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Abstract. We describe the current and future plans for using artificial intelligence

and machine learning (AI/ML) methods at the National Synchrotron Light Source

II (NSLS-II), a scientific user facility at the Brookhaven National Laboratory. We

discuss the opportunity for using the AI/ML tools and techniques developed in the

data and computational science areas to greatly improve the scientific output of

large scale experimental user facilities. We describe our current and future plans

in areas including from detecting and recovering from faults, optimizing the source

and instrument configurations, streamlining the pipeline from measurement to insight,

through data acquisition, processing, analysis. The overall strategy and direction of

the NSLS-II facility in relation to AI/ML is presented.

1. Introduction

The National Synchrotron Light Source II (NSLS-II) [1] (Figure 1), is the newest light

source in the US Department of Energy (DOE) complex delivering unprecedented

brightness to advanced beamlines, employing the latest detectors and beamline

instrumentation. A schematic plan view of the facility can be seen in Figure 2. The

source brightness coupled with advanced multidimensional detector technology leads

to experiments being performed a) much faster and with a higher throughput than

ever before, b) with higher resolution for both imaging and spectroscopy, c) with an

unprecedented signal to noise ratio thereby enabling studies of previously unobservable

signals. In addition to this, NSLS-II has demonstrated that this all can be done under

incredibly stable and reliable operating conditions

Artificial Intelligence and Machine Learning (AI/ML) is a key emerging technology

that will allow us to harness the brightness of the source. It will enable us to perform

experiments:

• More efficiently and intelligently with science-knowledge informed decision making
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Figure 1: Aerial photograph of the National Synchrotron Light Source II situated at

Brookhaven National Laboratory. (Courtesy of Brookhaven National Laboratory)

• With optimal setup using automatic alignment

• With clever monitoring and fault detection

• With direct feedback from incredibly fast physics-based simulations

• More efficiently and with higher sensitivity with intelligent systematic error

reduction.

• Under incredibly stable operating conditions with real-time feedback to the

experimental control and end-user.

Modern synchrotron lightsource X-ray beamlines are highly complex and sensitive,

machines. They utilize some of the most advanced and cutting edge technology available

to focus concentrated beams of light with a brightness greater than the sun onto a

point a million times smaller than the head of a pin. Synchrotron beamtime is an

incredibly valuable resource. For a user to obtain beamtime, they must request time

through a highly competitive, peer-reviewed proposal. Each synchrotron beamline at

the NSLS-II is highly oversubscribed, that is many more experiments are requested than

performed. It is therefore in both the users and facilities best interest to maximize the

throughput and minimize the downtime of every beamline in order to achieve the highest
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Figure 2: Layout of the individual beamlines at the NSLS-II, indicating the different

scientific areas covered. (Courtesy of Brookhaven National Laboratory).

scientific output. Like all complex machines — sometimes — things break. When they

do, it can be a non-trivial task requiring expert scientists and engineers with years of

experience to diagnose, fix, and return the experiment to optimal performance, often

under considerable time constraints.

Due to careful design and engineering, most breakdowns are only short-lived. The

actual recovery of the operating conditions may not take more than a few minutes

once the problem is diagnosed, such as an component realignment, a motor which has

lost it’s position, a reset of the control system, or just a sample that has fallen out of

alignment. However, that lost time can be extremely detrimental to the experiment at

hand, particularly if it occurs during some critical stage of an in-situ or time-dependent

measurement. In addition, when breakdowns occur out of office hours there is the human

cost of the ”call-in”, often requiring an expert to physically come to the facility. If this

diagnostic knowledge can be encoded into an AI/ML process, commonly encountered

failure modes can be autonomously diagnosed and perhaps even remedied with only
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very minor interruption to the experiment at hand.

Critical to developing such approaches is the availability of large labeled training-

sets of data, which capture the observable of any labeled failure condition. These

observable should include everything measurable, from the obvious (telemetry data on

motor positions, detector images, beam position monitors) to the seemingly unimportant

(network traffic levels, local weather) to make a truly extensive data set spanning both

normal and well-understood failure modes of operation. It is the generation of these

labeled datasets that presents the greatest challenge to seeing this capability realized.

To this end, there are ongoing projects at the NSLS-II to develop and standardize

far-reaching observable-capture tools that are readily deployed across NSLS-II. These

tools are meant to greatly automate the tasks required, so that a wide view of observable

states can be catalogued in a unified database. Thus, even normal operations will

continuously contribute to the total training dataset, with minimal additional staff effort

required to catalog system failures. Through this task, we hope to greatly lower the

barrier to entry towards development of these tools across the whole facility.

2. Enabling Technologies

Applying AI/ML effectively at light sources requires managing the large volumes of

scientific data generated at the facility. In the past, sychrotron data has been captured

and stored using a wide variety of disparate systems that evolved independent at their

respective instruments. This variety makes large-scale systematic studies prohibitively

labor-intensive at best. Through the Bluesky Project [2, 3], working across instruments

and facilities, we have built a system that provides a shared, unified core of scientific

data acquisition, management, and access software, while leaving room for the necessary

variety between instruments, facilities and techniques.

Beginning with data acquisition, the raw measurements must be captured along

with sufficient physical context and what the intent of the experimenter was. In the past,

this context has often stored in an ad hoc fashion—in paper notes, cryptic file names, or

even mental recollections. To operate at the scale where AI/ML models perform well,

everything must be captured in a predictable, machine-readable fashion. This includes

primary measurements (e.g. images or spectra), secondary measurements (e.g. motor

positions, beam current, sample temperature), hardware configuration (e.g. exposure

time), and physical details of the hardware (e.g. pixel size). Metadata about sample

composition and preparation is also necessary to contextual measurements. There is no

single metadata schema or ontology that can suit the breadth of synchrotron research,

but we can enable scientific domains, instruments, and groups can define and enforce

well-suited schemas, in order to make this problem manageable. In addition, we can

perform prompt data quality checking, first-pass processing, and tagging, to ensure that

data is well-labeled at acquisition time, such that all the relevant context is captured in

machine-readable form before the experiment has concluded.

Next, the data must be made accessible in a uniform way. We contend that it is not
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possible to standardize on one data format because of the range of access patterns and

performance requirements across techniques and because of the constraints imposed by

hardware vendors. However, it is possible to place data behind a common programmatic

interface (API) upon which shared user-facing tools can be built for searching and

accessing scientific data for visualization, analysis, or egress to other systems.

Finally, it is clear that a reliable and flexible IT infrastructure is essential in order

to actually deploy and use any of these tools. The scale and the type of compute

(e.g. CPU, GPU, FPGA) or data storage (e.g. high performance parallel file-systems,

cloud base object stores) should be chosen with the particular use case in mind. For a

certain number of AI/ML problems, such as supervised learning, the high computational

resources are only needed during training before performing the experiment and then

only relatively modest or optimized compute is required during the actual experiment.

At the NSLS-II the aim is to ensure a consistent yet flexible tiered infrastructure that

ranges from local dedicated hardware for particular beamlines or experiments (e.g.

edge computing resources), through facility and laboratory central capabilities (e.g.

Institutional Clusters), onto larger resources such as the commercial cloud or High

Performance Computing facilities. The use cases for the light sources are being included

when defining the requirements for the next generation exascale computing facilities.

These shared tools for search, visualization, and analysis will provide a unified

user experience across facilities. Through this effort, we will better fulfill our mission

by expanding the service we provide to our users further into data analysis. Data

management and computation will become a problem owned by the facilities, not their

users, and in this way the facilities will expand their reach into user communities less

fluent in the minutia of synchrotron data acquisition or analysis.

3. Dealing with Faults

In recent years NSLS-II has been able to run with greater than 96% reliability. In a

year with 5000 operating hours, this translates to 150-200 hours of downtime during

scheduled operations. While it meets our performance goal and is competitive among

other synchrotron light sources globally, these downtime hours still can have large

impacts on experimenters – especially those with complex experimental setups or using

the beam in a narrow time-window. Keeping reliability in that range also leaves a very

small margin for downtime – especially for long failures. An AI/ML implementation

in accelerator operations [4, 5, 6] would reduce unexpected interruptions for users by

focusing on two specific goals: forecasting and reducing the number of beam-dumps and

reducing downtime from diagnosis and recovery.

Forecasting and Reducing the Number of Beam-Dumps: The first goal is to identify

any subsystem degradation during operations that would likely lead to a beam dump. In

our experience, these include gradual drifts in temperature, water flow, vacuum pressure,

power-supply output or ground-current, beam position, and other changes that result in

an Equipment Protection System trip and are slow enough to act on prior to reaching
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the trip limit. These systems contain thousands of signals that rely heavily on experts

to monitor subsystem performance, observe trends, and dictate maintenance activities.

We display and monitor drift-values for some of these slow-moving parameters, and

it does give us more lead-time to plan preventive maintenance and avoid operation

interruption. Moving further in that direction with machine-learning would let us

identify preventable trips (much better than with threshold alarms). Moreover, when

the subsystems enter states previously associated with potential impending faults, we

may broadcast cautionary messages to users such that experimental plans could be

adjusted accordingly. Looking further out, an ML algorithm could give time estimates

of systems or components whose parameters are slowly-changing, and be used to schedule

preventative maintenance tasks.

Reduce Downtime from Diagnosis and Recovery: Quick failures such as RF cavity

arcs, power supply trips, or controls-network failures often occur instantly and cannot

necessarily be predicted or prevented. The second purpose of an operations neural

network deals with un-prevented faults by identifying the source of the fault. Reducing

time and effort spent diagnosing a problem leads to faster repairs and recoveries, less

cool-down of beamline equipment, and less time lost. This is significant because, in cases

of non-standard faults, identifying the system or piece of equipment at-fault can take

longer and contribute more Downtime than the repair itself. In FY18, the NSLS-II Mean

Time To Recovery (MTTR) was 1.5 hours (which includes diagnosing failure sources,

devices’ repair, setting the machine back to operation state), yet 57% of Downtime

came from only 9 dumps (of 326 faults). In the most extreme cases we lost more than

24 hours to diagnosing and repairing power-supplies, which is 24 hours that users are

stuck waiting. An algorithm using previous trip-conditions to pinpoint the potential

cause(s) of a beam dump can drastically help operator and expert to focus on limited

devices and reduce downtime spent diagnosing problems.

Data methods: The NSLS-II machine archive is comprehensive, and tracks 106,000

individual variables at their own update speeds (up to 10kHz). We store nearly 47

TB/year of archive data. Our fault-report archive is 1400 entries in a database, occupies

about 1 MB. At present, we are developing two types of ML algorithm that will work

in tandem. The first method uses grouping techniques of individual device histories, to

identify & flag ‘abnormality’ of device-values compared with ‘good’ Operations (defined

by sustained nominal beam current). The second method uses Fault history to pinpoint

moments at/before known faults and manually identify to the algorithm what machine

parameters do during specific failure types. Combining the techniques should enable

associations and pattern-identification beyond what an Operator or system expert would

notice by looking at graphs or setting single-variable alarms.

Stability forecast: Finally, we see the ability to extend these ‘Fault prediction’ and

‘abnormality detection’ tools beyond Storage Ring trips. By using AI/ML to identify

when injector conditions are drifting, Operations staff could alert beamline staff when

conditions may be unstable, even beam being present. Years of traceable parameters

like electron-gun temperature, injection/extraction kicker magnet stability, and power
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spectrum distributions will all be trained into a ‘stability prediction’. For more sensitive

beamlines, knowing when fluctuations in electron beam current, X-ray flux, or X-ray

beam position could greatly assist in avoiding collecting unusable data.

4. Alignment

All of the Light Source user facilities have a common problem, the lack of automated

means to quickly and accurately align and optimize optical components of X-ray

beamlines to achieve a photon beam with the desired characteristics. Manual

alignment/optimization of a beamline can only be reliably performed with a small

number of (preferably independent) degrees of freedom, which rarely results in the

globally optimal configuration. In addition, such manual optimization is hard to perform

when the system varies as a function of time, for example when the electron beam

changes, requiring constant readjustment of the alignment. With the increased degree

of sophistication of modern beamlines, incorporating dozens of equipment units (mirrors,

transfocators, monochromators, slits, stages, etc.), it is crucial to establish procedures to

perform on-line beamline optimization in a semi- or fully-automated fashion, to expedite

beamline preparation and increase scientific output by dramatically reducing beamline

tuning-time and downtime, and potentially achieve better results of global optimization.

The Bluesky data collection software is used extensively both at the NSLS-II

and has seen adoption at other User Facilities worldwide, such as the Linac Coherent

Light Source (LCLS) located at SLAC National Accelerator Laboratory, the Advanced

Photon Source (APS) located at Argonne National Laboratory, and the Australian

Synchrotron. It has also some adoption and testing at both the Advanced Light Source

(ALS) located at Lawrence Berkeley National Laboratory and the Stanford Synchrotron

Radiation Lightsource (SSRL) located at SLAC National Accelerator Laboratory. The

bluesky library handles experiment control and scientific data collection, allowing to

control an instrument irrespective of its software/hardware configuration. It uses a

concept of plans, which define the experimental procedures to run. The plans allow the

implementation of complex procedures in a way convenient for the scientist. Users can

either use predefined plans, or custom plans may be designed if the pre-existing plans do

not satisfy the experimental requirements. The RunEngine is a core part of the bluesky

library, which passes instructions from the plans to the lower hardware levels (e.g., to

move motors and/or read detectors) using the ophyd hardware abstraction library, and

collects experiment information during a run into documents. The documents can be

configured for storing in a database, and/or can be used for live visualization/analysis

of the data being collected. The databroker library, a part of the Bluesky project,

provides convenient access methods to the documents containing data and metadata

from experimental measurements and operate on them in the form of standard scientific

Python data structures (Pandas dataframes, NumPy arrays, etc.). The relationships

between the libraries are depicted in the Fig. 3.

A long-term goal is to extend this software infrastructure to the simulation tools
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Figure 3: The relationships between the software libraries in Bluesky. Each component

is individually useful, and they operate cohesively to leverage scientific Python for data

acquisition and analysis. (Courtesy of Brookhaven National Laboratory)

available at DOE National Laboratories, like Sirepo [7], OASYS [8], and LUME [9], since

it proved to be flexible and extendable. A flexible optimizer for beam intensity based

on a differential evolutionary (DE) algorithm has been implemented. This optimizer

operated on three backends: the Tender Energy X-ray Absorption Spectroscopy (TES)

beamline at the NSLS-II [10, 11], a set of simulated EPICS [12] motors provided via

a Docker container [13], and the Synchrotron Radiation Workshop (SRW) simulations

via the Sirepo framework [7] (see Fig. 4 for the TES virtual beamline representation in

Sirepo).

The system could be used to optimize an entire beamline or just a specific part,

like a nanofocusing KB mirror or a zoom optics system. The optimization plan requires

information about the motors to be optimized and their bounds, the detector to use,

and the type of a scanning procedure to use. The TES beamline has already been used

as a model to create a prototype code that used simulated EPICS motors and Sirepo

simulations.

Simulated motors can be used to test code without using a real beamline. DE

optimization using the Docker-run simulated motors proved to work in a very similar

fashion to the optimization of a real beamline. Both the real motors and the simulated

motors are operated using the EPICS control system protocol, so the motors act very

similarly and can be easily swapped. Since the simulated motors did not have a detector
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Figure 4: NSLS-II TES virtual beamline representation in Sirepo.

to read, it is necessary to create a computed signal to simulate detector intensity.

This methodology has already been successfully tested on the TES beamline layout,

by modeling three motors and a detector signal satisfying the expected distribution

based on the motor positions.

The methodology has been proved to be effective by creating the Sirepo-Bluesky

interface and tested. Sirepo, combined with the Synchrotron Radiation Workshop

(SRW) code, can simulate beamline configurations and is the third backend that can be

optimized. The Sirepo-Bluesky interface [14, 15] was implemented to programmatically

change multiple parameters of simulations and submit them to a local or remote Sirepo

server. The integration was done in such a way that the results from simulations were

recorded and made available using the databroker interface. A Sirepo model of the TES

beamline was created and optimized using the enhanced DE algorithm. That approach

provided an avenue for the Machine Learning (ML) and Deep Learning (DL) based

optimization.
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The project was based on previous developments of an enhanced genetic algorithm

and a differential evolutionary algorithm to accomplish the automatic beamline

optimization [16, 17]. Despite the advantages of evolutionary algorithms, the

optimization speed is still insufficient (at the level of approximately 10 minutes), and

optimization is difficult because of multiple sources of noise (mechanical backlash,

building temperature, etc.) The machine learning and deep learning models can make

the optimization faster, linearize the behavior of adaptive optics, and increase reliability

for automated alignment. The benefits of that approach were demonstrated in a recent

paper [18], where a deep artificial neural network was used to produce solutions for

the planar chaotic three-body problem orders of magnitude faster based on the existing

training and validation data set. This type of approach to beamline optimization allows

the production of training data sets for ML/DL models automatically by using the

DE method. Alternatively, realistic simulated models of X-ray beamlines can provide

enough training data for ML/DL methods. Such models and the corresponding results

were demonstrated in recent publications (e.g., [19, 20]), which employed a modern

beamline simulation framework Sirepo with the SRW backend [7].

We believe the most appropriate machine learning method for beamline

optimization is Deep Reinforcement Learning (DRL). This is the method used to train

models that learn to choose actions to reach a goal, such as playing video games [21],

playing board games [22], and developing robot locomotion [23]. New DRL algorithms

are under intense research by the machine learning community, but we expect to use

well-known algorithms such as PPO [24] and A3C [25]. These have been demonstrated

to work on non-trivial problems and a body of practical knowledge for training with these

algorithms has accumulated in journal articles, technical reports, and books, and with

computational scientists at NSLS-II, ALS, and APS. Code for these methods is available

from open-source projects such as Tensorforce [26] and rlpyt [27], based on TensorFlow

and PyTorch respectively. These choices will restrict the project to developing the game-

like training process, specifically defining a reward scheme to train models to efficiently

optimize a beamline.

5. Data Fidelity

X-ray facilities are striving to produce increasingly coherent light because coherent X-

ray scattering techniques produce data with unique scientific insight. X-ray Photon

Correlation Spectroscopy (XPCS)[28, 29] is one such technique, which is primarily used

to understand dynamics in scientific samples by analyzing 2D images that were recorded

at a regular time interval using signal processing methods. Beamlines performing XPCS

experiments have a very high requirement for optical stability because it is impossible

from XPCS alone to ascertain if the derived dynamics are inherent to the sample or

are induced by an artifact. Currently, expert researchers invest time and effort to

manually inspect data to assess its quality, or more aptly, ensure that data are of high

fidelity. Once the data’s fidelity is known to be acceptable, then the researchers become
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sufficiently confident to extract quantitative dynamics and continue the experiment.

Given that X-ray facilities are delivering brighter sources and advances in detector

technology permit 11.8 kHz data production of multi-speckled X-ray patterns[30], the

data fidelity can no longer be reliably or practically assessed by a human-in-the-loop

decision-making process. Clearly, this represents one of the most serious bottlenecks to

scientific progress. Fortunately, advances in data science and AI/ML make it possible to

mine large quantities of data and discover underlying patterns that enable automated

evaluation of data quality and predictive analysis without requiring humans eyes to

evaluate individual pieces of data. Perhaps more interesting from an AI/ML perspective

is evaluating if known AI/ML methods can be applied to time-series data like XPCS

data.

We justify the applicability of AI/ML to XPCS data reduction with the analysis

of a model dataset collected at the CSX beamline of NSLS-II.[31] The dataset’s

original purpose was to provide a better understanding of experimental results from

a La1.875Ba0.125CuO4 single crystal and increase confidence in the XPCS analysis of the

associated standard time-series measurement. The researchers published the subsequent

results in October 2016, approximately 1.5 years after the first dataset was collected

and demonstrated the presence of static domains.[32, 33, 34, 35] In regards to the

model experiment described by Figure 5a, it represents a single dataset consisting of

41 equivalent points. The most basic analysis in XPCS is applying the one-time auto-

correlation function

g(2)(q, t) =
〈I(q, t)I(q, t+ δt)〉

〈I(q)〉2
, (1)

where q represents a collection of pixels (i.e. multiple signals), each with intensity,

I. However, in this model example, we perform the measurement and analysis as a

function of sample displacement (x) instead of time (t) at a fixed interval of δx (δt) .

As Figure 5a depicts, the sample was translated beneath the x-ray beam spot (10µm

diameter) in order to observe ”dynamics” during the measurement, albeit purposely

induced dynamics. The standard auto-correlation analysis (Equation 1) for XPCS is

shown in Figure 5b. However, Figure 5c-d represent 3.5 times better data compared

the observed statistics in the published findings, which is illustrated by Figure 5e-f.

[32] As expected in the presented model, the auto-correlation analysis shows that the

speckles’ intensity fully de-correlate after ≈10µm total displacement, which is when

an entirely different area of the sample is illuminated. Any naive, automatic analysis

without user-in-the-loop evaluation does not reveal the source of the dynamics, which

is in fact induced by a moving sample.

There are methods to establish the data’s level of fidelity with respect to artifacts

(or correlated noise). Given that a user has no a priori knowledge of the sample’s

dynamics, it is clear that the choice of selecting an ensemble of pixels or a region of

interest (ROI) is important. First, the ROI size and shape can affect the analysis tools

used to further evaluate the data. Speckleograms (often referred to as waterfall plots

or kymographs) are one such tool that shows how a given pixel intensity evolves, and
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Figure 5: Model experiment to illustrate XPCS’s lack of dynamics specificity. a)

Illustration of model experiment with forty 2.5µm horizontal sample displacement

displacements. Twelve 4s exposures were collected at each step. b) Standard one-time

auto-correlation for data represented in c-f accompanied by the artifact-free analysis on

the first 12 images (fixed position). c) Average speckle pattern of the first 12 images

(enhanced statistics) with 4 ROIs (overlays). d) Speckleograms on the data represented

in c; inset denotes the ROI. e) Speckle pattern of first image (actual statistics) with 4

ROIs (overlays). f) Speckleograms on the data represented in e; inset denotes the ROI.
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four speckleograms of equal pixel population are shown in Figure 5c. The square and

horizontal rectangular ROIs most clearly demonstrate an isotropic, repetitive speckle

evolution with distance, or generically with time. Such an observation is indicative

of sample motion, which can happen accidentally or as a consequence of temperature

control or energy injection. We can further illustrate how the changes are subtle and

not immediately recognized by expert researchers. Consider that the results of Chen et.

al are based on a time series of a fixed sample position with the same photon counting

statistics in Figure 5e and b. Additionally, the measured time window may be similar to

the extracted dynamics (Figure 5f), which is especially true in the case of slow dynamics

in solid materials.[36, 37] Not to mention that datasets consist of more frames by a factor

of 100-500. To this end, real data are messy, and they often require an experienced eye

or much effort to understand if the data should be analyzed as is, especially when real

and artificial dynamics are present. Therefore, we plan to implement AI/ML methods

to automate data fidelity decisions and guide users in understanding the fidelity of

the data and its subsequent analysis. Furthermore, with two beamlines like CSX [31]

and CHX[38] and tools like SRW for in silico beamlines (see Section 4), it is possible

to develop a data-driven approach with AI/ML to identify the signature of specific

artifacts that affect the XPCS results.[19, 20] Armed with the knowledge of an artifact’s

root cause, it may be possible to account for the artifact using AI/ML advancements in

neural networks and extract a meaningful result, thus realizing a fully AI/ML guided

XPCS analysis.

We recognize the that our data-driven approach with labeled training data will

require time and effort to develop, but that does not address two problems: 1)automated

analysis pipelines are needed now 2) we require a robust method to firstly broadly

classify collected data as ”good” or ”bad”. Depending on the nature of the convoluted

artifact and inherent sample dynamics, ”bad” XPCS data may be salvaged with user-

defined parameters. Figure 6 illustrates this issue in the field at the CSX beamline.

Figure 6a-b shows the data and standard auto-correlation analysis associated with anti-

ferromagnetic ordering in a complex nickel oxide.[39]. The first pass analysis includes

all data (every frame), and there are clear oscillations accompanied by what may be

”very slow” dynamics of some origin. It is possible to observe oscillations in the one-

time auto-correlation for real scientific samples and one may derive more descriptive

equations to extract meaningful physical parameters. [40, 41, 42, 43] However, it is

also possible that the first pass analysis is not appropriate. Upon further inspection,

the diffraction peak’s center of mass is shifting in time (Figure 6c-d). While this could

be inherent to the sample’s magnetic ordering, further investigation of data archived

[44] in parallel with the bluesky[2, 3] data acquisition, it is clear there is a correlation

between the peak’s center of mass and the pressure of the deionized water circuit that

serves one-fifth of the accelerator’s ring and possible beamlines. We can attempt to

salvage the data by removing outliers, and in this case, we only considered data near

the statistical mode (within 0.6 - 1.0 pixels). The results of eliminating the outlier (or

bad) frames from the analysis are presented in Figure 6a, c-f.
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Figure 6: Data collected during user operations at the CSX beamline. a) One-time

auto-correlation of raw and culled based on a manual outlier identification process.

b) Diffraction signal from anti-ferromagnetic ordering in a complex nickel oxide. c,d)

Diffraction peak’s horizontal center of mass as a function of time (or image). e,f) Likely

source of beamline instability (optics cooling water pressure), which was archived during

the collection time of the data discussed in a-d.

Since culling data can sometimes salvage XPCS measurements, automation of

outlier detection is an attractive and time saving proposition; however, simple

algorithmic implementations often require tuning for the observed signal to noise,

potentially eliminate useful data, and do not often consider the different measurement

geometries and scattering patterns. In obvious cases of sparse outliers, standard AI/ML

techniques anomaly detection can salvage data. We want to employ these and related

techniques in unsupervised and semi-supervised ML to supplement user data reduction

and analysis. If successful, we will use these tools to support verification and validation

of a user labeled data repository to support our training data-driven approach to XPCS

artifact identification and artifact removal without eliminating data. However, it is

important to stress that by eliminating many points in time, we loose the ability to

observe fast dynamics. Therefore both AI/ML approaches we have outlined here are

necessary.

To summarize, applying AI/ML to data collected during XPCS experiments cannot

only fast track the discovery and correction of measurement instabilities, but it will also

reduce user-in-the-loop decision making. As a result, users will be able to concentrate on
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the experiment at hand and have time to think about how to best utilize the allocated

time. From a facility perspective, we plan to develop these tools to work within the

NSLS-II’s Data Acquisition, Management and Analysis (DAMA) infrastructure at the

CSX and CHX beamlines. These beamlines utilize different detector technologies and

specialize in different scientific areas. We will, therefore, have a diverse breadth of

scientific data. Additionally, our customized AI/ML tools for XCPS will be compatible

with other NSLS-II beamlines that occasionally perform these challenging experiments.

6. Efficient Data Collection

It is feasible to generate a populated knowledge database before the user begins their

experiment that could be used to train an initial model. The information on the

experiment and sample that the user submits as part of their proposal could be used to

perform simulations ahead of time and to extract information from other information

sources such as materials databases [45] and natural language processing of literature

[46, 47, 48].

A classic scenario facing users of relatively high-throughput instruments at NSLS-

II, such as the powder diffraction beamline, PDF [49] and the absorption spectroscopy

beamline, BMM [50], is dynamic scheduling of samples brought for study. Users often

bring a library of different samples related to their initial proposal, and based on some

preliminary screening measurements, try to plan out how to most effectively use their

allocated beamtime. However, these plans frequently change as the data accumulates

and something unexpected or unanticipated is revealed. For example, a critical sample

may not be scattering as strongly as expected or an in situ setup may take longer

than anticipated to setup. This is to say nothing of the classic ’when have I measured

enough’ problem in these statistic-dependent techniques, where increased measurement

time will improve data quality only up to some condition-limited level (e.g. a detector

noise-floor is met). The answer to how long one should measure ends up far too often

based on remaining shift-allocation and yet unmeasured hopes, instead of statistically

sound decisions of data quality.

With the advent of machine learning methods, the expert-knowledge and signal-

processing methods required to reliably make determinations on measurement quality

can be trained into a decision-making agent through either conventional supervised

learning or reinforced learning methods. The former is somewhat straightforward

conceptually but requires curating a large database of measured patterns, appropriately

labeled with an associated data quality metric. Once trained, such a tool could monitor

the summation of cumulative data on a single data condition (e.g. temperature point,

sample coordinate), and signal when appropriate data quality condition has been met.

This signal would trigger the acquisition plan to advance to the next sample or condition

point. The disadvantage of this approach is the supervised training would likely result

in an agent only effective on the specific beamline configuration used in training, and

almost certainly not applicable across different techniques. Reinforced learning methods
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have been recently grown in popularity due to their ability to train supervised-like

learning agents in a dynamic experience loop, essentially creating their own training

data as they interact with a system. This can be of particular use in cases where either

when large curated datasets are not readily available or the conditions of the system

may change over time. In the case of efficient data collection, the beamline acts as

the environment with the agent directing the measurement scheduling via Bluesky.

Although the employed loss metric between techniques may vary, the approach of

training the agent across the beamlines will be the same. In this way, well scoped

reinforced learning methods have broad appeal as a potential ’universal data collection

advisor’ at NSLS-II.

In realizing either of these approaches, we will be able to offer users real-time

feedback on their individual data quality or simply automate the process entirely. This

is of particular interest for high-throughput or mail-in program applications, as it can

free up staff time that might otherwise be spent babysitting data quality metrics at the

beamline. Both supervised learning and reinforced learning methods for these tasks are

under development at the facility, with prototypes that have been successfully deployed

on the 28-ID-1 (PDF) beamline.

7. Data Analysis

After collection, data from the NSLS-II must still be processed and analyzed to extract

and utilize the inherent information. Although the details of these measurement-to-

information pipelines vary between both techniques and beamlines, all can in principle

be aided by the development of automated processing and analysis tools. This becomes

especially true in those measurements that generate very large datasets, where manual

individual-driven analysis approaches become tedious or impossible.

One common challenge encountered during measurements is to rapidly identify

underlying sample changes as a function of experimental coordinate, such as phase-

transitions occurring during a temperature-series. Often, researchers are most interested

in first mapping where these transitions occur and then studying in detail the material

behavior about this transition. Unsupervised learning approaches, such as hierarchical-

clustering, can be particularly helpful in these situations.

To demonstrate, we here present an example of barium titanate (BaTiO3) measured

on the Pair-Distribution Function (PDF) beamline in an oscillatory temperature series

spanning 450 K to 150 K resulting in 119 individual datasets. The crystalline structure

of BaTiO3 is known to transition between four different phases across that temperature

range (cubic, tetragonal, orthorhombic, and rhombohedral). However, beside the phase-

transitions, material thermal expansion will cause the diffraction peaks to shift positions

as a function of temperature (moving to lower-Q at higher temperatures). Combined

with the overall subtle nature of these phase-transitions, it can be a challenge to quickly

and accurately identify these transitions as they occur from the raw data, even when

we are expecting them [51]. For reference, the raw data from the detector is provided
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on the Figure 7a.

Figure 7: Unprocessed data from the detector (a.) at the PDF beamline (NSLS-II) of

BaTiO3 in four different phases: cubic, tetragonal, orthorhombic, and rhombohedral.

The processed data (b.-left) from the measurements taken across a temperature series

(b.-right). Note that the Hierarchical clustering methods employed sorted the data into

the four colored groupings, which were then labeled according to their crystal structure.

No prior input about the expected phases was included in the approach.

By employing hierarchical clustering methods[52], the data was correctly

categorized into regions corresponding to the four phases, despite having no prior

information about the material. The processed data, colored according to theses

clustering results, is shown in Figure 7b, along with the temperature profile of the

experiment. This example employed unsupervised learning methods on a well known

system, the strength of this approach is the ability to just as accurately detect transitions

or suggested groupings on data from materials with unknown transitions. Employing

such methods to process and analyze big data or real-time streaming results is one of

the overarching goals in utilizing AI/ML methods at NSLS-II.

8. Conclusion

Herein, we have highlighted our general strategy to utilize AI/ML methods at NSLS-II

for improved operations, automation, and analysis. The examples listed were meant to

demonstrate some of the different areas of development by scientists at NSLS-II, but in

no way represent an all-encompassing list of work. We hope this contribution serves to

help foster the growth of such tools by the greater computational science community,

and helps to open a dialogue with external researchers, fostering collaborations.

While we are not looking to develop a specific API to develop and train AI/ML

tools for synchrotrons, we are looking to expose the hooks to enable those tools to

interact with Bluesky. In this way, individual AI/ML components that are developed
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either internally by scientists at BNL or externally by the greater scientific community

can readily interface with the beamlines via the Python-enabled control à la Bluesky.

Whilst the development of each project and tool will follow a more agile approach,

the overall effort will be coordinated across the NSLS-II to ensure it is in line with both

the strategic direction and shared community efforts.

The NSLS-II strategy can broadly be defined as utilizing AI/ML methods in the

areas of:

Autonomous experiments and control with physics-based decision making to

make and modify materials in for example additive manufacturing and to

provide automatic alignment of complex optical systems such as high resolution

spectrometers.

Prompt and automatic data analysis. The speed of modern synchrotron data

collection has outpaced typical data analysis methods for years. As the quantity of

data produced from these experiments is much greater than can be handled with

conventional analysis approaches, machine learning (ML) and artificial intelligence

(AI) methods will be employed to provide rapid analysis at the beamline.

Improving experiment performance from source to sample. This includes

solutions such as providing predictive state monitoring of the accelerator to

minimize beam dumps and maximize user time, adaptively adjusting experiments

to optimize on beamline and accelerator performance and providing intelligent tools

for automatic beamline alignment.

Data Quality Optimization such as removing systematic errors for example

identifying and removing artifacts in coherent scattering data and imaging data

to maximize both efficiency and quality of data.

For each of these areas, the NSLS-II is ensuring that as we develop these capabilities

we are working together and coordinating with the other DOE light sources. With

the added challenges originating from the COVID-19 pandemic and the associated

transition from a predominantly onsite user model to one focused on remote-access

for the foreseeable future, the development of these tools is made even more critical.

It is clear that AI and ML techniques have the potential to make a great impact

on the diverse science being performed at synchrotrons.
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