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Abstract
Upcoming experiments such as Hydrogen Epoch of Reionization Array(HERA) and the Square
Kilometre Array (SKA) are intended to measure the 21 cm signal over a wide range of redshifts,
representing an incredible opportunity in advancing our understanding about the nature of cosmic
reionization. At the same time these kind of experiments will present new challenges in processing
the extensive amount of data generated, calling for the development of automated methods capable
of precisely estimating physical parameters and their uncertainties. In this deliverable we employ
Variational Inference, and in particular Bayesian Neural Networks, as an alternative to MCMC in
21 cm observations to report credible estimations for cosmological and astrophysical parameters
and assess the correlations among them. Finally, we have implemented the use of bijectors to
improve the diagonal Gaussian approximate posteriors and be able to extract significant
information from Non-Gaussian signal in the 21 cm dataset.

1. Introduction

In the past decade, Cosmology has entered into a new precision era due to the considerable number of
experiments performed to obtain information both from early stages of the Universe through the Cosmic
Microwave Background (CMB) and late times via deep redshift surveys of large-scale structures. These
measurements have yielded precise estimates for the parameters in the standard cosmological model,
establishing the current understanding of the Universe. However, the intermediate time known as Epoch of
Reionization (EoR), when the first stars and galaxies ionized the InterGalactic Medium (IGM), remains
vastly unexplored. This period is relevant to understand the properties of the first structures of our Universe
and provide complementary information related to fundamental Cosmology, inflationary models, and
neutrino constraints, among others, e.g. [1]. EoR observations combined with CMB can improve existing
constraints on the cosmological parameters for particular low-redshift reionization scenarios. For instance,
McQuinn et al [2] reported uncertainties 1.4 or 3 times smaller than those constrained by CMB alone, and
these results can be further improved by including Weak Lensing in the analysis [3]. Furthermore, authors
in [4] have reported that EoR observations are effective at breaking the CMB degeneration between the
optical depth and the amplitude of the primordial fluctuation spectrum reducing significantly the errors on
ln(1010As). It is known that the EoR can be studied indirectly through its imprint in the IGM, using the
redshifted 21 cm line [5]. This line results from the hyperfine splitting of the ground state of the hydrogen
atom due to the coupled magnetic moments between the proton and the electron, emitting radiation with a
21 cm wavelength, then redshifted by the expansion of the Universe [1]. Future experiments such as
Hydrogen Epoch of Reionization Array (HERA)1 and the Square Kilometre Array (SKA)2 are intended to
measure this 21 cm signal over a wide range of redshifts providing 3D maps of the first hundreds millions
years of the Universe. These instruments are expected to generate a huge amount of spectra, encouraging the
development of automated methods capable of reliably estimating physical parameters with great accuracy.

1https://reionization.org/.
2https://www.skatelescope.org/.
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Recently, Deep Neural Networks (DNNs) have been applied in several fields of Astronomy because of their
ability to extract complex information from data, which makes it benefit for analysing non-Gaussian
signatures. In particular, the application of DNNs to the 21 cm signal has received considerable attention due
to the success of classifying reionization models [6] or estimating physical parameters [7]. For example,
in [7] 2D images corresponding to slices along the line-of-sight axis of the light-cones were used for training
Convolutional Neural Networks (CNN) in order to estimate some astrophysical parameters. More
recently [8] and [9] generalized the previous findings by incorporating contamination from simulated
SKA-like noise. However, DNNs are prone to overfitting due to the high number of parameters to be
adjusted, and do not provide a measure of the uncertainty for the estimated parameters, see for
instance [10–12]. These limitations can be addressed by following a Bayesian approach, both intrinsically
providing an effective regularization during training and allowing to quantify the uncertainty in the
predicted parameters at inference time [13].

In this paper, we generalize these preliminary works related to the application of DNNs on the 21 cm data
by implementing Bayesian Neural Network (BNNs), in order to obtain the posterior probability estimates of
the physical parameters and their correlations. We discuss methods for calibrating uncertainties in Bayesian
Networks and we propose approaches toward the efficient extraction of information in non-Gaussian signals
via diffeomorphic transformations of the output distribution.

This work is organized as follows. In section 2 we introduce the variational inference formalism which
allows to compute the aleatoric and epistemic uncertainty of BNNs, and we also comment on the use of
bijectors for improving inference tasks. In section 3 we describe the Reionization model used in this work
and the generation of the synthetic dataset. In section 4 we describe the network architecture, and in
section 5 we show the results related to the potential application of BNNs to obtain approximate posteriors
over the parameter space. Moreover, we also present the most relevant findings about implementing
Normalizing Flows in inference task and their advantages in estimating the parameters relevant for the EoR.
Finally, conclusions and future works are shown in section 6.

2. Variational Inference

BNNs provide the adequate groundwork to output reliable estimations for many machine learning tasks. Let
us consider a training datasetD = {(xi,yi)}Di=1 formed by D couples of images xi ∈ RM and their respective
targets yi ∈ RN. By setting a prior distribution p(w) on the model parameters w, the posterior distribution
can be obtained from Bayes’ law as p(w|D)∼ p(D|w)p(w). Unfortunately, the posterior usually cannot be
obtained analytically and thus approximate methods are commonly used to perform the inference task. The
Variational Inference (VI) approach approximates the exact posterior p(w|D) by a parametric distribution
q(w|θ) depending on a set of variational parameters θ [10]. These parameters are adjusted to minimize a
certain loss function, usually given by the KullBack-Leibler divergence KL(q(w|θ)||p(w|D)). It has been
shown that minimizing the KL divergence is equivalent to minimizing the following objective function [10]

FVI(D,θ) = KL(q(w|θ)||p(w))−
∑

(x,y)∈D

ˆ
Ω

q(w|θ) lnp(y|x,w)dw . (1)

To infer the correlations between the parameters uncertainties [11, 14, 15], we need to predict the full
covariance matrix. This requires to produce in output of the last layer of the network a mean vector µ ∈ RN

and a covariance matrix Σ ∈ RN×N representing the aleatoric uncertainty, for instance parameterized
through its Cholesky decomposition Σ= LL⊤. These outputs determine the Negative Log-Likelihood (NLL)
when p(y|x,w) is a Multivariate Gaussian distribution [12, 14, 16]

lnp(y|x,w)∼ 1

2
log |Σ|+ 1

2
(y−µ)⊤Σ−1(y−µ) . (2)

Let θ̂ be the value of θ after training, corresponding to a minimum of FVI(D,θ). The approximate
predictive distribution qθ̂ of y∗ for a new input x∗ can be rewritten as [15]

qθ̂(y
∗|x∗) =

ˆ
Ω

p(y∗|x∗,w)q(w|θ̂)dw . (3)

Moreover [17] proposed an unbiased Monte-Carlo estimator for equation (3)

qθ̂(y
∗|x∗)≈ 1

K

K∑
k=1

p(y∗|x∗, ŵk), with ŵk ∼ q(w|θ̂) , (4)

2
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where K is the number of samples. In Bayesian deep learning [18] two main uncertainties are of interest: the
aleatoric, capturing the inherent noise in the input data, and the epistemic, capturing the uncertainty in the
model, typically due to the lack of data points during training which are similar to the current observation.
To obtain both uncertainties [11], we can invoke the total covariance law for a fixed x∗

Covqθ̂ (y
∗,y∗|x∗) = Eqθ̂

[y∗y∗⊤|x∗]−Eqθ̂
[y∗|x∗]Eqθ̂

[y∗|x∗]⊤, (5)

the images are forward passed through the network T times, obtaining a set of mean vectors µt and a
covariance matrices Σt . Then, an estimator for the total covariance of the trained model can be written as

Covqθ̂ (y
∗,y∗|x∗)≈ 1

T

T∑
t=1

Σt︸ ︷︷ ︸
Aleatoric

+
1

T

T∑
t=1

(µt −µ)(µt −µ)⊤︸ ︷︷ ︸
Epistemic

, (6)

with µ= 1
T

∑T
t=1µt. In this setting, BNNs can be used to learn the correlations between the targets and to

produce estimates of their uncertainties.

2.1. Parametrizing the approximate posterior
As explained in this section, the learning of a BNN is targeting the learning of an approximate posterior
distribution over the weights. A simple way is to define q(w|θ) through dropout, by dropping neurons from
a network layer with probability dr (commonly known as Dropout rate). The authors of [17] have shown a
connection between the Dropout technique and VI for Gaussian processes, allowing the neural network to be
interpreted as an approximate Bayesian model. The other approach used in this work is called Flipout [19],
which decompose the distribution into a mean plus a perturbation and assumes that this perturbations over
different weights are independent; and the perturbation distribution is symmetric around zero, allowing to
decorrelate the gradients within a mini-batch sampling with a pseudo-random noise flipping matrix,
achieving lower variance for BNNs. In particular, in the present paper we will consider the case in which the
distribution over the weights used by Flipout for sampling is a Gaussian.

2.2. Normalizing Flows
Transforming probability distributions has become a powerful tool in deep learning. The main idea of a
Normalizing Flow is to use a diffeomorphism (a differentiable and bijective mapping) to transform the
sample space of a distribution. It can be demonstrated that this is equivalent to transforming the probability
distribution and thus allowing for a more expressive output of the model [20]. For a more comprehensive
introduction about flows we remind the reader to [21, 22].

2.2.1. Basics concepts of Normalizing Flows
Let us consider u ∈ U⊂ RD and x ∈ X⊂ RD two D dimensional vectors in some subsets of RD. We can
define probability distributions for u and x, in the associated sample spaces U and X, respectively. Let f be a
diffeomorphism between the two sample spaces f : U→ X. Knowing the probability distributions qu, we can
define qx as

qx(x) = qu(u)

∣∣∣∣det ∂f(u)∂u

∣∣∣∣−1

, (7)

where x= f(u). We can construct more complex densities by applying successively the bijector (7), thus
transforming an initial random variable u with distribution qu (= q0) through a series of transformations f n
as

xn = fn ◦ . . . ◦ f2 ◦ f1(u) (8)

lnqn(xn) = lnqu(u)−
n∑

i=1

ln

∣∣∣∣det ∂fi(xi−1)

∂xi−1

∣∣∣∣ , (9)

where we defined x0 = u for convenience of notation. Any expectation Eqn [h(xn)] can be written as an
expectation under qu as

Eqn [h(xn)] = Equ [h(fn ◦ fn−1 ◦ . . . ◦ f1(u)] . (10)

3
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Through a suitable choice of the diffeomorphisms f n, we can start from simple factorized distributions
such as a mean-field Gaussian and apply normalizing flows to obtain complex and multi-modal
distributions [21–23].

Ideally a flow is both expressive and requires a reduced additional cost. Several transformations have been
proposed in the literature [21, 22] to compute efficiently both (8) and (9). An example are Masked
Autoregressive Flows [24] (MAF) and its inverse, the Inverse Autoregressive Flows [25] (IAF) which allow to
compute efficiently equation (9) and equation (8), respectively. Real valued non-volume preserving
transformations [26] (NVP) are a special case of both MAF and IAF, in which d pass-through units are
selected and the transformations on the other units are function of these pass-through units. A more recent
improvement is represented by neural ODE [27, 28] in which the flow is represented by a continuous
transformation specified through an ordinary differential equation. In this paper we will use: NVP, MAF and
IAF as a proof of concept to show how to provide a more flexible and scalable distribution in the output of
the network with the purpose of extracting complex features in the data such as a non-Gaussianities and
provide well calibrated BNN model. When training (or calibrating) with a flow, we will use equation (9) to
compute the log likelihood lnp(y|x,w) in the Variational Inference objective 1.

3. Dataset generation

We generated 21 cm simulations through the semi-numerical code 21cmFast [29], producing realizations of
halo distributions and ionization maps at high redshifts. Through approximate methods, the code generates
full 3D realizations of the density, ionization, velocity, spin temperature, and 21-cm brightness temperature
fields. The latter is computed as [30]

δTb ≈ 27(1+ δm)xHI
(TS −Tγ(z)

TS

)( Ωbh2

0.023

)(1+ z

10

0.15

Ωmh2

) 1
2
mK, (11)

where TS and Tγ(z) are the gas spin and the CMB temperatures at redshift z, respectively, δm is the density
contrast of baryons, and xHI denotes the neutral fraction of hydrogen. At z≈ 6− 20, the emission of photons
from the first galaxies and black holes ionizes and warm up the IGM [31]. Once the gas is ionized at some
percent level (~ 25%, see [32]), the spin temperature becomes greater than CMB temperature, TS >> Tγ

(saturation assumption), and thus, the dependence on TS may be neglected in equation (11). Combining the
excursion-set formalism and perturbation theory [29], 21cmFast computes the contrast density and the HI
ionized field parametrized by xHI , relevant to derive the 21 cm brightness temperature, equation (11). In
order to generate the synthetic dataset for training the network, we follow the ideas started in [13] where we
have varied four parameters. Two parameters corresponding to the cosmological context: the matter density
parameter Ωm∈[0.2, 0.4], and the amplitude of mass fluctuations on 8h−1Mpc, σ8∈[0.6, 0.8]. The latter
parameter is related to the number of collapsed dark matter halos affecting the timing of reionization. The
remaining cosmological parameter is fixed at Ωbh2 = 0.022 with h= 0.68. The other two parameters
corresponding to the astrophysical context: the ionizing efficiency of high-z galaxies ζ ∈ [10, 100] and the
minimum virial temperature of star-forming haloes TF

vir ∈ [3.98,39.80]× 104K (hereafter represented in
log10 units) that imposes a threshold which suppresses the star formation. These astrophysical variables
parameterize the reionization and primarily control the timing of the EoR. For each set of parameters we
produce 20 images at different redshifts in the range z∈ [6, 12] allowing to work under the saturated regime
(TS >> Tγ), and we stack these redshift-images into a single multi-channel tensor. This scheme brings two
main advantages, first the network can extract effectively the information encoded over images as it was
reported in [14], and secondly, it represents adequately the signals for the next-generation interferometers
and provides advantages when we need to include effects of foreground contamination [8]. As a final result
we have obtained 6, 000 images with with size (128, 128, 20) and resolution of 1.5 Mpc generated from
simulations with box size of 192Mpc, and number of cells N= 128. We used a 70-10-20 split for training,
validation and test, respectively.

4. Architecture and network training

All the networks are implemented using TensorFlow 3 and TensorFlow-Probability 4. We used a modified
version of the VGG architecture with 5 VGG blocks [33] (each made by two Conv2D layers and one max
pooling) and channels size [32, 32, 32, 32, 64]. Kernel size is fixed to 3× 3 and activation function used is

3https://www.tensorflow.org/.
4https://www.tensorflow.org/probability.

4



Mach. Learn.: Sci. Technol. 1 (2020) 035014 Héctor J. Hortúa et al

Figure 1. Scheme of the architecture used in the paper. Gray box represents the NF applied in the output of the network.

LeakyReLU (α=−0.3). Each convolutional layer in the network is followed by a batch renormalization
layer [34]. The last layer is dense with output corresponding to the mean of predictions µ and a lower
triangular matrix L, cf [12, 14, 16], yielding a multivariate Gaussian distribution with mean µ and
covariance Σ= LL⊤ to guarantee positive definiteness. The network architecture is illustrated in figure 1, we
train the network both with and without the Normalizing Flows. We trained the networks for 180 epochs
with batches of 32 samples, using 10 samples from the approximate posterior for the estimation of
equation (4) (experiments with 1 sample are also reported in the appendix for comparison). After training,
to obtain the prediction distributions and the related uncertainties, we feed each input image from the test
set 2,500 times to each network.

4.1. Calibration in BNNs
Predicting reliable uncertainties is crucial for classification and regression models in many applications.
However, it is known that DNNs trained with NLL may produce poor uncertainty estimates [35, 36]. Weight
decay, Batch Normalization and the choice of specific divergences in VI have been shown to be important
factors influencing the calibration [35, 37]. One way to observe this miscalibration is computing the coverage
probability in the test set. For doing this, we have binned the samples drawn from inference and computed
their mode [38]. With this value, and assuming an unimodal posterior, we estimated the intervals that
include the 68, 95, and 99% of the samples.

To deal with the miscalibration of the network, we will proceed as follows. First, we try to calibrate the
network during training by tuning hyper-parameters such as dropout rate in Dropout [14, 38] or the
regularization for the scale of the variational distribution in Flipout [14]. Then we calibrate the network
using NF (figure 1), following two possible paths. On one side we can retrain the best model found so far by
including NF in the output of the network to minimize equation (1). On the other hand, we can use the
approach proposed in [14] to calibrate the network with a post-processing calibration approach, by
fine-tuning the last layer of the network and minimizing again the NLL defined in equation (1) transformed
by NF (see figure 1). At the end, we will compare the resulting networks and analyze the pros and cons for
the different cases.

5. Results

We quantify the performance of the networks by the coefficient of determination and the accuracy of the
uncertainties (well calibrated networks). The coefficient of determination is defined as

R2 = 1−
∑

i(µ̄(xi)− yi)
2∑

i(yi − ȳ)2
(12)

where µ̄(xi) (see equation (6)) is the prediction of the trained Bayesian network , ȳ is the average of the true
parameters and the summations are performed over the entire test set. R2 ranges from 0 to 1, where 1
represents perfect inference. Regarding uncertainties accuracy, for calibrated networks yi should fall in a β%
confidence interval of the conditional density estimation (4) approximately β% of the time, where
β= {68.3, 95.5, 99.7} corresponding to 1, 2, and 3σ confidence levels of a normal distribution.

5.1. Comparison among BNNsmethods
For Dropout we tested several dropout rates in the range [0.01, 0.1] keeping L2 regularization fixed to 1e−5,
while for Flipout we tested several L2 regularizations in the range [1e−5, 1e−7]. A detailed summary of the
experiments is reported in figure A1 and tables A1-A2 in the appendix.

5
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Table 1.Metrics for the best experiments with Flipout and Dropout.

Flipout (NLL= -2.94) Dropout (NLL= -0.74)

σ8 Ωm ζ TF
vir σ8 Ωm ζ TF

vir

R2 0.94 0.98 0.87 0.97 0.87 0.94 0.65 0.92
C.L. 68.3% 69.6 73.6 72.8 76.1 70.4 67.3 58.5 76.1
C.L. 95.5% 96.0 97.1 97.4 96.7 95.7 96.3 91.7 98.5
C.L. 99.7% 99.6 99.9 99.7 99.7 99.6 99.8 99.8 99.9

Figure 2. Posterior distributions of the parameters for one example in the test set. The dashed lines stand for the real values. The
contour regions in the two-dimensional posteriors stand for 68 and 95% confidence levels.

Table 2. Limits at the 95% confidence level of the credible interval of predicted parameters.

σ8 Ωm ζ TF
vir

Flipout 0.672+0.037
−0.036 0.380+0.020

−0.020 84.00+20.00
−20.00 5.193+0.080

−0.079

Dropout 0.686+0.048
−0.048 0.379+0.033

−0.033 65.00+30.00
−30.00 5.250+0.170

−0.170

Example true value 0.652 0.372 88.847 5.096

Table 1 reports the best configuration of the network: Flipout with L2 regularizer 1e−7 and Dropout with
dropout rate 1e−2. We report in the same table the coefficient of determination and average confidence
intervals for Flipout and Dropout after calibration [14], and we observe that Flipout obtains the best
estimations even though tends to overestimate its uncertainties.

In figure 2 we report the confidence intervals5 for a single example in the test set and in table 2 we present
the parameters predictions at the 95% confidence level. Notice that Flipout yields more accurate inferences
and provides tighter constraints contours, see for example TF

vir-ζ . Moreover, the correlations extracted from

5We use the getdist [39] package to produce the plots.
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Table 3.Metrics for the best experiments with Normalizing Flows.

IAF (NLL= -3.63) MAF (NLL= -3.19) NVP (NLL= -2.00)

σ8 Ωm ζ TF
vir σ8 Ωm ζ TF

vir σ8 Ωm ζ TF
vir

R2 0.93 0.97 0.86 0.97 0.93 0.98 0.86 0.97 0.93 0.96 0.86 0.97
C.L. 68.3% 65.6 69.8 64.0 66.8 65.6 66.0 60.3 67.7 56.6 71.1 67.1 68.9
C.L. 95.5% 94.0 95.2 93.0 94.0 95.2 94.0 90.0 94.3 86.1 96.4 94.6 95.2
C.L. 99.7% 99.1 99.7 98.7 99.3 99.4 99.2 97.8 99.3 96.4 99.6 99.5 99.4

Table 4. Limits at the 95% confidence level of the credible interval of predicted parameters using Normalizing Flows.

σ8 Ωm ζ TF
vir

IAF 0.670+0.037
−0.033 0.375+0.021

−0.021 82.00+20.00
−10.00 5.142+0.072

−0.070

MAF 0.667+0.031
−0.029 0.382+0.015

−0.016 84.00+10.00
−10.00 5.179+0.066

−0.068

Example true value 0.652 0.372 88.847 5.096

Table 5.Metrics for the best experiments with Normalizing Flows after calibration.

IAF (NLL= -3.80) MAF (NLL= -3.73) NVP (NLL= -3.44)

σ8 Ωm ζ TF
vir σ8 Ωm ζ TF

vir σ8 Ωm ζ TF
vir

R2 0.94 0.98 0.87 0.98 0.94 0.98 0.87 0.98 0.94 0.98 0.87 0.98
C.L. 68.3% 66.0 64.0 69.2 65.4 64.7 63.7 69.1 65.0 65.9 64.8 68.8 66.0
C.L. 95.5% 94.0 94.0 95.0 94.0 93.3 94.2 95.1 94.0 93.0 94.0 94.0 93.0
C.L. 99.7% 99.2 99.2 99.5 99.6 99.0 99.3 99.3 99.4 99.0 99.2 99.0 99.0

EoR such as σ8-Ωm (see figure 2) provide significant information for breaking parameter degeneracies and
thus, be able to improve the existing measurements on cosmological parameters [1, 2, 40]. In the following
sections we will focus on the methods used for producing reliable uncertainties. Since Flipout achieves better
performances than Dropout, from now on we will use Flipout to determine the performance of the
subsequent calibration experiments.

5.2. Normalizing Flows during Training
A good predictive distribution depends on how well the parametric distribution matches the exact posterior.
For the case presented above, the variational distribution provides a simple Gaussian approximation for the
conditional density p(y|x,w).

Normalizing Flows map an initial probability distribution through a series of transformations to produce
a richer, and even a multi-modal distribution [20].

We consider different kinds of Normalizing Flows acting on the output distribution of a BNN: the inverse
autoregressive flow (IAF), Masked Autoregressive Flow (MAF) and non-volume preserving flows (NVP). The
results of these experiments are reported in table 3. We observe that the R2 are comparable for all methods,
but the NLL is higher for the IAF, which means that this method tends to recover better accuracy in the
uncertainties. This is consistent with the findings showed in the last three rows in table 3, where the coverage
probability in the test set is closer to the confidence intervals for IAF.

Normalizing Flows lead to more expressive output distributions that focus on obtaining better calibrated
probabilities rather than enhancing the precision in the target values (quantified by R2), cf with results in
table 1. In figure 3 we compare the best models i.e. IAF and MAF. We can notice how smaller are the
confidence regions predicted by MAF with respect to IAF, although both methods predict roughly the same
orientations as expected. Finally, the values of the parameters with confidence levels at 95% are reported in
table 4. Comparing these results with table 2 we can notice how the predicted parameters uncertainties are
both tighter and showing some degree of asymmetry, the average skewness and kurtosis are 0.1, 0.04 for IAF,
and 0.07,−0.02 for MAF.

5.3. Normalizing Flows in the post-process calibration
In this part we will focus on post-process methods for network calibration using Flows. We apply
Normalizing Flows on the output distribution of the Flipout experiment reported in section 5.1, trained with
a vanilla Multivariate Gaussian in output. We retrain the last layer as it was suggested in [14], plus we train
the parameters of the flow. This method has the advantage that does not require to retrain the entire
network, thus demonstrating to be very cost efficient.

7
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Figure 3. Posterior distributions of the parameters for one example in the test set using Normalizing flows. The dashed lines stand
for the real values. The contour regions in the two-dimensional posteriors stand for 68 and 95% confidence levels.

Table 6. Limits at the 95% confidence level of the credible interval of predicted parameters using Normalizing Flows with and without
calibration.

σ8 Ωm ζ TF
vir

IAF 0.667+0.025
−0.026 0.288+0.014

−0.013 58.00+10.00
−10.00 4.624+0.054

−0.053

MAF 0.656+0.025
−0.024 0.295+0.012

−0.011 60.00+10.00
−10.00 4.638+0.046

−0.047

NVP 0.656+0.032
−0.030 0.302+0.013

−0.013 55.00+10.00
−10.00 4.655+0.058

−0.065

IAF calibrated 0.659+0.026
−0.024 0.293+0.012

−0.013 58.00+10.00
−10.00 4.629+0.053

−0.052

MAF calibrated 0.660+0.025
−0.024 0.292+0.013

−0.014 58.00+10.00
−10.00 4.629+0.049

−0.051

NVP calibrated 0.663+0.026
−0.024 0.291+0.013

−0.013 57.00+10.00
−10.00 4.634+0.045

−0.045

Non-Flow 0.662+0.031
−0.029 0.294+0.015

−0.015 57.00+12.00
−12.00 4.644+0.069

−0.068

Example true value 0.664 0.285 60.750 4.629

Results after 120 epochs of the proposed recalibration are reported in table 5. Notably, the
post-processing calibration outperforms all other experiments done so far, in terms of both the expected
deviation from the target value, R2, and the NLL, cf tables 1 and 3. Additionally, the improvement of the NLL
leads to better calibrated networks, validated thought the coverage probabilities in table 5. What is perhaps
even more interesting is that using any Normalizing Flow method in the post-process period, outperforms
the performances obtained by that same flow during training, which leads to a powerful method for
obtaining models with correct interpretation of its uncertainty estimates. Calibrating with a NF results to be
an easier optimization, converging to better results. The results obtained are comparable to the
state-of-the-art (R2 for: ζ = 0.850 and TF

vir = 0.980 in [7], Ωm = 0.997,σ8 = 0.997 in [9]), but the
architecture used in the present paper is considerably smaller (250,185 trainable parameters) compared with
the networks employed in [7, 9] with ~ 10 millions. Furthermore as discussed in this section our approach
has the advantage to be able to provide uncertainty estimation for the predicted parameters.

In order to compare the methods used so far, we chose an example from the test set, and produced the
posterior and marginalized distributions of the parameters, obtaining the results displayed in figure 4. We
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Figure 4. Posterior distributions of the parameters for one example in the test set using Normalizing flows after calibration. The
dashed lines stand for the real values. The contour regions in the two-dimensional posteriors stand for 68 and 95% confidence
levels.

can observe that after calibration, the contours produced by MAF becomes wider solving the
underestimation found during training. Moreover, the contours of MAF and IAF applied in calibration
overlap, and they are smaller compared with the base experiment, while Flows applied during training
produce better results only for IAF. The credible intervals at 95% are shown in table 6. There we can see the
effect of the flows on the performance of the network, allowing for a reduction of the uncertainty intervals.
In appendix B we report the correlation matrix for IAF and MAF.

Finally, in figure 5 we plot the predicted and true values of the cosmological and astrophysical parameters
using the model calibrated with IAF and MAF Flows. The error bars displayed in the plots correspond to
both aleatoric and epistemic uncertainties. Here we observe that σ8 parameter contains larger errors which
means this parameter is the most difficult to predict accurately, this could be a consequence of the 21cm
signal being less sensitive to the effects of the density field than the IGM properties [7, 9]. The ionizing
efficiency, ζ , presents instead accurate predictions at low values, which are getting progressively less accurate
and less precise at larger values. This fact could be explained due to the limited information at high redshifts
(which can be reduced by assuming not spin temperature saturation) and also, the small variability of the
brightness temperature maps at lower redshift with respect to large values of ζ .

5.4. Comparison withMCMC based frameworks
While a proper quantitative comparison with MCMCmethods is outside the scope of the present work, it is
important to notice that although MCMCmethods converge asymptotically to the exact posterior, this can
take a long time due to their high variance [41], and assessing their accuracy or evaluating the convergence
can be very difficult. In [42, 43] the authors develop MCMC analysis tools to constrain the EoR astrophysical
parameters; however, extensions such as the IGM heating, the estimation of Cosmological and additional
instrumental parameters, might yield to a computationally intractable problem. An alternative to overcome
this problem is the use of emulators [44] which can efficiently provide the summary statistics from

9
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Figure 5. Parameter inference for different Flow methods using the test set after calibration. The images in each panel contain the
true values vs the predicted parameter values. The shadow lines represent the total uncertainty, epistemic plus aleatoric.

simulations enhancing the speed of MCMC sampling processes, but without the ability to extract
non-Gaussian information if the power spectrum is only used during inference. Another alternative
presented in the present paper is making use of VI which has the advantage of cheaply computing the
approximate posterior distribution and makes it easier to assess convergence. Inference for a 21cm map is
performed in approximately 5 seconds, using 3500 samples to estimate the approximate posterior on a
GeForce GTX 1080 TI. Notice that VI is prone to underestimating their errors, nonetheless calibration
methods like the ones applied in this paper aim to solve this issue and pave the way towards providing
reliable uncertainty estimates in low-cost computation. Additionally, we can even combine VI and MCMC
and leveraging the advantages of both inference techniques [45].

6. Conclusions

We presented the first study using a Bayesian Neural Network and Normalizing Flows to obtain credible
estimates for astrophysical and cosmological parameters from 21cm signals. These methods offer alternative
ways different from MCMC to make inference and recover the information in the 21cm observations. Firstly,
we show that Flipout outperforms Dropout and is able both to better estimate parameters correlations and to
obtain a better coefficient of determination. Comparing with existing literature, we obtain comparable
performances, while using a relatively smaller network than [7, 9], furthermore by using a BNN, based on
Variational Inference, we can estimate the confidence intervals for the predictions and the parameters
uncertainties correlations. The 21 cm signal is highly non-Gaussian due to the complex physics involved
during the EoR. Normalising Flows provide a flexible likelihood model capable to better capture complex
information encoded in the dataset. This improves the performance of the network, training with flows
achieves better NLL values than experiments without Flows (tables 1 and 3). Additionally we propose novel
calibration methods employing flows after training, showing how this method provide accurate uncertainty
estimates and high prediction of the parameters regardless of the flow used (table 6). Fine tuning the last
layer, in combination with NFs leads to a simple, fast and effective technique for calibrating BNNs.
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Calibration via hyperparameter tuning is expensive because needs a separate training for each
hyperparameter combination. Hyperparameter tuning (like dropout rate for Dropout or L2 regularizer for
Flipout) is modulating the variance of the distribution of the weights during training. Furthermore we found
in practice that tuning hyperparameters to obtain a calibrated network reaches a sub-optimal configuration
(in terms of coefficient of determination R2) compared to a network trained with higher variance in the
weights distribution, but calibrated afterwards (tables 3 and 4).

As future perspective, we plan on evaluating the performances of different network architectures (also in
particular residual networks) and estimate the cosmological and astrophysical parameters in the presence of
realistic noise from instruments of the future 21 cm surveys and in other astrophysical dataset.
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Appendix A

In tables A1-A2 we report different experiments, to determine the most adequate technique for estimating
the parameters from the 21 cm dataset. First, we found that sampling more than once during training
improves the results. Second, Flipout does a good job for extracting the information in the 21 cm images
rather than other techniques such as Dropout.

Finally, we observe that Dropout underestimates its uncertainties while Flipout overestimates its
uncertainties, therefore methods for calibration should be used before reporting the predictions. The

Figure A1. One and two-dimensional posterior distributions of the parameters for one example in the test set. Each color
represents different experiments.
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Table A1.Metrics for all Dropout experiments: dr= (1e−2, 0.1), reg= 1e−5. In each experiment, we sample once and ten times during
training.

Dropout dr= 1e−2 Dropout dr= 0.1

Sample= 1 Sample= 10 Sample= 1 Sample= 10

NLL -0.18 -0.74 0.99 0.28
R2 0.77 0.85 0.70 0.78
68% C.L. 65.3 68.1 66.7 65.0
95% C.L. 94.1 95.5 92.8 92.2
99% C.L. 99.3 99.7 98.7 98.7

Table A2.Metrics for all Flipout experiments: reg= (1e−5,1e−7). In each experiment, we sample once and ten times during training.

Flipout reg= 1e−7 Flipout reg= 1e−5

Sample= 1 Sample= 10 Sample= 1 Sample= 10

NLL -2.30 -2.94 -1.81 -2.00
R2 0.91 0.94 0.84 0.84
68% C.L. 75.5 73.0 76.2 76.4
95% C.L. 97.2 96.8 97.6 97.5
99% C.L. 99.5 99.8 99.8 99.8

confidence level reported in tables A1-A2, are computed with the method explained in section 4.1. The
contour regions for the best results are also reported in figure A1. The R2 for Flipout is reported in table A2.

Appendix B

In this appendix we show the correlation matrix for the example σ8 = 0.664, Ωm = 0.285, ζ = 60.750 and
TF
vir = 4.620, for IAF and MAF after calibration:

IAF=


1 −0.483 −0.600 0.284

−0.483 1 −0.191 0.360
−0.600 −0.191 1 −0.103
0.284 0.360 −0.103 1

 (B1)

MAF=


1 −0.493 −0.588 0.222

−0.493 1 −0.191 0.365
−0.588 −0.191 1 −0.09
0.222 0.365 −0.09 1


The above values present a quantitative measure of the correlation displayed in the upper part of figure 5.
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