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Abstract

Next-generation sequencing (NGS) technologies have provided affordable but errorful ways to
generate raw genetic data. To extract variant information from billions of NGS reads is still a
daunting task which involves various hand-crafted and parameterized statistical tools. Here we
propose a deep neural networks (DNN) based alignment and single nucleotide variant (SNV)
identifier tool known as DAVI: deep alignment and variant identification. DAVI consists of models
for both global and local alignment and for variant calling. We have evaluated the performance of
DAVTI against existing state-of-the-art tool sets and found that its accuracy and performance is
comparable to existing tools used for bench-marking. We further demonstrate that while existing
tools are based on data generated from a specific sequencing technology, the models proposed in
DAVT are generic and can be used across different NGS technologies as well as across different
species. The use of DAVI will therefore help non-human sequencing projects to benefit from the
wealth of human ground truth data. Moreover, this approach is a migration from expert-driven
statistical models to generic, automated, self-learning models.

1. Introduction

Next-generation sequencing (NGS) [1] has opened up a new paradigm - it has provided affordable access to
whole genome or genome sequences to many researchers, which leads to personalized medicine and to
personal genome projects [2]. Many Mendelian disease studies have employed NGS to identify causal genes
based on patient-specific variants [3]. Since a disease-associated genetic variant rarely occurs among

the general healthy population, its interpretation in a patient is relatively simple. This interpretation
simplicity by virtue of rarity of the variants, however, entails a risk of false discoveries due to the errors in
sequencing and false detection by variant calling methods. For the success of clinical genomics and
personalized medicine, fast and accurate identification of variants is crucial. Thus, NGS technology has
shifted its focus from generating genome data to swift and accurate information extraction. In NGS
methods, a whole genome or targeted regions of the genome are randomly digested into small fragments (or
short reads) that get sequenced and are then either aligned to a reference genome or assembled [4] to form
complete DNA (de-novo assembly). The Illumina HiSeq2000 sequencer generates reads with length
90-110bp with a sample frequency of 30x and read error at 1%, whereas PacBio RSII generates long reads
with a median length of 20kbp but with higher indel error rate of 15-20% of read length. Data produced by
sequencers are then analysed by finding overlapping regions called contigs and then lining them up. The
alignment of reads is a computational challenge, as reads do not contain position information; that means we
have to use sequence information only to find the corresponding region in the reference sequence. The
reference sequence can be quite long (3 billion bases for human), making it a daunting task to find a
matching region. Moreover, short reads may be getting aligned to several equally likely places. This is
especially true for repetitive regions. Then to segregate reads errors from potential variants statistical models
are used. The variants thus identified are known as true variants and the process of detecting variants in
reads is known as variant calling. Since NGS represents a throughput technology, it is highly sensitive to
technological errors and produces data which is erroneous, random, multiple and of high coverage. It is

© 2020 The Author(s). Published by IOP Publishing Ltd
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therefore necessary to clean and pre-process [5] [6] [7] [8] data before variant calling. Variant detection in a
genome sequence is therefore a multi-step process comprising of: (1) mapping the reads to the indexed
reference (alignment); (2) sorting the reads based on their location; (3) identifying and annotating the
probable variant candidates; and (4) determining true variants and their genotypes from variant candidates
with high confidence (variant calling). This makes the process of variant and indels (insertion and deletion
of bases) identification highly dependent on reliable bio-informatics tools. There are many off-the shelf tools
and pipelines available for variant identification [9]. These tools are based on string manipulation and
statistical modeling, and require parameter tweaking by domain experts. Moreover, different tool sets are
required for processing data from different NGS technologies and for different species.

In this paper, we propose a novel deep neural network (DNN) based tool “DAVI” (deep alignment and
variant identification), which can be used across NGS technologies and species for raw reads alignment and
single nucleotide variant (SNV) detection. We benchmark the computational performance of DAVT against
state of the art GATK pipeline and demonstrate that it not only performs variant identification faster, but is
also more specific than existing tool sets.

2. Current methodology

As described above, all existing pipelines can be broadly divided into two major processes: the first is aligning
reads to reference (alignment), and the next is identification of variants from aligned reads (variant calling).

Alignment is the process by which the NGS reads are aligned to their corresponding (most likely)
locations in the reference genome. Alignment can be achieved by comparing reads with k-mers of
the reference genome. But due to imperfection in raw NGS reads (substitution and indels) an attempt to
exactly match reads to reference k-mers will lead to rejection while comparing. Thus to perform alignment,
raw reads are divided into sub-reads and matching regions (contigs) with reference are identified. Matched
sub-reads are expanded at contigs to find the best suitable match of a read. There exist many tools which
perform this local alignment, such as BWA, Novalign, Bowtie, BLAST, etc. These tools use dynamic
programming algorithms to locate the region for best alignment. Algorithmically these tools can be divided
into two main categories : (1) hash table-based algorithms, indexing either the reads or the reference
genome; and (2) Burrows-Wheeler transform based algorithms, using suffix trees and suffix arrays of the
strings [ 10, 4]. Suffix array-based aligners are memory-efficient and work faster than hash-based aligners,
but they are less accurate. In contrast, hash table-based algorithms tend to be slower, but more sensitive. In
recent times, substantial work has been done to incorporate machine learning techniques in the field of
bioinformatics. There are many methods which use models to encode high-dimensional genomic data into
vector data and then use machine learning algorithms for alignment and motif generation. BioVec and
ProtVec [11] use a skipgram-based model to represent protein sequences and their classification. Aoki and
Sakakibara [12] have used Word2Vec encoding to do alignment and generate motif of non-coding regions of
RNA. Nucl2Vec [13] also uses encoding similar to word2Vec and uses KNN algorithm to do alignment of
sequencer data.

Variant calling is the process by which variants are identified from the aligned sequence data with respect
to reference sequence of the particular organism. GATK, VarScan2, Atlas-SNP2 and SNVer are some of the
tools that perform variant calling on aligned reads. SNP callers may also be divided into two different
approaches: (1) heuristic methods based on thresholds for coverage, base quality and variant allele
frequency; and (2) probabilistic methods based on genotype likelihood calculations and Bayes’ theorem. Due
to their computational demands, heuristic-based methods are less commonly used than probabilistic
methods [4]. Some studies have been conducted which use machine learning techniques for indel
identification using random forests [14]. But still GATK is the de facto industry standard for identification of
SNVs in Illumina datasets.

2.1. GATK best practices pipeline

GATK best practices pipeline [15] is the most widely used method for SNV calling, as it gives the best
performance across existing variant calling pipelines against the gold standard set of reference from
GIAB [9]. This pipeline consists of BWA, Picard Tools and GATK packages. For the purpose of
benchmarking the performance of our proposed SNV identification methodology, we have experimented
with [llumina2000 data and compared our results with the GATK best practices pipeline.

GATK uses machine learning-based algorithms in its HaplotypeCaller tool for variant detection, with
the PairHMM method for pairwaise aignment of each read against its haplotype. PairHMM is a pairwise
alignment method that uses a Hidden Markov Model(HMM) and produces a likelihood score of observing
the read, given the haplotype [16]. For each potentially variant site, the program applies Bayes’ rule, using
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Figure 1. DAVI pipeline.

the likelihoods of alleles given the read data to calculate the posterior likelihoods of each genotype per
sample given the read data observed for that sample.

2.2. Deep learning-based approaches in bio-informatics

Despite more than a decade of effort and thousands of dedicated researchers, the hand-crafted and
parameterized statistical models used for variant calling still produce thousands of errors and missed variants
in each genome [17]. DNN-based learning algorithms provide attractive solutions for many bio-informatics
[18] problems because of their ability to scale for a large dataset, and their effectiveness in identification of
intrusive complex features from underlying data. There has been some success in area of de novo peptide
sequencing [19], mapping protein sequence to fold(deepSF) [20] and to predict protein binding sites in DNA
and RNA(deepBind) [21]. Convolutional neural network (CNN)-based models are used exhaustively in
identification of motif in DNA sequence [22], but not much has been done for the prediction of SNVs in raw
DNA reads.

Only recently, Google has developed the DeepVariant [17] tool, which uses deep learning to predict
variants in aligned and cleaned DNA reads. The DeepVariant method uses CNN as a universal approximator
for the identification of variants in NGS reads. It does so by finding candidate SNPs and indels in reads
aligned to the reference genome with high sensitivity but low specificity. The DeepVariant model uses
Inception-v2 architecture to emit probabilities for each of the three diploid genotypes at a locus using a
pileup image of the reference and read data around each candidate variant. There have been some attempts
to use Recurrent neural network (RNN) for global alignment, but their results are not yet established [23].

In DAVI we have used both CNN and RNN algorithms for alignment. Using DNN we determine a DNA
read comparator function (global alignment) or sub-read comparator function (local alignment), which
determines the best alignment based on a scoring function. For variant identification DAVI uses a CNN like
DeepVariant but instead of using pileup images with inception-v2 architecture, we use a position-specific
frequency matrix (PSEM) to identify possible variant sites and a set of images (reference, substitution and
indel) to predict a variant and its genotype at a given location. The detailed model designs and experiments
are illustrated in the section below. We have used Illumina data of E. coli (CP012 868.1 Escherichia coli str.
K-12 substr. MG1655, complete genome [24]) and human data (GRCh37/hg19.chr20 [25]) for validation of
our experiments. We have also used pacBio human genome data (hg38.chr21 & hg38.chr22 [26, 27]) for
generalizing our model across NGS technologies.

3. Deep aligner and variant identification

3.1. Alignment

As discussed above, to perform alignment we have to derive a comparator function, which considers
complete raw NGS reads (global alignment) or part of reads (local alignment), and reference k-mers from a
location as input, and performs comparison to output rank of similarity, since perfect matches to

the reference sequence are elusive. Our comparator function should be able to handle some percentage of
variation between two input streams while measuring the degree of similarity. Higher similarity value implies
better alignment at that location.

As we know, DNN works very well in extracting features while being resilient over noise(variations).
Moreover, since DNN-based algorithm scales with data, our alignment use-case is a good fit for these
algorithms. The two most widely used DNNs are CNN and RNN. While CNN is generally used to extract
features from local patches of data, RNN is used for sequential data where the current outcome is dependent
upon previously learnt patterns. We have explored both these techniques to solve our problem of alignment.
The dataset used for training and testing of our DNN model is discussed in following subsection.

3.2. Dataset
To perform alignment we have used the genome sequence of Ecoli K-12 [24]. For this reference genome we
have used two sets of input reads: (1) Actual NGS reads, which were generated from the ILLUMINA
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Figure 2. Deep Conflation Based Model.

sequencer and have a length of 30-300bps with error rate of 1-2% and coverage of 30x. We called this dataset
real dataset. We have used this dataset primarily for testing our models. (2) To learn a robust comparison
function we have trained our models with what we call a simulated dataset. Reads for this dataset are
generated from the reference genome with a max error rate of 40%. The process of generation of simulated
reads and preprocessing of strings for alignment is explained in appendix B.

3.3. DNN for alignment

3.3.1. Deep conflation-based model

In this model, we have used CNN to predict the most probable location of a given read by breaking the reads
and reference into fragments of size k, called k-mers. Let r; be a k-mer obtained from reference location i. We
calculate the similarity between k-mer of a given read w.r.t. several different reference k-mers from different
locations (ry,12,..,7i,...,7,). The highest similarity reference k-mer can then be extended in a fashion similar
to the BLAST algorithm. We formulate the problem of k-mer string matching as analogous to that of
identifying match between a word and its misspelled variants. This formulation is similar to the conflation
problem of business data. ‘Character-level Deep Conflation For Business Data Analytic’ [28] discusses the
model developed to solve the conflation problem. We have extended this model for our application. The
details of the model used for alignment are discussed in appendix B. Figure 2 gives an overview of the
model.

3.3.2. Evaluation on simulated dataset

To perform alignment using this model, a simulated dataset was generated from the genome sequence of

E. coli (CP012 868.1 E. coli str. K-12 substr. MG1655, complete genome [24]). We experimented by generating
a set of 10 000 random 100-mers containing characters A,C,G and T. For each 100-mer, we also generated a
100-mer with 40% insertion, deletion and substitution errors starting at a random location. After training
the model for three epochs on the entire dataset, with mini-batches of size 100, the model was able to achieve
a testing accuracy of 99.4%.

The entire dataset was divided into training and testing data, using a split ratio of 90:10 for
training:testing. The training data was further split in a ratio of 90:10 for training and validation, with data
selected through random permutation on the dataset for each epoch. With this splitting, each epoch contains
81 minibatches. Figure 3 shows the change in loss and accuracy of prediction over the number of batches
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Table 1. Performance Metrics of Deep Conflation Based Alignment Model.

Metrics Values
Accuracy 0.995 323901 984
Precision 0.949 205079 492
Recall 0.999578 814 362
F1 Score 0.9737901934
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Figure 4. Confusion Matrix for Deep Conflation Alignment Model.

during training and validation. Accuracy for validation and testing is measured as the number of mutated
strings for which the correct reference was ranked highest in the given set.

3.3.3. Evaluation on real data

To test the accuracy of a network trained with the above simulated dataset with real data, the following
procedure was used. We have taken an E. coli reference the same as that used in simulated data and NGS
reads from SRR2724 094_1.bam (fastq aligned by BWA-MEM). The process is defined in Algorithm 3
(appendix A). The model was tested on 100 batches of the above dataset where the input sequence length is
of 100 nucleotide bases. Statistics of the test are shown in table 1 and figure 4.

3.3.4. Observations

The Deep Conflation model has been found to be useful for predicting the best match reference k-mer to a
given read. In this model the length of read (k-mer) does not affect the accuracy of prediction. Thus this
model can be used for global alignment, since a given read of length I’ can be aligned by searching for

the best reference k-mer of the same length by straightforward comparison. Since feature extraction for
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Figure 5. RNN Based Alignment Model Architecture.

Table 2. Vanilla RNN and LSTM Hyper Parameters.

Hyper Parameters RNN LSTM
Batch Size 10 10
Input Length 10-90 10-90
Hidden State Size 4 20

Bias True True
Dropout 0.0 0.0
Learning Rate 0.001 0.003
Optimizer RMSProp Adam
Loss Function Cross Entropy ~ Cross Entropy

reference k-mers is required only once, we create a database of reference features first time. Subsequently, to
test the alignment of reads against this reference, the features are queried from the database.

3.4. RNN based alignment

RNNs are memory-based neural networks. They are especially useful with sequential data because each
neuron/unit can use its internal memory to maintain information about the previous input. The two most
widely used RNNs are Vanilla RNN and LSTM (Long Short Term Memory). RNN is estimated to be a faster
network as compared to LSTM, but it falls short in memorizing and representing long-term patterns
associated with input data stream. Thus, to determine which RNN will be feasible for comparing genome
strings, we modeled both Vanilla RNN cells and LSTM cells. We further optimized hyper-parameters of these
models using CoDeepNEAT techniques.

3.4.1. Architecture

Alignment of query reads with respect to a given reference sequence works by comparing query string with a
series of reference strings, and determining the degree of confidence of their alignment. Since a read may be
aligned to more than one location in the reference, ‘degree of confidence’ gives us a measure to choose the
best site for alignment. To perform alignment using neural network, our RNN takes reference string and
query string as input and then classifies them into one of the two classes: namely, matched class and
unmatched class. Then from all matched cases based on best matching score, a reference string is picked for
alignment. For classification, we have modeled our DNN as shown in figure 5. The values of
hyper-parameters used in Vanilla RNN and LSTM model are listed in table 2.

3.4.2. Experiment

Models of both RNNGs are trained on Simulated Dataset. Input for the models is generated by concatenating
a raw read sequence of fixed length with a reference sequence of the same length against which

the comparison is to be made. This concatenated sequence is then converted to Hot Vector Encoding before
being fed to the models. For Vanilla RNN 50 epochs with 380 batches of a training dataset are used, while for
LSTM 100 epochs are used for training the same dataset. To observe over-fitting, a validation test was
performed on the validation dataset at regular intervals.
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3.4.3. Evaluation and observations

A trained RNN model was evaluated on a test dataset of simulated data. A mean accuracy of 87.55% was
observed for Vanilla RNN while for LSTM the mean accuracy was 79.6%. The accuracy graph of Vanilla
RNN and LSTM on the test dataset are shown in figure 6 and figure 7, respectively. The accuracy of a batch is
found to be in negative correlation to the percentage of errors in sequences. This means batches where large
number of sequences have high error show low accuracy. This was observed for both Vanilla RNN and
LSTM-based networks. Detailed Design for both Vanilla RNN and LSTM with training accuracy is illustrated
in appendix C.

3.4.4. Comparison of RNN models

We have performed experiments with different sequence lengths ranging from 10 to 90. The number of
hidden units in the models is kept at 1/3 of the sequence length. We have observed that as the size of

the sequence grows beyond a certain threshold, both RNN models show no learning and accuracy drops
significantly. For Vanilla RNN, the model threshold is reached for a sequence length above 50, while for
LSTM the model threshold is reached at a length of 80. The test accuracy of the Vanilla RNN model is
significantly higher than the LSTM model, and also the Vanilla RNN model trains faster as compared to
the LSTM model. The test accuracy of both models vs sequence length is shown in figure 8.

As observed, the Vanilla RNN model has better accuracy as compared to LSTM for query length up to
40bps; we have used Vanilla RNN for alignment. Since the query length of NGS data is more than 40bps,
the Vanilla RNN-based model can be used for local alignment only. It is interesting to note that
the LSTM-based comparator accuracy degrades for reads of longer length. It may be because as length
increases the amount of error (max 40% of total read length) in simulated read increases, and LSTM is not
robust to noise; this degrades its classification accuracy.
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3.5. Optimization of RNN models

The above two experiments are clear indicators that Vanilla RNN-based neural network does perform well
for genome comparison, but designing an optimal RNN network is a difficult task as each network has a
large number of hyper-parameters to optimize. To automate the process of finding best values for each
hyper-parameter, we have used the neuro evolution technique known as CoDeepNeat [29]. CoDeepNeat uses
existing neuro evolution technique of NEAT [30], which has been successful in evolving topologies and
weights of relatively small recurrent networks. The fitness of evolved DNN is determined by how well

the system is getting trained by gradient descent, to perform its task. CoDeepNeat uses a genetic algorithm
for optimization, which is combined with gradient descent to evolve large and complex DNN.

3.5.1. Extending CoDeepNeat for RNN

In our implementation of CoDeepNeat, population of chromosomes is created by randomly initialized
hyper-parameters of the network and slowly evolving them though mutation. Instead of representing each
chromosome as a layer in DNN, in our design each chromosome itself is represented as a DNN.

The advantage of this modification is that it nullifies the requirement of crossover in genetic algorithm as
crossed over offspring can be generated by the application of mutation only. Although this approach limits
the size of DNN and the number of different layers that can be stacked, yet this is not a constraint since our
network is small. To evolve the networks, we have used two different mutation operators, namely Random
Mutation Operator and Gaussian Mutation Operator [31]. To evolve population offspring with selection, we
have used DNN learning as a fitness function, in particular, the accuracy of the validation test of DNN after a
fixed number of epochs. Chromosomal population is evolved using a genetic algorithm. The algorithm used
for evolving chromosome population selects three elites from the parent generation and these elites are
evolved in the next generation without mutation, while all other offspring are mutated versions of previous
generation chromosomes. The detailed algorithm for evolution is described in Algorithm 4 (appendix A).

3.5.2. Evolution and training

Evolution was carried out for 10 generations (epochs) and the best DNN was selected as the one with

the highest accuracy in any generation of evolution. To mutate chromosomes, mutation operators were
applied to each hyper-parameter with a probability of 0.2. Since training a DNN is computationally
expensive and population size was 30, each network was trained for only two epochs on the training set.
Validation set was used for calculating the fitness of the DNN. Due to the small number of epochs, validation
accuracy was calculated once, at the end of training. It is argued that due to the small number of epochs, the
network which is evolved is the one which trains fastest rather than the one with highest accuracy. Thus,
through this technique we have automated the design of DNN topologies, which gives the model with
shortest training time with relatively higher accuracy.

3.5.3. Experimental setup and evaluation
The system is built using Pytorch libraries with Tensorflow backend for CUDA platform on single GPU. The
time taken for the model to evolve is 49.32 hrs. After the network is evolved for 10 generations, for each DNN

8
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Figure 9. Accuracy of Population after each generation.

Table 3. Hyper Parameter Values of Suggested RNN.

Hyper Parameter Values
Number of Layers 1

Learning Rate 0.093 8099
Optimizer RMSProp

Bias False

Hidden Size 7

Dropout Rate 0.2653 750429101209
Activation Function sigmoid
Bi-directional False

(chromosome) in population, mean validation test accuracy is calculated. Figure 9 shows the performance of
the population across generations. It is clear from this figure that the system evolves until the 6th generation
by increasing mean accuracy and minimizing the standard deviation of the population. But after the 6th
generation, mean accuracy decreases due to random mutation and standard deviation of population
increases. During evolution most of the DNNs (population) trained quickly and had accuracy between
90%-100% as shown by the density of clusters in figure 9. For the optimal solution, we chose DNN from

the 6th generation which provides maximum accuracy. The DNN with the highest accuracy and smallest
standard deviation has been picked up as the best DNN for nucleotide base comparison. The values of
hyper-parameters of the best DNN suggested by the model are listed in table 3.

3.5.4. Evaluation of optimized RNN with simulated data
To train and test the optimized RNN model, a simulated dataset is used. The training loss graph (figure 11)
of the optimal DNN converges faster as compared to the Vanilla RNN. Vanilla RNN learning starts at around
3500 batches, while in optimal DNN the learning starts just after 2500. Hence, the number of batches
required for training the optimal DNN is much less than the Vanilla RNN model. Mean test accuracy of
the optimized RNN for 100 samples of simulated dataset is 96.123 % (figure 10).

When tested on a real dataset with input sequence of length 15 nucleotide bases, mean accuracy for 100
samples increases to 98.88. The accuracy plot and report are shown in figure 12 and table 4.

3.5.5. Limitation and assumptions
Limitations of the RNN based model are as follows:

e We have assumed the reads to be of fixed length and maximum length of a read is less than 40 bps.

o This model falls short in doing global alignment, as length of read generated by Illumina NGS are greater
than 40 bps.

e We have not considered quality of reads while performing comparison.

e We have assumed maximum errors in high-quality reads are 40% of total length.

9
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Figure 11. Performance of Optimized RNN.

4. Using DNN models for alignment

We have described CNN and RNN-based models which can be used to generate comparator function for
alignment. These models need to be discussed from the viewpoint of their usage in the alignment
framework. The RNN-based alignment model has been found to work well on k-mers with a length less than
40bps. Since the reads produced by Illumina are greater than 40bp in length, this model is more suited for
local alignment of reads. To align a read w.r.t. the reference genome, RNN has to be used in consultation with
the local alignment algorithm as described in Algorithm 5 (appendix A).

To increase the speed of alignment, we have used heuristics similar to BLAST to reduce our search space,
by reducing the number of comparisons. Instead of comparing with each reference k-mer, the algorithm uses
5-mers as seed, and based on the seed all possible locations are searched for alignment. To reduce search
space for query sequence, a database of all possible 5-mers with their locations in the reference genome are
stored in dictionary format. Once a database is created, all possible 5-mers in query sequence are read. These
query 5-mers are then searched in the database and their corresponding location of occurrences are saved as
probable locations for alignment. The detailed work flow of the algorithm is as described in Algorithm 1.
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Table 4. Performance Metrics of Optimized RNN Alignment Model.

Metrics Values
Accuracy 0.9883333333333333
Precision 0.9902534113060428
Recall 0.996 078 431 372 549
F1 Score 0.993 157 345

Algorithm 1 Alignment with Heuristic.
procedure createDatabase(referenceSequence, kmerSize)
> Create reference kmer database
kmerDatabase + dict()
> create dictionary key:kmer ,value: location array
refLength < lengthOfSeq(referenceSequence)
while i # (refLength — kmerSize) do
kmerWord = referenceSequenceli: i+ kmerSize)
i+i+1
if kmerWord in kmerDatabase.keys() then
kmerDatabase| kmerWord).append (i)
else
kmerDatabase[kmerWord] < [i]
SavetoFile(kmerDatabase) > Save kmer database to file
procedure Alignment(queryRead,referenceSequence,type,kmerSize)
> Aliment procedure with heuristic
refkKmerDatabase < readfromFile(kmerDatabase)
> Read reference kmer dict from file
queryLength <— lengthOfSeq(queryRead)
refSequenceSet < ||
while i # (queryLength — kmerSize) do
queryKmer < (queryRead]i : i + kmerSize]
locSet +— refkmerDatabase[queryKmer]
for each location in locSet do
start <— location — i
end <— start + queryRead
refSequenceSet.append(referenceSequence[start:end])
if type is Local then
alignedlocation < localAlignmnet(queryRead, refSequenceSet, kmerLength, batchSize)
else
alignedlocation <— GlobalAlignment(queryRead, refSequenceSet)
return alignedlocation
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Table 5. Alignment models timing comparison.

Model Training Time Prediction Accuracy Alignment Type
Deep Conflation Model 4 hours 99.5 Global
RNN Model 14.24 min 98.8 Local

Table 6. Time taken (in sec) by DNN based alignment models to predict location of Read.

Read Name Length of Read RNN Deep Conflation BLAST BWA-MEM
SRR2724094.1.1 1 300 4.34 1.8 10.85 0.64
SRR2724094.3.1 3 37 0.624843 0.15 0.169 0.045
SRR2724094.7.1 7 86 0.377 0.284 0.876 0.047
SRR2724094.10.1 10 168 1.548 0.603 0.72 0.055

Table 7. Reads location prediction by different alignment models.

Read BLAST RNN Deep Conflation
Location Score Location Score Location Score
SRR2724094.1.1 1 — — 4258852 0.388 4258852 0.389
SRR2724094.3.1 3 3073798 0.945 3073797 0.95 3073797 0.2
SRR2724094.7.1 7 306992 0.97 306991 0.98 306991 0.98
SRR2724094.10.1 10 1564588 0.87 1564587 0.95 1564587 0.95

4.1. Comparison of models

We have experimented with E. coli data [32] on deep conflation and RNN models as described in algorithms
1, 3 and 5. The E. coli reference used was the same as that across all alignment models, and reads were
obtained from sample SRR272 401_1. The models were compared for time taken by them to train and predict
accuracy, and results are summarized in table 5.

The models proposed for alignment were also compared with existing state-of art alignment tools,
mainly with BLAST and BWA-MEM. For BLAST [33] we have taken open source python implementation,
while for BWA-MEM the standard tool was taken for comparison. The result of performance comparison is
shown in table 5. It is observed that BWA-MEM is highly optimized for alignment and it is fastest irrespective
of query length. BLAST is also optimized by using several heuristics to limit the search space. Our proposed
model Recurrent Aligner works well for query of small length as the model is designed for an optimum
length of 32bps, while the deep conflation model works well for query length based on training
configuration. When trained for 100bps sequences, the deep conflation model works well for sequences
100bp length, but is unable to align queries shorter than 50 bps. On training the model with 30bps
sequences, queries of 30bps are aligned correctly. Therefore the deep conflation model is not able to align
queries with more than 50% of padding. For high-quality alignment, the threshold value of the score can be
set in the proposed model.

4.2. Deep learning-based variant calling
The SNV and indel identification in a genome is a complex problem, which can be broadly broken down into
two subproblems: identification of variant and classification of their type. Probable variant sites can be
classified into four categories : heterozygous, homozygous, non-variant and non-SNP. Since we have already
discussed how a CNN-based deep learning model can be used for extracting features and for classification of
genomic data, we have used CNN for identification and classification of variants. The proposed variant caller
pipeline is as described in figure 13. Data is preprocessed where from aligned and sorted reads probable
variant candidates are located using a position frequency matrix. Each variant candidate is converted to
input image matrix, which is fed to trained CNN for classification of probable variant candidates to
variant/non-variant and their genotype. The details of data processing, input image creation and label data
generations are described in appendix D.

For training the CNN model, we have used two sets of datasets, one of human genome and another of
E. coli. For human, we have used the Genome in a Bottle reference dataset [34]. Out of this dataset we have
used NA12878 [35] data, in which input data is in BAM format while variant data is in VCF format. To
consider a variant which has high confidence, interval data was used in BED format.
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4.2.1. Convolutional neural network

The network consists of two convolution layers with max pool layers and three densely connected hidden
layers. In the convolution layers, kernels of size (2,4) and of size (3,4) are applied to generate 48 convolution
filters. Three densely connected layers use exponential linear activation function [36] with a dropout rate of
0.05. The above network is trained using Adam Optimizer with learning rate 0.000 5. The output layer
contains two groups of output; for the first 4 output units, we learn about the possible bases of the site of
interests. For example, if the data indicates the site has a base ‘C), we like to train the network to output [0, 1,
0, 0]. If a site has heterozygous variants, for example ‘A/G), then we would like to output [0.5, 0, 0.5, 0]. We
use mean square loss for these 4 units. For the second group of outputs, the units consist of variant type. We
use a vector of four elements to encode all possible scenarios. A variant call can be of any category as
mentioned above. We use a soft max layer and use cross-entropy as the loss function for these four units. The

architecture of CNN is depicted in figure 14.

Training: CNN was trained on data as mentioned above. Training images were sent as a batch of size 500,
each image of dimensions 15*4*3. The first 30 000 images were used for training and the next 30 000 were
used for validation. Number of epochs for training was 3000. The time taken to train network on 30 000

reads of NA12 878-chr21 was 284.289 seconds.
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Figure 15. Confusion Matrix of Genotype Prediction.
Table 8. Genotype Prediction Report.
Precision Recall f1-score Support
Homozygous 0.75 0.82 0.78 11
Hetrozygous 0.91 0.75 0.82 28
Non-Variant 1.00 1.00 1.00 3954
Non-SNP 0.8 0.57 0.67 7
avg/total 1.00 1.00 1.00 4000
Table 9. System Specification.
Processor Memory Hard Disk GPU
Intel i7-4770 CPU @ 3.40GHz 7.7 GB 1.5TB None
Table 10. Variant Caller Dataset.
Dataset Species NGS Reference
hg38.NA12878 chr21-14069662-46411975 Homo sapiens PacBio RSII hg38.chr21
hg38.NA12878 chr22-18924717-49973797 Homo sapiens PacBio RSII hg38.chr22
NA12878 chr20.10_10plmb Homo sapiens Mlumina ucsc.hgl9 chr20 [38]
SRR1610046_1 Ecoli Illumina ecoli-str. K-12 substr. MG1655
SRR1610046_2 Ecoli Illumina ecoli-str. K-12 substr. MG1655
SRR1610047_1 Ecoli Mlumina ecoli-str. K-12 substr. MG1655
SRR1610052_1 Ecoli Illumina ecoli-str. K-12 substr. MG1655

4.2.2. Evaluation.

To evaluate the performance of our model we have generated a confusion matrix for genotypes of variants
and report of our prediction is as shown in figure 15 and table 8. It is clear from the prediction results that
our model output has high specificity and moderate sensitivity.

4.2.3. Experimental setup and results

CNN is modeled using Tensorflow library [37] on Ubuntu 16.04 operating system, which helps in scaling
the CNN network on both CPU and GPU-based architecture. For benchmarking GATK performance GATK
3.7 with JAVA 8 is used. The hardware specification of the system used for benchmarking is as shown

in table 9.

We benchmark the performance of our variant caller network considering real execution time (in
seconds) and accuracy of prediction. We have carried out a comparative study of the proposed model against
GATK 3.7 Haplotype Caller for “Illumina” dataset. To prove that deep learning-based variant caller can be
used across different NGS technologies, we have also done performance and sensitivity analysis on “PacBio
RSII” dataset.

We have used the dataset as mentioned in table 10.
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For human data we have used four different datasets for benchmarking; GRCh3718 [39] data is used as
the reference genome. The network is trained using the first 30 000 images of human GIAB Data [35]
NA12878-chr21 dataset and validated with the next 40 000 images. The trained network is used for variant
and indel prediction of NA12878-chr22 and NA12878-chr20 datasets. For non-human data, we have used
E. coli data. The model is trained using SRR1610046_1 EColi dataset [32], and tested with four other E. coli
datasets (table 10). Timing analysis for NA12 878-chr21, NA12878-chr22 and SRR1610046_1 datasets is shown
in figure 18. Prediction accuracy of the CNN variant caller when trained and tested on the same species varies
between 86%—93% compared to the true variant as shown in figure 16. To observe accuracy across species,
we have used variant caller trained on Human Genome NA12878-chr21 and have used it for predicting
variant in E. coli dataset SRR1610046_1. We have compared the prediction accuracy when trained on
a dataset from the same species to a dataset of different species. Results are comparable as shown in figure 17.

Moreover, we tried to analyze how the model trained on one NGS technology can be used across other
technologies. In this test we have used variant caller trained on NA12878-chr21 of PacBio RSII data and
predicted accuracy on PacBio RSII dataset of human NA12 878-chr21 and NA12878-chr22 and on [lumina
2000NGS human dataset NA12878-chr20 and HG00096-chr11. The variant prediction accuracy in both test
cases is above 90% as shown in figure 16. From above experiments it is clear that variant caller trained on
dataset of one species can be used for variant prediction of any other species. This will allow a non-human
genome sequencing project to be benefited by depth of human truth data [40]. Moreover a model trained on
one NGS technology can be used across various other NGS technologies, thus moving away from an expert
driven model to a more generic data-driven models.

5. Conclusion and future work

In this paper we have explored various DNN-based models to tackle two problems in genome sequencing,
namely, global/local alignment of raw NGS data and SNV identification and its classification. Proposed
solutions were tested and their timing performances were benchmarked against existing de facto standard
tool sets. We have observed that performance of our alignment model is comparable to BLAST but is slower
than BWA-mem. Our DNN-based SNV model at the preliminary level was found to perform faster than
GATK 3.7 and is highly sensitive and moderatly specefic. There can be a further boost in performance of
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Table 11. CNN Variant Caller vs GATK Haplotype Caller.

Variant Caller Variant Caller GATK Haplotype

Number of Preprocessing Prediction Variant Caller Caller
Dataset Reads Time(s) Time(s) Total Time Time(s)
NA12 878-chr20 52053 12.17 0.75 12.92 20.2
SRR2724094_1 513785 21.67 4.05 26.576 1745
SRR2724094_2 341788 21.67 4.139 25.809 1716
SRR2724099_1 1535766 90.52 16.89 107.41 2830
SRR2724099_2 1527685 65.611 10.64 76.251 3322

Time In sec
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Figure 18. Variant Caller Timing Analysis.

these DNN models by using more biological information and by using multi-process and multi-threaded
programming models. We have also established that use of DNN makes our model independent of
underlying NGS technologies and model trained for single NGS technologies can be used across all others.
Thus with help of DNN we can generate models which provide faster, reliable and highly specific solutions
for identification of SNV from raw NGS reads, and will pave the way for data-centric solutions as compared
to expert-based methods in the field of bio-informatics.

6. Data availability statement

The datasets used in this study are openly available at DOI or in the following link.
Data: https://github.com/gguptaiitd/genomeData
The code which is developed as part of this study is available at the following links:
Deep Conflation : https://github.com/gguptaiitd/DeepConflation
RNN : https://github.com/gguptaiitd/RNN
CoDeepNEAT : https://github.com/gguptaiitd/ NEAT

A. Algorithms

Algorithm 2 Data Generation.

function QUERYGENERATION((refSubString, errorPercentage, m) > Function to generate m query strings
randomly generate Location in reference sub string
for each random location do
maxErrorLength <—Length Of Reference Sub String * errorPercentage
errorLength < random(maxErrorLength)
generate Query substring of errorLength
modify reference substring by query substring
return array of query strings
function GenerateUnmatchedString(refSubString, n) > Function to generate n unmatched string
while n # 0 do
Generate random reference String of length 1
return array of unmatched strings
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Algorithm 2 (Continued)

procedure DataGeneration(referenceGenome, errorPercentage)
Read Reference Genome Fasta File
for n number of Reference Strings do > Generate data for N reference strings
Create Reference Substring of Length L
for Each Reference Substring do
QueryStrings <— QueryGeneration(RefSubStr, errorPercent, m) > create m query strings
UnmatchedStrings <— GenerateUnmatchedString(RefSubStr,m +50) 1> create m+50 unmatched strings
for Each QueryString do

Create Target Vector [1,0] > 1:Match,0:Unmatched wrt reference
for Each UnmatchedString do
Create Target Vector [0,1] > 1:Match,0:Unmatched wrt reference

X < random(QueryStrings, UnmatchedStrings)
Y < random(targetQueryVector, targetUnmatchedVector)
return X, Y

Algorithm 3 Global Alignment Using Deep Conflation Model.

procedure GlobalAlignment(queryRead,referenceSequenceSet)
> Align query to reference sequences and return best matched location
kmerSer + []
queryLength < lengthofSeq(queryRead) > Get Length of query Reads
for each refseq in referenceSequenceSet do
while i # (len(refseq) —queryLength ) do
refKmer < refseq[i : (i + queryLength)]
kmerSet.append(refKmer)
i+ i+1
index < DeepConflationModel(queryRead, kmerSet) > Model match query with
set of kmers and return highest matched index
return index

Algorithm 4 Population Evolution.

function generateMutateChild(P,population) > Generate Population offspirng by Mutation
numContestant <— 2
selContestant < random.sample(population, numContestant) > Uniformly Sample two chromosomes

from Population
rank < fitnessTest(selContestant)()
selContestantsort(selContest, rank) ()
pick < random.choice(selContestant, P)()
Offspring < mutate(pick)()
return Offspring
procedure Evolutionpopulation,p,n,q > Evolve Population for n generations
Children < [
Initialize population of chromosomes with random values
while n # 0 do
for each chromosome in population do > Selection of Chromosomes
Train chromosome for 2 epochs and perform validation test
Perform Fitness Test on Chromosome
elites < selectTop Three(chromosomes) > Top 3 DNN’s With highest accuracy
Append elites to Children
for rank of elites do
probSum—+ = p x (1 — p) x xrank
P <+ 1— probSum
while len(Children) < len(popluation) do
mutateChild < generateMutateChildP, population
Append mutateChild to Children
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Algorithm 5 Local Alignment Using RNN Model.

function alignmentScore(queryRead,referenceSet)
> Calculate Alignment Score by % of matched base pairs
scores <— ||
for each sequence in reference do
matchScore <—get number of matched Base Pairs
scores.append( MZ%’% )
return scores
procedure LocalAlignmentqueryRead,referenceSequenceSet,kmerLength,batchSize
> Align query to reference sequences and return best matched location
queryWords < ||
queryLength < lengthofSequencequeryRead > Get Length of query Reads
while i #(queryLength - kmerLength) do
queryKmer < queryRead[i : (i + kmerLength)]
queryWords.append(queryKmer)
i+i+1
refkmerSet < []
for each refseq in referenceSequenceSet do
while j # (len(rerfseq) — kmerLength)do
refKmer < refseq[j : (j+ queryLength)]
refkmerSet.append(refKmer)
jei+1
wordlocation <— ||
wordScore < |]
for each word in queryWords do
refSeq < [|
while i < ILength g,
batchSize
refWords < refkmerSet[i * batchSize : ((i+ 1)  batchSize))

refSeq.append(refWords)
i<i+1
index <— rnnAlignmentModelword, refSeq
> RNN model return index if matched or -1
if loc # —1 then
loc <— i * batchSize + index
wordlocation.append(loc)
refSet <— referenceSequence[loc : loc + queryLength]
score <— alignmentScorequeryRead, refSet 1> Calculate alignment score of query Read and Reference Sequence
wordScore.append(score)
location <—Best Score Location
return location

B. Experiment details of deep conflation model
B.1. Simulated data generation

Simulated data is generated by adding random errors in the form of substitution and indels of bases of
corresponding reference string. Through this scheme, we intend to generate data which has close
resemblance with actual reads obtained from the NGS sequencer. Also, by using error as a parameter in the
data generator, we can generate and experiment with datasets containing varying degree of errors. This will
help in establishing correlation between the percentage of error in reads and the prediction accuracy of
the neural network, if any exists. The algorithm for data generation is described in Algorithm 2 (appendix A).
The output of data generation is jumbled using uniform random distribution. For experimentation,
three data sets of inputs and targets are generated - namely, training dataset, validation dataset and test
dataset. Each dataset is generated by the method as described above, but the number of matched and
unmatched corpuses are different due to uniform random sampling of batch data. Data is generated for 4000
reference strings, total database of corpuses is of the order 61*4000. The dataset is split into 80, 20 ratio for
training and validation set. For test, another 1000 reference string dataset is generated. The length of each
reference string is varied from 15-170 bps for experimentation. Details of DNN models which use this
dataset are discussed in following section.
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B.2. Deep conflation model for alignment

Model overview
Given a read k-mer ‘X, the model ranks a set of reference k-mers (11,72, .....,7,,), so that the reference k-mer
most similar to the given read gets the highest rank. The k-mers are first preprocessed and encoded as per the
following scheme:

A:0,C:1,G:3,T:4.

The model consists of two parts:

1 Extracting finite dimension feature vectors from the encoded read and reference k-mers through CNN
2 Ranking the reference features based on cosine similarity with read features. (ry, 3, .....,r,) are ranked in
order of decreasing similarity.

CNN feature extractor

Let X’ be a string containing ‘k’ characters. Then, character encoding of x is obtained as x = [x1,x3...,%]. X
is then fed as input to the CNN, and convolution is applied using three different filters of sizes 2, 3 and 4 to
extract features corresponding to bigrams, trigrams and 4-grams. The ‘t’ th output of a convolution with
filter size ‘f* is obtained as follows: Where Wy is the convolution weight, by is the bias and s;.;  y _ 1 is the
vector obtained by concatenating s; to s; s _ | Feature map of convolution with filter size ‘f” can be defined
as: Max pooling is applied to feature map Ay to obtain ﬁf. Feature maps obtained with filters of sizes 2, 3 and
4 are concatenated to form a vector representing the entire input string/character sequence y = [h}, hs, h:;].
This final feature vector is fed to the ranker module. The process of feature extraction is repeated for each
read k-mer and reference k-mer.

hﬁ = tanh(Wf Strbf—1+ bf) (B1)
hf: [hf],hﬁ, ....... ,hf(k_c+1)] (BZ)
Ranker
After obtaining the feature vector y, for read k-mer x, and set of feature vectors y,, =<y, ¥,
yeesVr, >, 1 <i < nfor reference k-mers (ry,7,,.....,r,) the ranker computes cosine similarity between y, and

each of y,, as follows. Reference k-mers are ranked by these scores with respect to a given read k-mer, with the
best matching reference k-mer awarded the highest rank.

T
R(x,r)) = — 20 (B3)

sl Lyl

Training

For training, we have used simulated data as described in the previous subsection. We feed the model a batch
of 100 such (reference, mutant) pairs, wherein the model is expected to learn to match the mutated string to
its original reference string, and assign it the highest rank. Using the similarity scores obtained from equation
(B3), the posterior probability of correct reference string, given the mutant string is defined as follows:
Where r is the correct reference string to which x should match. v is a hyper-parameter set to 10. Ref is the
set of reference strings, containing r* and 99 other random non-matching reference strings. While learning,
the model tries to minimize the following loss function: Where 6 denotes the model parameters to be learnt,
and product is over all examples in a batch. Adam Optimizer with learning rate of 0.000 2 is used for loss
minimization.

PR
) = S s ep (- RGI7)) (54
L(0) = —log HP(r+|Ref) (B5)

x,Ref
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Figure C1. Vanilla RNN Cell Design.

Testing

During testing, a read k-mer is fed to the model and features extracted from this input are compared with
feature vectors obtained from reference k-mers. Thereafter, reference k-mers are ranked in order of similarity
(based on equation (B3)), and the highest rank reference k-mer is output as the most probable match for the
given read k-mer.

C. Design and training of RNN models

C.1. Vanilla RNN

A Vanilla RNN is designed to include an additional context layer, where the activation of hidden units from
previous feed-forward process is stored [41]. These hidden state values are concatenated with input which
generates a three-dimensional vector of shape “sequence_length, batch_size, hidden_size 4 input_size. These
vectors are then fed to the RNN cell with fully connected nodes. Each cell of RNN stores value as hidden state
which is of dimension “batch_size, hidden_size”. The output of the RNN cell is then fed to the FC layer while
the hidden state is fed to the input layer of the next cell. The design of a Vanilla RNN cell is as shown in
figure C1.

C.1.1. Training

The network was trained on simnulated data for 50 epochs, with 380 batches of size 10 (number of batches =
61*4000/batch size/sequence length) for each epoch. For each epoch, at an interval of 100 batches, training
loss and training accuracy of predicted output was calculated. To observe overfitting, a validation test was
performed on validation data at the same interval. With learning rate of 0.001 for optimizer the plots of loss
function, training accuracy and validation accuracy is shown in figure C2. The value of hyper-parameter for
Vanilla RNN is as in table 2.

C.2.LSTM

In order to model global alignment of genome sequences by comparing reads of long lengths, we have
explored LSTM cell in our Recurrent Neural Network architecture. Benefit of LSTM is that it helps to avoid
long-term dependencies and thus remembers data patterns for long time(sequences). From many different
LSTM configurations available, we have used Hochreiter & Schmidhuber LSTM [42]. A cell of LSTM consists
of hidden state and cell state. Hidden state of LSTM cell is used for modifying state of next LSTM cell, while
Cell State dictates output of current cell. Both values for initial LSTM cell are initialized to zero. Similar to
RNN, input to cell is concatenated with previous hidden state before being fed to next LSTM cell.

C.2.1. Training

The LSTM network was trained for 100 epochs with the number of batches and batch size the same as that of
the RNN model. Training set and validation set are also kept same as that of RNN model. Hyper-paramenters
of the LSTM network are show in table 2. Unlike RNN, the training loss and training accuracy in the LSTM
model are calculated for each epoch, while the validation test is done at an interval of 100 batches for each
epoch. The training loss, training accuracy and validation accuracy of the LSTM model is shown in figure C3.
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D. Data preprocessing for CNNbased variant caller

D.1. Data preprocessing

This process involves the generation of variant candidates and generation of labeled data to train CNN. For
variant generation, the aligned BAM file is read using Samtools and corresponding CIGAR [43] strings are
decoded. From the CIGAR string, different alleles along with their position in reference reads are identified
by comparing it with reference read. These alleles are then classified either as reference-matching base,

reference-mismatching base, an insertion or as a deletion [17].
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Figure D5. Data Transformation during Preprocessing

The frequency of each distinct allele for a position is calculated using position-specific frequency
matrices (PSFM) [44] as shown in figure D4. If the frequency is above the set threshold, the allele site is
considered as a variant candidate.

For all possible variant candidates, the variant string is generated by reading the fixed length of bases
from reads, with the variant site as median. These variant candidate strings are encoded into three matrices.
The first matrix is created by encoding the expected reference sequence using one-hot-like encoding. It
encodes a number of reads that are aligned to a reference position. The second matrix encodes the difference
of all the bases observed in the read-reference alignment. Reads with ‘N’ nucleotides are ignored. The third
matrix is similar to the second matrix, except none of the insertion bases in the reads is counted. All the
matrices are input to CNN for both training and variant calling. Figure D5 depicts data transformation at
each stage of the data preprocessing.

Labeled data: labeled data is created by reading the corresponding variant file in VCF format. Only those
true variants are considered for labeling which fall in high-confidence regions of the reference genome. For
all true variants, their position, reference base, alternate base and their genotypes are read. These variants
and their genotypes are then encoded as shown in figure LabelDataEncoding.

The process of generating label data and data transformation for labeling is shown in figure
LabelDataGeneration.
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