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Abstract
Recently there has been an ever-increasing trend in the use of machine learning (ML) and artificial
intelligence (AI) methods by the materials science, condensed matter physics, and chemistry
communities. This perspective article identifies key scientific, technical, and social opportunities
that the materials community must prioritize to consistently develop and leverage Scientific AI
(SciAI) to provide a credible path towards the advancement of current materials-limited
technologies. Here we highlight the intersections of these opportunities with a series of proposed
paths forward. The opportunities are roughly sorted from scientific/technical (e.g. development of
robust, physically meaningful multiscale material representations) to social (e.g. promoting an
AI-ready workforce). The proposed paths forward range from developing new infrastructure and
capabilities to deploying them in industry and academia. We provide a brief introduction to AI in
materials science and engineering, followed by detailed discussions of each of the opportunities
and paths forward.

1. A brief perspective on AI in materials science

Recent reports, reviews, symposia, and workshops have heralded machine learning (ML) and artificial
intelligence (AI) methods as the next scientific paradigm in materials discovery and optimization [1–5].
Applications to materials science have exploded, spanning data analysis, knowledge extraction, and
experiment selection [1, 6–9]. The numerous reasons for this trend are related to the omnipresence of ML
systems in our everyday lives, the free availability software, and the demonstrated successes in materials
discovery and on-the-fly data acquisition inspired by the Materials Genome Initiative (MGI) [1, 10–12].
However, despite their recent prominence, these techniques have been applied in a variety of materials
science fields since the early 1960’s [13–17].

Some recent examples of the successful implementation of ML to materials science were demonstrated by
the high-throughput experimental (HTE, also known as ‘combinatorial’) community. Parallel material
synthesis and rapid characterization introduces a critical bottleneck in the analysis of hundreds to thousands
of high-quality measurements correlated in composition, processing and microstructure [18–21]. There have
been several international efforts to standardize data formats and create data analysis and interpretation tools
for large scale data sets [22–24]. The rise of the HTE community resulted in the creation of new and creative
modes of measuring properties and visualizing and interpreting data. As algorithms for automating these
tasks mature, decision-making and experimental planning are emerging as new bottlenecks in the materials
research process. This means that advances in AI for materials research are as important as ever for
accelerating innovation in materials, for example through emerging autonomous experimental
systems [25–29].

Although the application of AI is now increasingly commonplace in the materials community, we are
approaching the peak of excitement and inflated expectations. Some disillusionment is inevitable, but we
believe that by pursuing the following opportunities the community will more rapidly reach a steady state of
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widespread productive application of AI. Figure 1 summarizes the scope of our proposed paths towards
achieving this goal through 1) methodological development in scientific AI, 2) significant investment in
cyber-physical infrastructure, 3) commitment to measures improving trust in AI systems, and 4) workforce
development.

2. Opportunities in scientific AI

The transition from expectations to practice for AI will require development of robust Scientific AI systems
that can go beyond generating leads, i.e. nudges in the right direction, to providing rich functionality that
enables scientific discovery. Two opportunities to close this gap are:

(a) developing Scientific AI systems that combine ML techniques with physical mechanisms
(b) innovative applications of AI systems to directly derive scientific insight

A robust community of interdisciplinary materials science and engineering (MSE) and ML researchers is
needed to enable the algorithmic development to support these two goals. Distributed automated laboratory
systems will facilitate this development by equalizing access to cutting edge experimental materials science,
providing a substrate for high-impact interdisciplinary collaboration. Materials have always been technology
enablers, and currently there are many key technology areas that await materials discovery and processing
solutions. Addressing these opportunities will drive and propel the required developments.

2.1. Incorporating physical mechanisms intoMLmodels
The brute force strategy of collecting massive annotated datasets, such as those that enabled the current wave
of advances in image recognition, natural language understanding, and neural translation, is untenable due
to the relative scarcity of many types of materials data, and the high cost of obtaining materials data. Instead,
the materials community needs to address underdeveloped material and processing representations to
improve model quality and expand application of AI methods, leveraging the so-called bias-variance tradeoff
[30]. Simple models fail to capture the complexity of hierarchical materials structures (i.e. they underfit due
to high bias), while high capacity models often yield pathological or trivial results for small and
medium-sized datasets (i.e. they overfit due to high variance). The challenge is to introduce the right kind of
bias into high capacity models by designing input representations and model forms to reflect known
invariances, equivariances, and symmetries in the domain [31–35]. In the context of scientific AI, this means
incorporation of mechanistic biases to create interpretable models and learning algorithms, explicitly
incorporating physical heuristics, theories, and laws into the model form. For example, the Physically
Inspired Neural Network interatomic potential [36] uses a neural network to adaptively parametrize a
classical interatomic potential form instead of directly modeling forces and energies. More expansively,
universal differential equations [34] directly incorporate neural networks into mechanistic differential
equation models.

A key opportunity is to systematically integrate the vast implicit and explicit materials knowledge in the
published literature on a per-task basis through model form specification and learning algorithm design
choices. This principle is applied in a limited way in the materials AI community, but much research is
needed to more fully incorporate physical intuition before ML models can extrapolate to new regions of
material space. Development of knowledge graphs and ontologies that capture subject matter expertise will
help to provide more actionable material representations and hierarchical material models. Differentiable
programming [35] (and probabilistic programming more generally) is a promising new set of tools for
coordinating and unifying complementary sources of mechanistic physical information.

In addition to incorporating mechanistic biases at the level of individual modeling tasks, scientific AI
systems for materials development will require the development of hybrid machine learning systems that
bridge time and length scales as well as experimental and computational paradigms. Outside of the
interatomic potentials community, there are few demonstrations of representing material structure
representations tailored for dynamic processes. It is difficult to encode certain types of metadata
(environment, processing paths, heat transfer characteristics that depend on geometry, etc) that are known
to influence material properties. Vector-valued and time-varying material processing attributes (such as
loading and annealing schedules) are often reduced to categorical and tabular representations. Importantly,
much effort is required to address technologically important materials systems, where the complexity of
material processing far exceeds that of laboratory-scale studies.
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2.2. Deriving scientific insight from AImodels
In many ways, current applications of AI in materials science focus more on solving engineering and design
problems than on directly deriving fundamental scientific insight from data. Current materials science AI
applications predominantly focus on lead generation and black-box optimization. To realize the full
potential of AI to help us more efficiently and effectively practice scientific inquiry, the materials community
must develop AI systems that can represent, evaluate, and perform inference about physical mechanisms
underlying observational data.

In the short term, creative application of existing ML methods is enabling new avenues to accelerate
scientific discovery. Active learning, for example, might be applied to identify a set of optimal experiments to
disambiguate a list of potential physical theories, as is being explored in the social sciences [37]. Similarly,
algorithmically driven experimentation could be used to search for counterexamples to heuristic models or
physical theories, potentially providing materials scientists with valuable insights into why these heuristics
and theories break down [38]. Furthermore, much of the existing materials knowledge base is in the form of
implicit institutional knowledge and expert intuition. Thus, development of ‘human-in-the-loop’
methodologies leveraging real-time model visualization, introspection, and feedback must not be
overlooked.

An important next step in scientific AI is the development of new AI methods tailored for scientific
discovery. This includes methods that can infer physical relationships, mechanisms, and principles from
data, potentially drawing from the fields of causal discovery [39] and probabilistic programming [40]. At the
‘Strong AI’ extreme of this line of inquiry, hypothetical AI systems will be expected to formulate and test
scientific theories to credibly identify new scientific paradigms. Even if such systems can be constructed, they
will still need to overcome the Pauling Problem [41], where physical bias overwhelms new evidence of
worldview-breaking phenomena such as superconductivity, 2D materials, or quasicrystals.

2.3. Paths forward
Cross-disciplinary Collaboration

• Generate funding opportunities targeted towards funding cross-disciplinary research at the cutting edge of
MSE, ML, AI, and Robotics to promote communication skills to identify and frame mutually interesting
research.

• Collaborate to develop multiscale materials and knowledge representations and generative modeling tech-
niques

• Create career opportunities at the research associate and technician levels in applied ML and Software
Engineering.

• Explore probabilistic programming methods to meld physical and phenomenological modeling with
machine learning.

• Develop objective methods for identification and evaluation of the most informative or unusual datum in
any given scientific dataset.

Autonomous research platforms:

• Develop open autonomous research platforms to provide a substrate for developing and deployingmaterials
AI methods on large-scale materials design problems.

• Provide opportunities for the broadmaterials and AI communities to have access to these platforms, lower-
ing the barrier to entry to materials discovery and design.

Reference data:

• Develop challenge problems to focus innovation and collaboration on difficult scientific discovery prob-
lems, i.e. the materials discovery and design analog to Large Scale Visual Recognition Challenge [42].

• Compile materials datasets with annotated physical rules and heuristics.

3. Opportunities in cyber-physical infrastructure

Realization of scientific AI’s potential in materials science and engineering will require advanced
cyber-physical infrastructure. We have identified four major opportunities to facilitate this development:

(a) Improved standards and coordination in materials data infrastructure
(b) Development of open and interoperable API-enabled experimental tools

3
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Figure 1.Opportunities and proposed paths forward that will enable broader and more effective use of AI in materials science and
engineering. The blue intersections represent areas of particular importance to be discussed in this paper.

(c) Development of scalable on-demand synthesis/characterization capabilities
(d) Democratization of research platforms

An improved materials data infrastructure will enable data stewardship throughout the research data
lifecycle, which will greatly improve the accessibility of data and metadata to both AI systems and human
researchers. Fully automate-able synthesis and characterization tools that execute standardized experimental
protocols will improve reproducibility while seamlessly capturing provenance. This will decrease the cost of
generating new data and knowledge, and will support real-time distributed and autonomous
experimentation. Development of new impedance matched, on-demand synthesis and characterization
techniques will be critical to expand the applicability of this approach. The fundamental question is how do
we rethink the ‘synthesize-then-characterize’ framework when actionable knowledge can be generated at a
rate faster than it takes to transfer the specimens? Finally, we must develop organizational frameworks to
democratize access to these new experimental, computational, and data resources, something, comparable to
the user facility paradigm at high performance computing centers. Ultimately, this framework would enable
scientists and engineers to focus more of their time on conceiving, planning, and executing scientific studies.

3.1. Standards and coordination in materials data infrastructure
Over the past decade, several reports have identified materials data infrastructure as critical gaps limiting
innovation in materials research [43–45]. These reports consistently highlight the need for long-term support
of shared data services, improved coordination among government agencies, publication of all research data
(novel as well as null) with robust metadata, and improved development of community standards for these
data and metadata. Findable, Accessible, Interoperable, and Reusable (FAIR) data principles [46] can guide
the materials science and engineering community in developing infrastructure suited to collaborative and
adaptive research. However, the complexity of materials science and engineering data poses unique
challenges to the adoption of FAIR principles. International groups, such as the Research Data Alliance, are
fully embracing FAIR Data Principles and are extending them beyond data and metadata, to data types,
instruments, and physical samples. Currently, the materials science and engineering community does not
have robust frameworks for assigning persistent identifiers to data types, instruments, physical samples, and
data and metadata within a larger dataset. Furthermore, once persistent identifiers are assigned on smaller
units within a larger dataset, the community will face challenges in effectively and uniformly citing data.

3.2. Open and interoperable API-enabled experimental tools
Critical bottlenecks for adaptive science and autonomous control of experimental systems are (i) a
widespread absence of application programming interfaces (API) to interact with laboratory equipment,
(ii) lack of a unified language for experimental workflow protocols, and (iii) lack of standardized and open
data formats to facilitate accessibility and interoperability. Currently, downstream researchers are developing
ad hoc hardware interfaces, duplicating effort and often incurring substantial technical debt. Materials
synthesis and characterization workflows are typically manifested in custom software rather than in
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composable and machine-actionable data representations. Finally, experimental equipment is supported by a
diverse collection of vendor-specific interfaces and formats, which may not be well-documented, and may be
difficult to use independently from vendor-developed software frameworks. This presents an unnecessary
impediment to innovation in real-time data analysis and adaptive experimental planning and control. There
is a significant need to facilitate industry-lead development of standards for open and machine-actionable
instrument APIs, executable protocols for experimental workflows, and file formats.

3.3. Scalable on-demand synthesis/characterization capabilities
Current materials synthesis and characterization tools are not designed for low latency and high agility
between experiments, leading to a significant time-constant mismatch with the algorithmic decision-making
that is enabling autonomous experimentation. Currently, an individual high-throughput experimental
campaign is restricted to depositing a monolithic combinatorial library under (typically) identical processing
conditions and characterizing each sample within the library for the composition, structure, and multiple
figures of merit. While high-throughput synthesis techniques enabled revolutionary improvements in the
rapid exploration of process-structure-property relationships [47–51], library generation now presents a
major bottleneck due to its high latency and the intensity of human labor involved. Therefore, low latency,
automated synthesis platforms, integrated with multimodal characterization tools, should be developed. AI
also presents unprecedented opportunities for novel adaptive experiments enabled by in situ automated
perception and data analysis, e.g. through real-time identification, tracking, and subsequent fine-grained
analysis of features of interest [52]. For low-latency decision-making, it may be necessary to leverage edge
computing [53], e.g. running a deep learning model directly on detector output.

3.4. Resource democratization
Large materials research user facilities (e.g. Advanced Photon Source, NERSC) have demonstrated a model
for decoupling the construction and operation of experimental tools and computing infrastructure from the
use of those tools by scientific subject matter experts. Similarly, the adaptive synthesis and integrated
multimodal characterization platforms described above will require significant capital investment to invent,
develop, build, and operate. Therefore, the materials community, and the greater community at large, is
presented with an opportunity to develop an organizational and technological framework to facilitate
collaboration between theoretical and experimental research groups, and to lower the barrier for
cross-material-system, cross-synthesis-method, and cross-modality studies. This framework would also
provide increased access to cutting edge experimental materials capabilities to new user communities from
underrepresented groups and smaller institutions.

In addition to the cyber-physical infrastructure challenges described above, experimental synthesis and
characterization methods are very specific to a given class of materials. There is unlikely to be even one brick
and mortar facility to allow researchers to study several materials classes. The Materials Innovation Platforms
at the National Science Foundation [54] provide one avenue for resource democratization spanning from
predictive synthesis to characterization. These topical platforms are well suited to serve as highly-connected
experimental nodes in a research network where information is shared through repositories with
community-designed schemas and communication protocols. MIPs might also provide a means of
performing the expansive microstructure and interface characterization needed to explore
property/performance landscapes across a diverse set of critical materials systems, where microstructure and
interfaces strongly mediate material performance.

3.5. Paths forward
Consortia

• Develop community standards to enable FAIR data and equipment interoperability, while learning from
successful examples, such as MTConnect

• Design, deploy, operate, and provide democratized access to distributed autonomous laboratory platforms
and broader cyber-physical infrastructure, as advocated in the high throughput experimental materials col-
laboratory (HTE-MC) concept [55].

• Launch new funding initiatives to support creation of materials-focused AI Research Centers and Mission-
Driven AI Laboratories as described in [56].

Autonomous materials science

• Design for automation: Rethink the ‘high throughput’ materials synthesis methodology portfolio in light of
new capabilities in real-time automated perception, modeling, decision making, and the need for real-time
closed-loop feedback from multiple structure and property probes.

5
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• Leverage automation: identify new opportunities to turn ex situ analysis methods into AI-driven in situ
adaptive techniques.

4. Opportunities in trust

Promoting community-wide trust in Scientific AI results is key to reducing the impact of increased
disillusionment. We have identified three important opportunities for improving confidence in scientific AI
as applied to materials:

(a) Develop and enforce community wide standards for reporting uncertainty from archival data to final
model predictions.

(b) Create a scientific culture that values and promotes reproducibility, validation, and verification of pub-
lished data

(c) Work towards improving the interpretability of AI models and providing a solid foundation towards
trust in their predictions

Creating a robust interdisciplinary community spanning MSE and computer science will create
opportunities for real-time methods for exploring materials representations, permitting researchers to have
confidence that the final model reflects solid physical principles. Generation of reference data sets and
materials data challenge problems will allow benchmarking of new models/algorithms using specially
designed performance indicators relevant to the specific AI task. Dissemination of best practices will create a
community of informed skeptics that request open code and datasets, look for task-appropriate performance
indicators, and are alert to issues of dataset and modeling bias.

4.1. Uncertainty: archival data to final model predictions
Current applications of AI in materials science largely ignore the uncertainty of the raw data used to train
models. Leveraging larger scale datasets derived from the open literature and published materials databases
will require systematic evaluation of source and reporting of measurement and model uncertainty. Reporting
uncertainty is introduced by incomplete collection, storage, and/or publication of relevant data, metadata,
experimental uncertainties, and potential spurious covariates. At any point where manual annotations from
human experts (or non-experts) enter the process, one must also account for annotation uncertainty.

Robust uncertainty quantification is particularly important for robust data fusion and transfer learning
based on multiple experimental and simulation-based information sources. These will play an important
role in scientific AI for materials research because of the diversity of information needed for modeling
complex materials, the relative expense of experiments, and the dominance of simulation results in the
current body of openly available materials data. Each material characterization and simulation technique has
known ranges of applicability and sources of bias and uncertainty, but these are not typically expressed in a
quantitative form amenable to seamless composition of simulation and experiment. This presents an
opportunity to develop methods for propagating such uncertainties through AI models, while providing
guard rails that alert users to known limitations of the input data. A familiar example is to use caution when
interpreting the role of high-throughput DFT bandgaps (which exhibit well-known systematic biases [57]) as
model inputs, especially when modeling properties that arise from unrelated phenomena, such as melting
temperature. There is a critical need for validation and verification data (e.g. [58]) to benchmark data fusion
and transfer learning efforts, and to assess the physicality of the predictions of scientific AI.

The outputs of ML models also have uncertainty related to the model selection and fitting process. This
kind of uncertainty must be systematically propagated through a larger pipeline of interlinked physical and
ML models. Unbiased assessments of the full model uncertainty from raw data through final predictions are
needed to determine with confidence whether it is reasonable to trust the predictions of a machine learning
pipeline. Furthermore, well-calibrated uncertainty estimates are crucial to the performance of active learning
systems, which rely on quantification of model uncertainty to identify experiments that are likely to be
informative.

4.2. Reproducibility, validation, and verification
Ensuring the reproducibility of scientific AI in materials research depends critically on transparency in
publication, attention to correct methodology in evaluating results, and independent testing and verification
of model predictions [59]. We must develop a strong culture of scrutinizing modeling assumptions, checking
for due diligence in training procedures, and verifying that ML models are not being applied outside their
regime of applicability.
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Recent development of open libraries (Matminer, TPOT), data repositories and platforms (MP, JARVIS,
AFLOW, OQMD, Citrination, MDF, NOMAD and AIIDA), and paper repositories are significantly
increasing the accessibility and reproducibility of materials research. However, manuscripts often do not fully
document model hyperparameters, or the model selection and tuning process used, and data and software
are not commonly made available. This can make it difficult to evaluate whether the results suffer from
overfitting or information leakage, and impossible for independent verification or comparison with other
works. Researchers using AI methods should investigate and publish the failure modes of the models they
use, as this can promote improvement in, and trust of, AI methods. For any given modeling task, choice of
appropriate performance metrics is of paramount importance [60]. Metrics that account for dataset bias are
particularly important in the face of systemic publication bias in favor of ‘positive’ scientific results,
community pursuit of ‘lead material’ derivatives, and in modeling phenomena governed by rare materials
features (such as fatigue crack initiation).

Finally, much of the materials AI literature describes proof-of-concept work applied to a single material
system, and experimental validation of predictions is often deferred to followup studies. In contrast, many
computer science venues expect methods papers to demonstrate generalizable results on multiple datasets
and/or multiple tasks. Addressing this problem will entail finding ways to lower the barrier for groups to
collaborate. Creation of a reproducibility and validation consortium would facilitate the collaboration
process and potentially lead to extensive use of shared resources throughout the materials research landscape.

4.3. Establishing interpretability and trust
Models and theories are fundamental to the scientific method, and scientists expect to be able to rationalize
predictions and discoveries by explaining observations through an underlying phenomenon or mechanism.
Thus, the interpretability of scientific AI models is necessary to establish sufficient trust in AI methods for
widespread scientific application. Interestingly, trust and interpretability currently lack consensus definitions
in computer science and psychology [61]. The challenge of interpretability lies in balancing faithful
representation of the model’s mechanisms and the ease of intuitive understanding by a human [62], while
trust corresponds to a user’s willingness to accept or reject model predictions relative to the baseline error
rate of the model [61].

The most common scenario in AI-driven materials science involves completely opaque
previously-generated models, for example in a process-oriented environment [63]. Here the user does not
have access to the full descriptor set or material representation, may not know the model form, and only has
access to the final prediction. Thus the distribution of user trust levels may have a large variance. Informed
trust in this scenario must be gained through meticulous empirical validation procedures. Feature
importance ranking provides some level of insight into a model, but does not go far enough to support
claims of physical realism; this interpretability tool is not typically robust in the face of correlated or spurious
inputs. Great opportunities exist to boost the interpretability of AI models by providing output in the form
of either a human interpretable series of selection criteria (e.g. a simple decision tree/process flow diagram)
[64], a set of physically meaningful equations, or a textual explanation. At this level of interpretability expert
opinions could be built transparently into the framework through extensive interactions and the trust in the
model outputs will be increased.

4.4. Paths forward
Cross-disciplinary Collaboration:

• Develop and deploy real-time algorithms for exploring interpretable material representations during
research campaigns.

• Design human-in-the-loop methodologies for quantifying interpretability and trust.

Reference Data:

• Develop and adopt commonbenchmark datasets and performance indicators formeasuring and comparing
methodological progress.

• Create dedicated funding mechanisms for experimental validation of materials predictions

Best Practices:

• Reviewers insist on full and open access publication of source code, machine-readable training data, and
artifacts such as trained models from publicly funded research.
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• Reviewers insist on task-appropriate performance indicators and fully-documented research protocol.
• Identify and quantify bias / variance issues in datasets
• Assess dataset and source bias through round-robin type studies to establish reproducible results.
• Create community accepted benchmarks for fusing experimental and computational data with
uncertainty and applicability propagation through the model training, testing, and interpretation
pipeline.

5. Opportunities in workforce development

There is an urgent need for workforce development to ensure that AI techniques are introduced into the
materials science workflow with the appropriate level of scientific rigor. Briefly, there are opportunities in:

(a) Educating the next generation workforce to be conversant in AI techniques and their application to
materials science.

(b) Expanding skills within the current workforce, enabling them to effectively mentor the next-generation
workforce.

(c) Adopting an open data culture

Here consortia will play an important role by developing open source educational materials, hosting
bootcamps, and introducing workshop tracks at professional meetings, creating learning opportunities and
materials that can be disseminated up and down the educational tiers. [65] summarizes the current status in
these areas. Likewise the definition, publication, and demonstration of best practices in AI (e.g. [5]) will go a
long way to increasing awareness and trust within the community.

5.1. Educating the next-generation workforce
Materials science curricula are in need of urgent restructuring to produce a competitive next generation
workforce [65, 66]. This restructuring needs to take into account the level of skills transferability needed
throughout the overall data landscape, in addition to direct application to materials research. Traditional
materials science education contains few required courses in statistical methods and programming. This is a
major limitation on the adoption of ML techniques by the materials science community, as graduates lack
foundational knowledge and skills.

At the undergraduate level, there are few treatments in the application of AI to materials science available
for developing course modules, though graduate programs and standalone summer courses are rapidly
expanding [65]. One critical need is the development of open data/code repositories that provide ‘plug and
play’ modules to augment the current materials science undergraduate curriculum. GaTech [67] and recently
developed ML content on nanoHUB [68–70] are excellent early examples of this educational model. Open
educational resources, in addition to formalized courses providing a more rigorous introduction to research
computing and statistical methods, are needed to create a BS-level workforce capable of implementing ML.

5.2. Expanding skills within the current workforce
At the graduate and post-graduate level, there is an urgent need for providing salient feedback on the
relevance of models and their outputs. Mid to late career materials scientists might feel unprepared to
mentor researchers applying ML techniques to their research. This can lead to naively trusting (or
dismissing out-of-hand) results from ML workflows, or feeling unequipped to practice informed
skepticism.

There is great need for a new professional track in the materials field, since federally-funded
data-intensive centers and facilities will start building both physical and cyber data infrastructure. At present,
the availability of data technicians is minimal. Establishing a few training pilots across the country amongst
undergraduate institutions and community colleges will provide the needed workforce to accomplish this
task. If the MGI/AI visions are to be realized, there is an immediate urgency for workforce training
pilots.

5.3. Adopting an open data culture
Data sciences have proven to be a democratizer in a variety of fields, notably in astronomy, bioinformatics,
and high energy physics. In an open data culture, data and metadata are rigorously acquired and deposited in
standardized open repositories, also accessible to low-capacity research institutions. Adopting the open data
paradigm will afford community colleges and low-capacity research institutions membership to the materials
research community and greatly contribute to diversity.
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5.4. Paths Forward
Consortia:

• Develop open source educational materials (e.g. https://datacarpentry.org/) broadly targeting other oppor-
tunities throughout this document. Educational materials should leverage and reference known best prac-
tices. Thematerials, associated data, and code should be promoted in a way that they are indexed by internet
search engines to maximize visibility.

• Host bootcamps (e.g. NIST’s MLMR), webinars, and hackathons framed around AI usage in materials
science

• Introduce a ‘workshop track’ at major materials conferences for students and researchers to acquire and
practice new skills.

• Support internships (e.g. NIST’s SURF program) for students and researchers to develop real-world
experience.

Best Practices:

• Engage with stakeholders to define, publish, and demonstrate best practices in the use of AI in Materials
science and engineering

6. Summary and outlook

In the previous sections, we provided a perspective on the application of AI in materials science and
engineering and outlined four overarching opportunities for potential advancement within the community.
We have proposed five cross-cutting paths forward for each opportunity:
Cross-disciplinary Collaboration - Reinvigorated collaboration among the domains of materials science

and engineering, computer science, and data science will advance state-of-the-art solutions for scientific AI
and cyber-physical infrastructure while enabling trust in AI.
Autonomous Research Platforms - The development and deployment of diverse autonomous research

platforms will enable implementation and evaluation of new technology in scientific AI and cyber-physical
infrastructure by the rapid generation of high-quality experimental materials data. Connecting these
platforms will create compound network effects that increase the leverage of any single experiment or
calculation.
Reference Data - The creation of new reference and challenge datasets will enable the broader

community to develop scientific AI and increase trust in AI, just as the classic MNIST handwritten digit
database [71] has enabled these outcomes in the broader STEM community.
Consortia - The creation of new consortia will engage stakeholders in industry, government and

academia to provide economically sustainable frameworks for the deployment and operation of
cyber-physical infrastructure and expanding the AI skills of the current and future workforce, which will
boost consortia member trust in AI.
Best Practices - The creation of stakeholder-lead standards and best practices will enable trust in AI and

foster a workforce that understands how to use AI effectively.
If the community makes coordinated efforts in these areas, we can anticipate rapid acceleration of

materials discovery and process optimization, which will open new pathways for technological advancement
in sustainable development, transportation, water security, medicine, and other technologies central to
human welfare.
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