determining the
ground state energy of the SKSG model on non-planar graphs, which is an NP-complete problem.

In this work we find that the typical initialization of BMs with random weights equivalent to the SKSG
model is an unnecessary bottleneck in the process of training. We consequently propose a radically different
approach: we regularize the couplings in the Boltzmann machine in order to avoid a spin-glass behavior at
any point of training. Thus, this indicates an alternative to pursuing the paramount problem of efficient
sampling in the SKSG model. We call this method Regularized Axons (RA), and the family of models that it
gives rise to, RA-BMs. Moreover, RA provides proxies of low-energy configurations, which suggest new
methods for estimating the gradient of the log-likelihood function that is optimized during training. In
particular, we show a simple case where MCMC sampling is not necessary for successfully learning a dataset.
This method, which we term training via Pattern-InDuced correlations (PID), thus reduces the numerical
effort of training to a minimum. Although in this work the numerical examples focus on restricted BMs
(RBMs), the main ideas remain applicable to any energy-based model with an energy function similar to an
Ising model with random weights and, in particular, deep BMs.

We first show in a conventional academic example that during training of standard RBMs two main
phenomena occur: on one hand, the ability to access low-energy states rises dramatically, and on the other,
the models’ weights evolve in such a way that standard RBMmodels resemble RA-RBMs after training. These
phenomena signal essential differences between a well-trained model and the SKSG model. Then, we show
that avoiding the spin-glass regime during training via RA allows to obtain well-trained models. We do this
by demonstrating on several examples of increasing complexity that models with RA are capable of fast and
successful learning and generalization, where in some instances PID contributes by reducing further the
numerical effort. With this, we conclude that the regularization we impose is not restrictive when it comes to
the expressive power of the model.

This manuscript is organized as follows: after a short introduction to the formalism of Boltzmann
machines in section 2, in section 3 we describe the technical results of our work: RA for regularizing BM
models, and PID for training them. Section 4 is devoted to their justification, based on arguments coming
from the theory of statistical physics. In section 5 we empirically test the performance of RAPID in various
datasets, showing its efficient learning and its generalization ability. We conclude with a discussion and point
out relevant remarks in section 6.

2. Preliminaries: Boltzmannmachines

We begin by recalling the standard BM, which consists of N binary neurons σ (here we use values σj =±1,
which are standard in the physics of spin systems), separated into two disjoint sets of V visible and H hidden
neurons, which will be referred to respectively as υ and h, so that σ = (υ,h). The energy of a given
configuration of neurons is defined as

E(σ) =−
N∑
ij

Wijσiσj−
N∑
i

biσi, (1)

where the weightsW ij describe connections (axons) between neurons, while bi are local biases. Alternatively,
such BM setup describes spin systems where the weights describe interactions between pairs of spins and the
biases are local magnetic fields. Different architectures of connections (i.e. different graphs whose vertices are
neurons and edges denote non-zero weights) can be considered. For example, in RBMs, there are only
connections between visible and hidden neurons, and all visible-visible and hidden-hidden connections are
set to zero. However, in the most general case the neural network is fully connected. In the following, and
throughout the whole manuscript, we will neglect biases, as the main issues we discuss are related to the
distribution of weights.

The probability of a model having a visible configuration υ, Pmodel(υ), is given by a Boltzmann
distribution:
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Pmodel(υ) =

∑
h e

−E(υ,h)∑
σ e−E(σ)

. (2)

The goal of the training is to determine the parametersW ij of the energy function (1) such that Pmodel(υ)
represents as close as possible the distribution Pdata underlying some training dataset T . This is usually done
by minimizing the negative log-likelihood (NLL),

L=−
∑
υ∈T

Pdata(υ) logPmodel(υ), (3)

with respect to the parameters of the energy function. Let us collectively denote these parameters by θ. As
Pdata is independent on these parameters, the minimization is only performed to logPmodel. The derivative of
this term takes the form of

∂θ(− logPmodel) = ⟨∂θE⟩data−⟨∂θE⟩model, (4)

where the bracket ⟨·⟩ denotes the expectation value with respect to the probability distributions Pdata or Pmodel

for the data and model averages, respectively. Sampling from such distributions is the main challenge of BMs,
as discussed previously. In fact, RBMs were introduced in order to facilitate the computation of ⟨·⟩data [15].
However, even for RBMs, the computation of ⟨·⟩model is still very difficult if the weights are random.

3. RAPID—Regularized Axons and Pattern-InDuced correlations

This section contains our main technical contribution, the definition of a family of energy-based
probabilistic graphical models that avoids the training difficulties that stem from spin-glass phenomenology.
This family, which we call Boltzmann machines with Regularized Axons, or RA-BMs, is introduced in
section 3.1. The procedure of regularizing the Ising model couplings (i.e. the BM weights) defines a simple
form of the space of configurations with low energy, which can be used for approximating averages under the
model distribution in a very resource-efficient manner. We employ such property in section 3.2 to define an
algorithm for training via Pattern-InDuced correlations (PID).

3.1. Regularized Axons
We employ a regularization of the weights of the BM by constructing them from a number K of
configurations called patterns, each described by a set of variables {ξ(k)}Kk=1 where

ξ
(k)
i ∈ {−1,+1} ∀ k= 1, . . . ,K, i= 1, . . . ,N:

Wij =
1√
K

K∑
k=1

ξ
(k)
i ξ

(k)
j . (5)

Note that, with this form, the weights are naturally constrained to lie in the interval [−
√
K,
√
K]. Such form

of the weights is well known in machine learning from the Hopfield model of associative memory [16, 17],
which implements the Hebbian rule so that ‘neurons wire together if they fire together’ [18]. Contrarily to
the original Hopfield model, our patterns do not represent memorized data. We discuss in detail the
differences between the Hopfield model and our proposal in section 5.3. Here, we just note that the patterns
are the trainable parameters of the model. For BMs with restricted connectivity like RBMs or deep BMs, one
should notice that someW ij will be set to 0 and not calculated according to equation (5).

Importantly, if one considers K≪ N, then the patterns are explicit low-energy configurations of the Ising
model associated to the neural network with weights given by equation (5) [19]. Furthermore, the condition
K≪ N ensures that at low temperatures the model is not in the spin-glass phase [20, 21], which is the
primary motivation for such regularization. We refer the reader to section 4.3 for more details on these
statements. Therefore, in a typical training instance of an RA-BM, one would proceed to first choose a
number of patterns K high enough to faithfully learn the data (this is, to ensure that the model has enough
plasticity), and only then choose the number of hidden neurons in such a way that K≪ N.

3.2. Training via Pattern-InDuced correlations
For weights regularized via equation (5), the patterns {ξ(k)}k are themselves low-energy configurations of
the spin model of equation (1) when K≪ N. Recalling that Boltzmann distributions of the form (2) give
exponentially larger weights to low-energy configurations, averages under the model distribution, and in
particular the negative phase of equation (4), can be well approximated by the corresponding averages over
the values of the spins in the patterns. This is,
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⟨f(σ)⟩model

PID
≈ 1

K

K∑
k=1

f(ξ(k)), (6)

where f(σ) is an arbitrary function of the neurons in the model. We refer to this procedure as estimation
through Pattern-InDuced correlations, or PID.

As training progresses, the patterns {ξ(k)}k can acquire non-trivial overlaps with each other, losing the
guarantee that they represent an exhaustive set of low-energy configurations of the Ising model associated to
the BM. Importantly, due to their initial construction, such patterns still lie close to different energy minima
each. This ensures a fair calculation of averages, and implies that the patterns serve as ideal seeds for
iterations of Gibbs sampling. In section 5 we show via examples how RA-RBMs trained with PID without
Gibbs sampling are capable of learning simple datasets, while as few as a single Gibbs step is enough to learn
complex ones.

The algorithmic form of RAPID, the training of an RA-BM via PID, is presented in algorithm 1 for the
particular case of an RBM architecture. The highlighted step is the calculation of the negative phase by means
of PID, and the remaining is common to any RA-RBM. The general-case algorithm for arbitrary, deep or
fully connected BMs, can be straightforwardly obtained from algorithm 1.

Algorithm 1: Learn dataset with an RA-RBM and PID.

Input: dataset X = {υ(i)}i,
number of patterns K,
hidden layer size H s.t. K≪ H+ length(υ(i)),
learning rate λ, number of epochs E

V← length(υ(1))
for k= 1 to K do
Initialize ξ(k)

v ∈ {−1,+1}V randomly

Initialize ξ(k)
h ∈ {−1,+1}H randomly

ξ(k)← concatenate(ξ(k)
v ,ξ

(k)
h )

end for

Wij← 1√
K

∑K
k=1 ξ

(k)
i ξ

(k)
V+j

for e= 1 to E do
for υ in X do
h← get_h_from_v(υ,W)

p(k)← get_phase(υ,h,ξ(k))

n(k)← get_phase(ξv,ξh,ξ
(k))

ξ(k)← ξ(k) +λ(p(k)− n(k))

Wij← 1√
K

∑K
k=1 ξ

(k)
i ξ

(k)
V+j

end for
ξ(k)← binarize(ξ(k))

Wij← 1√
K

∑K
k=1 ξ

(k)
i ξ

(k)
V+j

end for

Note that the function get_phase() is typically the average of the gradient of the free energy. In
appendix A we give its explicit form for an RA-RBM.

An important aspect to notice is that, after an update, the parameters ξ(k) depart from taking values from
{−1,+1}N . Thus, they do not represent exactly spin configurations, although they usually remain close to
±1. In order to solve this problem, we binarize the parameters back after each epoch of training (see the
third-to-last line of algorithm 1). Different procedures, such as those we propose in appendix B and use in
the experimental analysis of section 5, can be employed. Also, it must be noted that RA and PID are
independent results and, in particular, it is possible to replace PID with other techniques for approximating
the negative phase of the parameter updates.

In summary, the novelty of the combination of Regularized Axons and training via Pattern-InDuced
correlations, RAPID, comes from: (i) avoiding the SKSG phase at any moment of training by utilizing
weights constructed via equation (5) while scaling H to keep K≪ N and (ii) exploiting the patterns
introduced in equation (5) for approximating the low-energy space of the associated spin model in an
efficient way and using them to approximate the negative phase. As we show in section 5, this recipe is
sufficient for employing RBMs to learn relevant probability distributions.
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4. Physical explanation

In this section we explain the theoretical justification for RA-BMs, which originates in the field of statistical
physics.

4.1. Hardness of sampling and spin glasses
Perhaps the most profound result stemming from the perspective of statistical physics in BMs is the
understanding of the origin of the hardness of sampling the models. The Boltzmann probability distribution,
equation (2), is dominated by contributions from low-energy configurations, and a good sampling technique
must probe such configurations well. However, determining the lowest-energy configuration—also known as
ground state—of any Ising model defined on a non-planar graph with independently drawn couplings is an
NP-complete problem [22]. An example of such models is the usual starting point of a BM. At the beginning
of training, when typically the couplings between neurons are drawn at random, a BM is equivalent to the
Sherrington–Kirkpatrick spin-glass model [14], and any known algorithm for finding its ground state is
ineffective for moderate network sizes.

At finite temperatures, the famous Parisi’s replica symmetry-breaking solution of the SKSG model [23]
reveals that spin systems can exist in two phases: spin-glass at low temperature, and paramagnetic at high
temperature. Sampling in the paramagnetic phase is easy, as expectation values are dominated by thermal
noise. However, this also means that a BM operating in such phase is unable to faithfully reproduce any
probability distribution different than the aforementioned thermal noise. On the contrary, sampling in the
spin-glass phase is difficult as the free energy landscape is composed of local minima separated by large
energy barriers. Moreover, as the temperature is lowered, more minima and barriers arise. Eventually at zero
temperature their number scales exponentially with the size of the system, giving rise to an ultrametric
landscape [24, 25]. In this landscape, simple MCMC sampling algorithms which imitate thermal
fluctuations, like Gibbs sampling, get trapped in the phase space (i.e. they present poor mixing) due to the
height of the free energy barriers to be overcome. On the other hand, global algorithms have to deal with an
exponential number of local minima, leading to exponentially large times for reaching the solution. Note
that this is not a deficiency of particular sampling algorithms, but rather a manifestation of the glassy nature
of the spin system. Indeed, as the temperature approaches zero, sampling must be more and more difficult
since finding the ground state of a spin glass at zero temperature is an NP-complete problem.

The standard way of avoiding spin-glass complexity in BMs consists in reducing the magnitude of the
initial weights [26] such that the effects of temperature will dominate and the system will be in a
paramagnetic phase. As a trade-off, the training signal is weaker as it is masked by thermal noise. This can be
especially troublesome in deeper layers of, e.g. deep BMs. Indeed, the efficient training of deep BMs is
perhaps the biggest challenge in the area of energy-based models.

Recent advances in analog quantum computers have led to another way of dealing with spin-glass
complexity, namely quantum-assisted sampling [12, 13]. The use of quantum resources for sampling BMs is
advocated by theorems stating the intractability of sampling in BMs [27], which go beyond the case where
the associated Ising system is in a spin-glass phase.

Given the above, we take a different approach: instead of dealing with intractable models—inside or
outside a spin-glass phase—we define regularized models where low-energy states are readily accessible. It is
important to point out that, for any given probability distribution, there is a large number of different BMs
which can approximate it [28]. We argue, and support experimentally in section 5, that the models with
regularized weights arising from RA is within such set and hence one can avoid dealing with intractable ones
without losses in representability power.

4.2. The initialization of BMs as an SKSGmodel is a bottleneck of training
The paramount difficulty of sampling a spin-glass at low temperatures, and the thermal noise that arises
when one attempts to solve that problem by moving to the paramagnetic phase, beg the question: is there a
strong reason why one would need to initialize BMs with weights leading to an SKSG model in the first place?
Below we answer this question in the negative.

Since BMs in the paramagnetic phase cannot faithfully represent any probability distribution but those
close to thermal noise, let us focus our discussion on the SKSG phase. Indeed, the key point we raise is that
BMs reproducing typical training data probability distributions are associated to Ising models outside the
SKSG phase. After a theoretical ‘perfect’ training of a BM (note that this is not desired in practical scenarios
because it corresponds to the memorization of the training set), the only lowest-energy neuron
configurations should be those corresponding to training datapoints, all other having significant higher
energies. From the theory of Hopfield networks [29, 30] it is known that the maximum number of
memorized and retrievable configurations scales linearly with the number of neurons in the system, and not
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exponentially, as in the case of SKSGs. The SKSG phase has simply too many minima to allow for stable
memorization. This argument carries over to the case of practical scenarios, where the main objective is
generalization instead of memorization, and successful training means that the neuron configurations
representing retrievable features of many training datapoints conform the low-energy spectrum of the
associated Ising model.

Furthermore, one can analyze the spin-glass behavior of a spin system by studying whether the
distribution of samples drawn from it is ultrametric [25]. If the training data are not strongly ultrametrically
distributed (which is the case for standard datasets), the distribution of sampled outputs of a BM properly
trained on it should neither be ultrametric. On the contrary, BMs in the SKSG phase necessarily produce
strongly ultrametrically distributed outputs, much more than the training data [31]. In order to reduce the
ultrametricity of the outputs, BMs initialized in an SKSG phase must abandon it throughout training.

These arguments strongly suggest that, even if one initializes a BM as the SKSG model, the training
process will drive the weights outside it, and thus, the glassy model is an unnecessary feature of current
initialization and training methods. The experiments we report on in section 5 support such scenario: during
training of standard RBMmodels, the ability to access the low-energy states via Gibbs sampling rises
dramatically in the later phases of training, while the spectral decomposition of the model weights, detailed
in section 5.1.4, shows a departure from the SKSG model.

4.3. The rationale behind RA
The SKSG phase is related to the so-called phenomenon of spin frustration, which occurs when there is no
configuration that minimizes the energy of all pairwise interactions at the same time. The difficulty of
finding the ground state and the exponential number of low-energy minima characteristic of the SKSG
model are directly related to a strong frustration, which typically appears when the couplings between the
neurons in the model are randomly distributed.

However, not all models with random weights exhibit frustration and spin-glass phenomenology. In
[32], Mattis introduced a model with random weights but no frustration: he considered a set of N variables
ξj taking values±1, and defined the interaction between spins asWij = ξiξj. Importantly, the configurations
ξ = (ξ1, . . . , ξN) and−ξ correspond to the unique ground states of the spin system with couplings given by
W ij, as all pairwise interaction energies are minimized. Furthermore, sampling in such model is easy. RA, as
given by equation (5), can be seen as a generalization of Mattis’ approach. Indeed, it interpolates between
Mattis’ original procedure, where for K = 1, 2 the system is unfrustrated but with poor plasticity (so it cannot
learn complex datasets), and K→∞ where the weights are uncorrelated random Gaussian variables leading
to the SKSG model where standard RBMs typically begin training.

The properties of Ising models with random RA couplings have been studied in the context of the
Hopfield model of associative memory [16, 17]. In particular, it is well known that the ratio K/N is the
parameter that determines the phase of the associated Ising system [20, 21]. In general, there exists a
threshold value beyond which the model at low temperatures is in a spin-glass phase where computing or
approximating ⟨·⟩model is hard. In contrast, below the threshold it is easy to access to the low-energy
configurations and thus ⟨·⟩model is easy to approximate. This is the motivation to suggest, as a general
procedure, to first choose a number of patterns K large enough to faithfully learn the relevant features of the
data, and after that the number H that makes the ratio K/(V +H) low enough to avoid the spin-glass phase.

5. Experiments

We proceed now to analyze the performance of RA-BMs and training using PID—with and without
supplementary Gibbs sampling—in learning different datasets. To compare it with BMs trained through
standard methods we will focus on RBM architectures. The models employed in this section, which can be
found in [33], are implemented in PyTorch [34] via the ebm-torchmodule [35], and run on a workstation
running Ubuntu Server 16.04 LTS, equipped with an Intel Xeon v3 E5-1660 (3GHz) CPU, 64GB of RAM,
and an NVIDIA Titan Xp 12GB GPU card.

5.1. Benchmark with exact training: 4× 4 bars
As a first example we trained RBMs with a small number of visible neurons, V = 16, and relative to that, a
large number of hidden neurons,H= 1000. The small V, along with the restricted architecture, allows for the
exact calculation of the loss function, equation (3), and thus to employ exact stochastic gradient descent.
Furthermore, the ground state energy can be exactly determined at any moment of training, irrespective of
whether the system is in an SKSG phase or not. Therefore, we can meaningfully compare RAPID with the
training of exactly solved RBMs. Moreover, we also compare it against standard methods employed for
training larger RBMs such as contrastive divergence (CD) and persistent contrastive divergence (PCD) with
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Figure 1. Comparison of untrained models: Gibbs accessibility for untrained models as a function of the measured standard
deviation of the weights. The blue line represents RA-RBMmodels with V = 20 and H= 1000, whose weights are computed via
equation (5) with K= 10 Bernoulli-random patterns. The remaining lines represent standard, unrestricted RBMmodels of the
same size, with weights sampled from (orange) a Gaussian random distribution with mean zero and (green) a uniform
distribution centered at zero. The black star denotes the point corresponding to the Glorot initialization [36] for the specified
values of V and H. The shaded areas represent the standard deviations over 100 independent executions. The inset shows the
Gibbs accessibility as a function of the number of visible neurons in the model, at the (fixed) standard deviation of weights equal
to 10.

10 Gibbs steps and, in the case of PCD, 2048 fantasy particles. Our initial benchmark problem is learning the
Bars dataset, consisting of 4× 4 images with full vertical bars, containing a total of 14 inequivalent images.
For such example, we choose K = 8 for RAPID.

5.1.1. Gibbs sampling ground state accessibility
From the training perspective, the most important aspect of the model being in the SKSG regime or not is
how hard it is to obtain a faithful distribution of states via sampling. To estimate this, we assess the ease of
reaching the ground state (GS) via Gibbs sampling starting from random visible configurations. For doing
so, we initialize the visible neurons in a random configuration and we use Gibbs sampling to extract a
representative configuration of the model. We perform 10 Gibbs steps, after which we calculate the energy of
the resulting configuration in the visible and hidden layers. We define the ratio of such energy to the true GS
energy as the Gibbs sampling GS accessibility or, shortly, the Gibbs accessibility.

In figure 1 we show the Gibbs accessibility for untrained, randomly initialized models with varying V and
constant H, as a function of the standard deviation of the models’ weights. The standard deviation of weights
defines the scale of system energies, and through it, the impact of temperature and thermal fluctuations on
the model’s dynamics. Note that, from equation (2), the temperature of the associated Boltzmann
distribution is implicitly set to 1. Thus, from now on, any mention to high and low temperature will be
referring to low and high standard deviation of the weights’ distribution, respectively.

The first notable observation is that, except for extremely small energy scales corresponding to models in
paramagnetic phases due to the very high temperatures, the Gibbs accessibility is higher for RA-RBMs than
for RBMs initialized in a standard way. Therefore, sampling low-energy configurations from models with RA
is easier than sampling low-energy configurations from unregularized models. Moreover, the difficulty of
sampling low-energy configurations in unregularized models is not affected by whether the values of the
weights are drawn from Gaussian or uniform distributions.

Next, focusing on the variation of the Gibbs accessibility with the energy scale, one observes that small
weights lead to system dynamics dominated by thermal fluctuations, and thus exploring high-energy
configurations. In such regime, all models are in their respective paramagnetic phases and the Gibbs
accessibility is low for all of them. Learning in a regime of small weights is usually slow, but typical guidelines
for training RBMs suggest to start in this regime [26]. Even modern approaches to weight initialization
suggest initial parameter values that give rise to models where the access to the low-energy spectrum via
sampling is poor. For example, the well-known Glorot initialization [36] (denoted by a star in figure 1)
generates initial models where Gibbs sampling is only capable of reaching configurations whose energy is not
lower than three times the energy of the ground state in small models.

As the standard deviation of weights is increased, the impact of thermal fluctuations decreases.
Eventually, for large weights the thermal fluctuations are negligible. In this regime, the Gibbs accessibility is
independent of the energy scale, as shown by the plateau in figure 1. While the behavior of standard RBM
and RA-RBMmodels is similar when increasing the energy scale for a fixed number of neurons, the fact that
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Figure 2. Characterization of the low-energy space: accessibility of the GS in RBMs, using different training methods. (a) Smallest
energy, relative to the ground state energy, of the configuration obtained after 10 steps of Gibbs sampling, beginning from
random visible configurations. (b) The method accessibility measures how well the negative phase captures the low-energy
behavior of the exact Boltzmann averages, by comparing the energy of the lowest-energy configuration employed to compute the
negative phase with that of the ground state. In all cases, the models tested have V = 16 visible andH= 1000 hidden neurons, and
are trained in the 4× 4 Bars dataset. For the case of RAPID (in blue), we employ K= 8 patterns. The shaded regions denote the
standard deviations after 100 instances of independent training.

the value at the plateau is different is a signature of the fact that standard RBMmodels are in an SKSG phase
where reaching the ground state through sampling is more difficult than in RA-RBMmodels, which are
instead in a ‘few-minima’ phase where the number of energy minima scales polynomially with the system
size, instead of exponentially. Crucially, this different behavior accentuates when, for energy scales in the
plateau, one considers models with an increasing number of neurons (shown in the inset of figure 1). In the
case of standard RBMs, the system is in a low-temperature SKSG phase where sampling the ground state is
hard due to the existence of an exponential number of minima. Indeed, the Gibbs accessibility quickly
decreases when one increases V, as a consequence of the problem of finding the ground state in an SKSG
phase being NP-complete. Contrary to that, for our regularized RA-RBM the Gibbs accessibility stays
constant when increasing V. This strongly suggests that such model is not in the SKSG phase, but in a regime
at low temperature where sampling low-energy configurations is easy while the signal is not dampened with
thermal fluctuations, and where the number of minima is controlled not by H or V, but by K.

Next, we analyze how the Gibbs accessibility varies with training, which is depicted in figure 2(a). For
RBMs trained with CD, PCD, and exact gradients, the models are initialized in accordance to the standard
procedure [26], thus being initially in a paramagnetic phase at high temperature. As discussed above, this
initialization has the consequence that, during the first epochs of training, Gibbs sampling does not reach
low-energy configurations. This effect is prominent in figure 2(a), and in stark contrast to the case of
RA-RBMs, for which equation (5) initializes the model in a phase where the ground state is easily accessible
via Gibbs sampling.

After training, figure 2(a) shows that all standard RBMmodels end up in a regime where Gibbs sampling
is efficiently reaching the low-energy sector. The speed at which they reach this regime is directly related to
the quality of the estimation of the negative phase, this is, to the ability of drawing samples according to the
Boltzmann distribution of equation (2). In contrast, RA-RBMmodels are always in a regime of good
sampling, which allows for large reductions in the number of epochs needed for successful training
(see section 5.1.3).

5.1.2. Method ground state accessibility
In figure 2(b) we consider a quantity more relevant during the training process: the proximity of the
configurations employed by each method to compute the negative phase, ⟨∂θE⟩model, to the respective
ground states. For the various training methods, we define themethod GS accessibility as the ratio of the
lowest-energy configuration employed in the computation of the negative phase to the ground state energy.
Note that, when employing the exact gradients, we have an explicit expression for Pmodel and therefore there
is no need of taking any samples from the model. This is the reason why there is no curve in figure 2(b) for
the exact training method.

For CD, the Gibbs sampling and method accessibilities are very similar, since the method for computing
both is, in essence, the same. The method accessibility of figure 2(b) is slightly better due to the fact that, in
that case, the initial configurations before sampling are images from the training set instead of the random
configurations used when computing the Gibbs accessibility of figure 2(a). A similar phenomenon can be
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Figure 3. Learning accuracy: Hamming distance between reconstructions of partial images and expected results in the (a) training
and (b) test sets of the 4× 4 Bars dataset. The shaded areas around the lines denote the standard deviation of 100 independent
training instances. The parameters of the models are the same as those in figure 2 (V = 16,H= 1000, and K= 8 in the case of RA).

observed in the curves for PCD. In this case, the method accessibility is better than the Gibbs accessibility due
to the fact that the fantasy particles employed in the sampling are always close to the ground state. In the case
of RAPID, it is apparent that, at late stages of training, conventional methods seem to provide a better
characterization of the ground space than the pure PID defined in equation (6). Nevertheless, this is
counteracted by the greatly better characterization provided by PID in the initial training epochs. Indeed,
this improved accessibility to the low-energy space of configurations at the initial stages of training leads, as
explicitly shown in figure 3, to achieve successful learning much before the conventional methods surpass
PID in method accessibility.

We observe that for PID the method accessibility does not improve with training. While, as we show
below, this is not an issue for small datasets, it may constitute a problem when scaling the method and using
it for learning more complex data. We note that the results of figure 2 are obtained with the pure PID
described in equation (6), where no MCMC is employed for computing ⟨·⟩model. A straightforward way of
improving the method accessibility is thus employing the patterns {ξ(k)}k as seeds for MCMCmethods. In
section 5.2 we employ this combination of PID and Gibbs sampling when learning the MNIST dataset.

5.1.3. Learning and generalization accuracy
In order to quantify the performance on learning the Bars dataset, we ask the models to reconstruct
corrupted images (see appendix C for the details of this task). Following the standard procedure of
unsupervised learning, we divide the dataset into two sets: a training set consisting of 10 images, and a test
set containing the remaining four images. In the case of spin values and no local neuron biases, the energies
of configurations υ and−υ are the same. Therefore, in order to ensure that there is no information leakage
from the training set to the test set, we design them in such a way that the negative of every configuration in
the training set is also in the training set, and the negative of every configuration in the test set is also in the
test set.

In figures 3(a) and (b) we depict how the reconstruction of the training and test sets, respectively, evolve
during training. For the case of simple datasets such as those employed, the Hamming distance (HD)
provides a very good assessment of the quality of training, despite of it not being the quantity being
optimized (which, recall, is given by equation (3)). One observes that: (i) the different training methods for
standard RBMs lead to very similar memorization (the reduction of the HD in the training set) while
generalization (the reduction of the HD in the test set) is faster with improved approximations of the
negative phase, and (ii) there is almost no difference between the performance on memorization and
generalization when employing RAPID. This is a clear indication that the corresponding model not only
truly learns, but also it does so very efficiently.

One should deal with these results with care, as they need not imply that RAPID allows for faster
learning—in terms of the number of epochs—when compared to methods of training standard models
(nevertheless, as we show in appendix D, PID presents a speedup in the complexity of the computation of
each update). We showed in figure 1 that it is possible to initialize standard models outside the SKSG regime,
for instance by increasing the scale of the weights, making the starting points in figure 2 much closer to the
initial point of RA. The implications of such procedure, and the impact of large weights and of H≫ V
(which is typically necessary for having K≫ N) in other quantities useful for tracking training—in both RA
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Figure 4. Spectral decomposition of the weight matrices: SVD of the weights after training RBM architectures after learning the
4× 4 Bars dataset, using different training methods. Note that, regardless of the training method, if the RBM learns the dataset
then there is a small number of relevant singular values.

and standard models—are not yet fully understood but are important aspects that will provide a better
assessment of the performance of energy-based unsupervised learning methods [37].

5.1.4. Spectral decomposition of trained models
Regardless of the above, one may still wonder how similar are the RA- and standard RBMmodels after
training. For doing so, we perform a singular value decomposition (SVD) of the weight matrices of trained
models. Such results are shown in figure 4. Clearly, in all cases, four large singular values stand out.
Interestingly, the form of the SVD of the weight matrix (see, for instance, [38, equation (10)]) invokes
equation (5), such that a clear analogy between the patterns employed in RA and the SVD eigenvectors can
be drawn. The four large singular values observed in figure 4 suggest that only≈4 patterns should be
sufficient to describe the weight matrix of a standard RBM trained in the 4× 4 Bars dataset, in all cases of
training methods studied. We note that an SVD analysis of standard RBMs trained on MNIST has been
already performed in [38], where it was reported that the SVD spectrum develops a tail of relatively few but
large singular values. Taking also into account that the standard RBMs presented in figure 2(a) evolved
towards a regime of easy sampling, we can interpret that the training of BMs drives the weights to a
low-temperature but non-SKSG phase, and thus, that initializing Boltzmann machines as an SKSG model is an
unnecessary and avoidable bottleneck. These results also show that the RA-RBMmay be regarded as an actual
general model of trained standard RBMs.

5.2. Increasing complexity: 12× 12 BAS andMNIST
We now proceed to apply RAPID to the unsupervised learning of more complex datasets. First, we consider
the 12× 12-pixel Bars and Stripes (BAS) dataset, which consists of 8188 images containing only vertical bars
or horizontal stripes, separated in a training and test set with 80/20 ratio. As the complexity of the problem
to solve increases, one needs to increase the number of auxiliary patterns K and, if necessary, the number of
hidden neurons H. In figure 5 we show the results for the HD of reconstructed images. The HD for the
training and test sets decrease parallel to each other, proving that the model trained is not just memorizing
the images of the training set, but learning their fundamental features and being able to generalize the results
to the test set. The inset shows images generated from sampling the model starting from a random initial
visible configuration. The border color indicates whether the generated image is contained in the training or
test set. As a powerful print of the generalization power of the model, we see that not only it reconstructs
satisfactorily corrupted unknown images (the results on the HD), but moreover it is able to generate images
that were not contained in the training set.

As a final example, we employ RAPID to train an RBM in a binarized version of the MNIST dataset.
Here, the complexity of the dataset is much higher than in the BAS example, and so it requires to increase the
size of the model both in terms of K and H, which nevertheless does not cause an important impact in terms
of computation speed. This is the first case in which we observe that the low-energy space characterization of
PID is not satisfactory to perform proper learning (recall figure 2(b)). In fact, employing pure PID for
computing the negative phase led to a strong overfitting. In order to avoid this and to achieve a good
approximation of ⟨·⟩model, we employ the patterns {ξ(k)}k as initial seeds for a series of steps of Gibbs
sampling. The resulting configurations after the sampling are those employed for approximating the average
under the model distribution. This, in addition to enhancing the proximity of the patterns to the low-energy
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Figure 5. RAPID in 12× 12 BAS: Hamming distance between reconstructed images and expected results for the 12× 12 Bars and
Stripes dataset. The models employed have V = 144, H= 1000, K= 40, and a batch size of 120, and was trained with 80% of the
dataset (6550 images). The shaded regions denote the standard deviations in 100 independent training instances. The inset shows
instances sampled from the model. The leftmost samples, surrounded in orange, were not part of the training set.

sector of the model as discussed in section 3.2, introduces fluctuations which are known to help to overcome
overfitting.

Another important change with respect the previous implementations is that we now allow the patterns

{ξ(k)}k to have continuous values, ξ(k)i ∈ [−x,x], as we describe in appendix B. This only results in a higher
plasticity of the model (i.e. a larger set of possible weightsW) and does not imply substantial changes in the
main features of RA and PID discussed previously. Indeed, Mattis’ argument that weights constructed from a
single pattern give rise to a spin model without frustration applies irrespectively of the pattern taking binary
or continuous values. Therefore, RA in the case where patterns take continuous values still can be seen as a
regularization that interpolates between a Mattis-like unfrustrated model for a single pattern and a frustrated
spin-glass model for infinitely many patterns. Such reduced frustration again suggests existence of only a few
low-energy minima. Indeed, in the case of a single continuous-valued pattern ξ the associated spin model
has just two equivalent ground states, which correspond to sign(ξ) and−sign(ξ). As for PID, the
continuous-valued patterns cannot be understood as real spin configurations, and thus cannot be used
directly in equation (6). Yet, the reasoning above suggests that a simple binarization of the patterns produces
configurations that lie in the low-energy sector. Due to the aforementioned issues with overfitting, we instead
decide to employ a more elaborated approach, using the binarization of the continuous-valued patterns as
seeds of Gibbs iteration chains, whose final states correspond to the spin configurations that are used to
compute the negative phase of the gradient update.

We now discuss the results of training a large RA-RBM on the MNIST dataset. On one hand, we show in
figure 6 how the quantity being optimized, the NLL in equation (3), evolves as training progresses. Due to
the practical impossibility of exactly calculating the partition function for large models, we approximate it
via Annealed Importance Sampling (AIS) [39]. In figures 6(a) and 6(b) we show the training progress for a
model with H= 3000, K = 190, and using the patterns as initial seeds of k= 10 Gibbs steps of CD as
commented above. We see that the model is able to optimize correctly the NLL, attaining final values four
orders of magnitude smaller than the initial NLL. Moreover, the NLL for the training and test datasets move
parallel, showcasing the absence of overfitting in our system. We note here that the initial value for the NLL
in RA-RBMmodels is much smaller than the average initial values in unregularized RBMs. The full extent of
such initial discrepancy falls out of the scope of the current work and is left for a subsequent analysis [37].
Nevertheless, this does not seem to affect the training of the model, and the Gibbs-assisted PID is able to
correctly optimize the NLL to values comparable to, although not necessarily better than, those obtained
when training standard RBMs and other generative models on the same dataset (see, for instance, table 3 in
[40]). In this sense, it must be stressed that the experiments shown do not have as primary goal to
outperform the current state of the art, but rather to illustrate the capabilities of RA models.

To further showcase the fact that RA-RBMmodels can learn complex datasets such as the MNIST dataset,
we show in figure 6(c) a number of samples generated via Gibbs sampling from an RA-RBMmodel with the
same parameters as above but with K = 290. While we have consistently observed that lower NLL values are
achieved by models with lower K, we also observe that, in terms of visual quality, models with larger values of
K generate better samples. This observation is in line with previous analyses on performance metrics of
generative models: while both characteristics (the optimization of the NLL and visually accurate samples) are
indicators of learning, they do not necessarily correlate with each other [41]. The fact that both indicators
(the trained models generating good-quality images, and the loss being minimized in the training set but
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Figure 6. RAPID in MNIST: (a) negative log-likelihood, estimated via Annealed Importance Sampling [39], for the training and
test sets. Since AIS provides a lower bound to the partition function, the curves depicted are lower bounds to the true NLL.
(b) Zoom-in on the region of late training. The parameters used for both (a) and (b) are H= 3000, K= 190, LR= 0.015 and 10
Gibbs steps to the patterns, as explained in section 5.2. The shaded areas around the lines denote the standard deviation of 25
independent training instances. (c) Instances sampled from a trained model. The parameters of the latter are H= 3000, K= 290,
LR= 0.015 and 10 Gibbs steps to the patterns.

more importantly in the test set) are present in trained RA-RBMs is a powerful sign that models with RA are
capable of learning complex datasets.

Moreover, we provide below a third indication of learning. For each visible configuration corresponding
to an image of the binarized MNIST training set, we produce a sample of the configuration of the hidden
layer in a trained RA-RBM according the corresponding conditional distribution, and perform logistic
regression on the dataset so obtained to the corresponding labels. By repeating this procedure for 100
independent RA-RBMs trained with the same hyperparameters, the corresponding logistic regression
classifiers have an average accuracy of 95.47± 0.19% in the training set and of 93.84± 0.19% in the test
set, demonstrating that the hidden layers of the RA-RBMs have learnt to distill the relevant information of
the samples of the dataset. As a comparison, carrying out the same procedure with standard RBMs [35] with
300 hidden neurons produces classifiers with 93.01± 0.10% average accuracy on the training set and
92.04± 0.19% average accuracy on the test set.

5.3. Analysis of the trained patterns
Weights built from patterns like in equation (5) have been extensively studied in the context of the Hopfield
model. Here, for the first time, we use a similar construction in BMs. Since both models are closely related it
is natural to perceive the patterns used in RA as analogs of the patterns of the Hopfield model. However, they
work quite differently, for the two reasons we explain below.

The first difference arises when analyzing the goal of both models. While BMs aim at generating new
samples as similar as possible to the those in the training dataset, the aim of the standard Hopfield model is
to memorize as many samples from such dataset. In the latter, the figure of merit is the number of retrievable
samples. To achieve such goal, the samples of the dataset can be used as patterns from which the weights are
generated, hence requiring one pattern per image in the training set in order to store the full dataset. The
total number of memorized data is then directly related to the number of patterns and neurons of the model,
and they are retrieved via the network dynamics. In the case of RA-BMs, patterns are used as a means of
regularization of the weights in order to avoid the spin-glass complexity. Therefore, the number of patterns
controls the number of low-energy minima, and these minima need not correspond to single data instances.
Contrarily, since the aim of BMs is to learn and generalize rather than memorize, the number of low-energy
minima is usually much lower than the number of training samples. The fact that the number of patterns is
much smaller than the number of training samples is certainly the case in the experiments showcased: the
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(a)

(b)

Figure 7. Patterns after training on MNIST. (a) Visible part of a random choice of the patterns of an RA-RBM after training on
the MNIST dataset. They correspond to the patterns of one the models whose NLL is presented in figure 6. (b) Generated samples
when the initial seed for Gibbs sampling is set to be the visible configuration highlighted in (a).

models employed to learn the 12× 12 BAS dataset (6550 images in the training set) contain 40 patterns, and
the models employed to learn the MNIST dataset (60 000 images in the training set) contain 190 patterns.

Second, the crucial difference between Hopfield models and BMs is that the former have only visible
units while latter have been enriched with latent hidden units. Therefore, while patterns in the Hopfield
model correspond to data instances, the patterns in our work have both visible and hidden parts, the latter
lacking any correspondence to visual configurations. The low-energy minima of RA-BMs are encoded jointly
in the visible and hidden parts of the patterns used. In this context it is interesting to note that there exist
models, such as the Hybrid Boltzmann Machine of [42], whose marginalization over hidden units is
equivalent to the Hopfield model. One could thus wonder about the relations of marginalized RA-BMs with
generalized Hopfield models like those in [43, 44]. In appendix E we show that our construction, when
marginalized over hidden units, is not equivalent to those cited above.

In figure 7 we demonstrate the two properties described above, for an RA-RBM trained on binarized
MNIST (see section 5.2). Figure 7(a) presents the visual parts of eight patterns randomly chosen from the
K = 190 that were used for creating the model. As it can be seen, they do not resemble any of the samples
from the training dataset but rather some generalized features. It must be emphasized, as was already noted
in section 5.2 and in appendix B, that in this case the patterns are formed of bounded continuous variables.
More importantly, as presented in figure 7(b), starting Gibbs sampling from the visible part of one of the
mentioned single patterns (indicated by the thick red contour) we obtain different visible images generated
by our BM, belonging to different classes of digits. Although our patterns encode low-energy minima, they
do not correspond to single retrievable low-energy configurations, let alone single data instances.

6. Discussion and remarks

We have provided two contributions to the problem of unsupervised learning of datasets with energy-based
models. First, a conceptual finding—that we support experimentally—is that initializing the parameters of
energy-based models in regimes that lead to SKSG models is unnecessary, and that avoiding SKSG
phenomena is possible without starting in a paramagnetic phase at high temperature where signals are
dampened by thermal noise. In supporting the above, and as a second contribution, we have developed
RAPID, a combination of model choice and training method which consists of: (i) Regularizing the Axons on
the model by utilizing the Hebbian rule to construct the weights of a Boltzmann machine by means of K
random patterns that ensure a model sufficiently expressive, and with a number of hidden neurons such that
the ratio K/N is kept low enough to avoid an SKSG phase at any point of training; and (ii) employing
Pattern-InDuced correlations to approximate the negative phase in the log-likelihood gradient. We have
proven in several examples that RAPID, with and without supplementary Gibbs sampling, leads to models
that learn very efficiently and successfully generalize training data.

Although the cases presented are significant examples, the question on how restrictive the RA
construction is for learning general probability distributions still remains. Based on the evolution of the
Gibbs accessibility during training and the singular value decomposition of weight matrices of trained RBMs
shown in section 5.1.4 and in [38], we conjecture that trained RBMs are well approximated by RA-RBMs.
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Models with RA seem to have the potential for very fast learning. In the case of simple datasets (4× 4
Bars), the amount of epochs required to train models capable of reconstructing untrained images can be
orders of magnitude smaller than when using standard RBMs. In the more complex case of binarized
MNIST, the comparison of learning speed with other methods is not straightforward, since the quality of the
training process can have different definitions, which are all uncorrelated with each other [41]. Nevertheless,
we note that the proposed RA-RBMs are capable of generating samples of arguably better quality than
standard RBMmodels trained for more epochs (compared to, for instance, figure 5(b) in [45]). Moreover,
the theoretical arguments on the avoidance of SKSG phases suggest that the benefits of RA models will be
more prominent in more complex scenarios, when learning datasets of higher dimensionality and when
training more complex models.

This work focused on experiments with RBMs, in order to carefully compare RA and PID with standard
models and training algorithms. However, our methods are by no means restricted to RBMs, as the
principles behind RA and PID can be applied to any Boltzmann machine architecture. In fact we expect that
RAPID, or variations of it, will bring the long-sought-after efficient algorithms for training deep Boltzmann
machines. However, if RAPID failed to achieve this goal, one would be able to conclude that the SKSG
phenomenology is not the actual reason for the difficulty of training of deep BMs, pointing to more intricate
sampling problems which could possibly signal the necessity of quantum-assisted sampling or analog
computing solutions.
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github.com/apozas/rapid.
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Appendix A. Parameter update rule for RA-RBM

In a model with RA, the weights are not the ultimate parameters to be fixed by training. These are, rather, the

values of the auxiliary patterns ξ(k)i . In this appendix we detail the calculation of the update rule for the
auxiliary patterns. We focus here in the training of an RBM, just as explained in the main text. We start by
recalling that the probability of observing a state υ of the visible variables is given by

Pmodel(υ) =

∑
h e

−E(υ,h)∑
σ e−E(σ)

=
e−F(υ)∑
υ e

−F(υ)
, (A1)

where the free energy is defined from the expression e−F(υ) =
∑

h e
−E(υ,h). As stated in the main text, we

will consider here an RBM with no biases. For the case of a binary hidden layer where h ∈ {−1,1}H, one can
give a closed-form expression to it:

F(υ) =
H∑

α=1

log

[
2cosh

(
1√
K

V∑
i=1

K∑
k=1

ξ
(k)
i ξ(k)α υi

)]
. (A2)

From now on, we employ roman indices for denoting the visible neurons in a pattern, and greek indices for

the hidden neurons. Therefore, for this particular case equation (5) readsWiα =
∑K

k=1 ξ
(k)
i ξ

(k)
α /
√
K.
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Our goal is to find the set of parameters (which we call θ for simplicity) such that Pmodel becomes as close
as possible to the Pdata underlying some training dataset T . To compare them we employ the negative
log-likelihood, L=−

∑
υ(i)∈T Pdata(υ(i)) logPmodel(υ

(i)). Introducing equation (A1) to the previous we find
that

L=−
∑

υ(i)∈T

Pdata(υ
(i)) log

∑
h e

−E(υ(i),h)∑
σ e−E(σ)

. (A3)

Expanding this expression and writing it in terms of the free energy, we obtain

L=− 1

|T |
∑

υ(i)∈T

log
e−F(υ(i))

Z

= logZ− 1

|T |
∑

υ(i)∈T

loge−F(υ(i))

= log
∑
υ

e−F(υ) +
1

|T |
∑

υ(i)∈T

F(υ(i)), (A4)

where for simplicity we have introduced the partition function Z=
∑

υ,h e
−E(υ,h), |T | denotes the

cardinality of T , and we assume that Pdata(υ(i)) = |T |−1∀υ(i) ∈ T and zero otherwise.
Once the loss function is defined, we can update the weights using, e.g. the gradient descent method

∆θ =−λ∂θL, which in our case means

∂θL=
1

|T |
∑

υ(i)∈T

∂θF(υ(i))− 1

Z

∑
υ

e−F(υ)∂θF(υ)

=
1

|T |
∑

υ(i)∈T

∂θF(υ(i))−
∑
υ

Pmodel(υ)∂θF(υ). (A5)

One can distinguish clearly here the positive and negative phases. The positive phase is the first term,
evaluated only on the instances of the training set, while the negative phase is the negative term, that is
evaluated on every possible configuration of the visible nodes.

In the case of standard RBMs, the ultimate parameter that one desires to fix are the weightsWiα. For
these, the derivative of the free energy function (this is, the function get_phase() in algorithm 1) is

∂F(υ)
∂Wiα

=−υi tanh

∑
j

Wjαυj

 , (A6)

where we have assumed the requirements of the models in the main text, namely that we have spin variables
(i.e. σi =±1) and that all biases are zero.

On the other hand, when considering an RA-RBM, the ultimate parameters to be determined are the
auxiliary patterns ξ(k), with which the weights are later computed by using equation (5). In this case the

function get_phase() is the gradient of the free energy with respect to the individual pattern neurons ξ(k)j ,
which evaluates to

∂F(υ)
∂ξ

(k)
i

=
1√
K
υi

H∑
α=1

ξ(k)α tanh

 1√
K

K∑
m=1

V∑
j=1

ξ
(m)
j ξ(m)

α υj


=

1√
K
υi

H∑
α=1

ξ(k)α tanh

 V∑
j=1

Wjαυj

 , (A7a)

∂F(υ)
∂ξ

(k)
α

=
1√
K

(
V∑
i=1

υiξ
(k)
i

)
tanh

 1√
K

K∑
m=1

V∑
j=1

ξ
(m)
j ξ(m)

α υj


=

1√
K

(
V∑
i=1

υiξ
(k)
i

)
tanh

 V∑
j=1

Wjαυj

 , (A7b)

depending on whether the neuron is visible or hidden, respectively.
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Appendix B. From continuous updates to discrete patterns

After the update of the patterns according to equations (4) and (A7), the values of the neurons will be
continuous, losing its meaning as spin configurations, and with it the guarantee that they represent
low-energy configurations of the associated Ising system. In the following we describe three methods to bring

the continuous-valued, updated parameters ξ(k)i back into discrete, real spin configurations:

(a) Sign discretization: The first method amounts to simply substitute the value of each of the continuous
variables by its sign, i.e.

ξ
(k)
i ← sign(ξ(k)i ). (B1)

This not only ensures that the auxiliary neurons are binary, but also acts as a regularizer, avoiding diver-
gences.

(b) Value restriction:When training inmore complex datasets, the expressivity of themodels can be enhanced
by considering that the auxiliary neurons are continuous. In such case, we no longer discretize them. In

order to prevent the divergence of the weights, we restrict ξ(k)i ∈ [−x,x] ∀ i,k. The value of x is arbitrary.
In the examples shown in this work we choose x= 1. However, for other values considered, we observe
similar results in terms of training quality.

(c) Gibbs sampling: For small learning rates, the updated patterns remain close to spin configurations. Thus,
a way of obtaining spin configurations in the low-energy sector is performing Gibbs steps, taking as initial
seeds the values of the continuous patterns. This is, one would perform

ξ
(k)
i∈V ∼ p

(
ξ
(k)
i = 1

∣∣∣ξ(k)h

)
= σ

(
2

H∑
α=1

ξ(k)α Wiα

)
, (B2a)

ξ
(k)
α∈H ∼ p

(
ξ(k)α = 1

∣∣∣ξ(k)v

)
= σ

(
2

V∑
i=1

ξ
(k)
i Wiα

)
, (B2b)

where σ(x) = (1+ e−x)−1 is the sigmoid function. This procedure not only transforms the patterns back
into spin configurations, but also forces them to lie in the low-energy spectrum of the Ising model and
inserts mixing, which can be beneficial in the late stages of training.

In procedures (a) and (b) it is crucial to choose when to perform either the discretization or the
restriction in the given range. For the former, discretizing too often may result in the erasure of the
information learnt by the model, as the cumulant of the updates before the discretization may not be large
enough to change the sign of a given ξ. Not discretizing often enough may result on a similar phenomenon.

For example, if the first updates of a ξ(k)i = 1 are positive, subsequent negative updates will have no effect in

ξ
(k)
i , as its value may be very far from zero. This method was applied to the BAS examples in section 5, both
the 4× 4 and 12× 12 datasets, by discretizing the patterns after every epoch of training (this is, after the end
of every pass of the full dataset). Note that an alternative solution may be to employ a learning rate large

enough so as to permit an appropriate size of the cumulants. For the latter, i.e. the restriction of ξ(k)i ∈ [−x,x],
a similar approach holds. However, given that the effect of such procedure on the value of the patterns is not
as dramatic as in the previous case, it can be applied much more often. We show the validity of this procedure
in the MNIST example. There, the value of the patterns is checked and bounded after every update.

The frequency with which procedure (c) is applied can also be chosen at will. However, it is very natural
to perform it at every training step. Note that in such a case one would have a variant of CD, and therefore
speedups in learning when compared to standard BMs would only be attributed to regularizing the axons
through equation (5).

Appendix C. Details on benchmarking through Hamming distance

Given an image A, we fix the top row of pixels (perpendicular to the direction of the bars), and set the
remaining pixels to have the value 0. We perform Gibbs sampling, allowing for the rest of the visible neurons
to be updated. Then, the Hamming distance between the model-generated image B and the given one A is
calculated. We normalize such distance by dividing over the number of pixels of the image, this is, the
number of visible neurons V. In this way, for a random reconstruction where a pixel has a probability of 0.5
of coinciding with the desired one, the average Hamming distance with the original image will be also 0.5. As
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−1

0

1

Figure C1. Corrupted images for benchmarking: example of image corruption in the 4× 4 Bars test set. For addressing
reconstruction, the visible neurons are initialized in such configurations and, after a number of Gibbs steps, the outputs are
compared to the original images via their Hamming distance. The same approach is followed for assessing training in the 12× 12
BAS dataset in section 5.2.

an example of this procedure, in figure C1 we show the corrupted version of the set of 4× 4 bars images in
the test set in the experiments in section 5.1.

Appendix D. Computational cost of CD vs. PID

In this appendix we analytically calculate the computational cost of training RBMs following both PID and
CD. The main difference in complexity is the calculation of the negative phase. In the case of PID, computing
this term is trivial as it just involves averages over the auxiliary patterns. However, one needs to take into
account the cost of calculating the weights after each update following equation (5). This implies doing a
sum of K elements for each weightWiα. As we have VH weights, the cost of this operation isO(KVH).

In the case of CD and its variants, the most basic algorithm consists on doing k Gibbs steps from a batch
of f initial visible configurations. From here, one calculates the activation probability of each hidden neuron
hα as (note that, for simplicity, we depict a standard RBM with nonzero bias and with neurons taking values
{0, 1}):

p(hα = 1|υ) = σ

(∑
i

υiWiα + bα

)
. (D1)

This calculation has a computational cost ofO(VH). Note that here we consider the general case where the
biases bj can take nonzero values. To complete a Gibbs step, one needs to calculate the value of the visible
layer given the hidden vector obtained from equation (D1) by

p(υi = 1|h) = σ

(∑
α

hαWiα + ci

)
, (D2)

which again has a computational cost ofO(HV). Summing both contributions and taking into account that
these procedure is performed k times to approximate unbiased sampling for each initial configuration, the
total complexity of CD scales asO(2kfHV).

Appendix E. Regularized Axons and Hopfield patterns

In this appendix we expand the discussion of the Regularized Axons that this work proposes from perspective
of the correspondence between BMs and Hopfield models. Generally one cannot simply reduce BMs with
binary units to the Hopfield model by marginalization over hidden units. First, in case of deep BMs such
marginalization is an NP-complete problem. Second, even in the case of RBMs where the marginalization
over hidden units is computable, the resulting model contains interactions of any order (i.e. two-body,
three-body, four-body, etc.) between the visible units. This is in stark contrast to the Hopfield model.
However, one can consider non-standard BMs which would be reduced exactly to the Hopfield model upon
marginalization over hidden units. In [42] the authors proposed a Hybrid Boltzmann Machine (HBM), with
continuous hidden neurons and binary visible neurons, with this property. The corresponding model
analogous to an RBM can be shown to be equivalent to the Hopfield model with weights given by [42]

Jij =
∑
h

WihWhj, (E1)

whereW ih are the weights of the Restricted HBM and summation is over the index corresponding to the
hidden units. When one considers the case of binary weights, theW ih can be interpreted as patterns that give
rise to Hebbian weights in an equivalent Hopfield model. In such case, the number of patterns is equal to the
number of hidden units in the Restricted HBM. This imposes an interesting constraint on the number of
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hidden units in the Restricted HBM with binary weights by the capacity of retrievable patterns in the
equivalent Hopfield network.

In order to highlight the difference of working with patterns in BMs and in Hopfield models, let us now
regularize the weights in the HBM of [42] according to equation (5). Note that, upon application of
equation (5), the weights in the resulting RA-HBMmodel are no longer binary (even approximately) and
cannot be interpreted as Hebbian patterns in the resultant Hopfield network. The number of patterns K in
the RA-HBM is now an additional parameter to the number of hidden units. Equation (E1) can now be
recast as

Jij =
1

K

∑
k,k ′

ξ
(k)
i ξ

(k ′)
j Mk,k ′ , (E2)

whereMk,k ′ =
∑

h ξ
(k)
h ξ

(k ′)
h . This means that the Hebbian form of the weights in RA-HBMs does not

correspond to the Hebbian form of weights in the resultant Hopfield model. Note that the Hebbian form of
weights in Hopfield models is the simplest construction of retrievable configurations, but it is by no means
optimal. The maximum capacity for Hebbian patterns is 0.14 N, where N is the number of visible units [20].
However, the maximum theoretical capacity of retrievable configurations when the weights are unrestricted
is 2 N [29, 30]. It is an interesting direction of future work to see whether the form of weights given by
equation (E2) would allow to reach higher capacities of retrievable configurations in the Hopfield model.

Given the argument above on the differences between RA models and Hopfield models, other interesting,
non-standard Hopfield models with trainable Hebbian patterns like those in [43, 44] are analogously not
directly related to the RA approach proposed in this work.
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