
Journal of Physics: Complexity      

PAPER • OPEN ACCESS

On the information-theoretic formulation of network
participation
To cite this article: Pavle Cajic et al 2024 J. Phys. Complex. 5 015021

 

View the article online for updates and enhancements.

You may also like
Hyperharmonic analysis for the study of
high-order information-theoretic signals
Anibal M Medina-Mardones, Fernando E
Rosas, Sebastián E Rodríguez et al.

-

A controlled transfer entropy approach to
detect asymmetric interactions in
heterogeneous systems
Rishita Das and Maurizio Porfiri

-

Efficient Information-Theoretic-Statistical
(ITSM) Equation for Face Recognition
Technique: Comparison with Statistical
Technique and Information-Theoretic
Technique
Alaa Mohammed Redha Abdulhassan and
Asmhan Flieh Hassan

-

This content was downloaded from IP address 13.59.9.236 on 09/05/2024 at 06:28

https://doi.org/10.1088/2632-072X/ad32da
https://iopscience.iop.org/article/10.1088/2632-072X/abf231
https://iopscience.iop.org/article/10.1088/2632-072X/abf231
https://iopscience.iop.org/article/10.1088/2632-072X/acde2d
https://iopscience.iop.org/article/10.1088/2632-072X/acde2d
https://iopscience.iop.org/article/10.1088/2632-072X/acde2d
https://iopscience.iop.org/article/10.1088/1757-899X/928/4/042036
https://iopscience.iop.org/article/10.1088/1757-899X/928/4/042036
https://iopscience.iop.org/article/10.1088/1757-899X/928/4/042036
https://iopscience.iop.org/article/10.1088/1757-899X/928/4/042036
https://iopscience.iop.org/article/10.1088/1757-899X/928/4/042036


J. Phys. Complex. 5 (2024) 015021 https://doi.org/10.1088/2632-072X/ad32da

OPEN ACCESS

RECEIVED

17 October 2023

REVISED

7 March 2024

ACCEPTED FOR PUBLICATION

12 March 2024

PUBLISHED

27 March 2024

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

On the information-theoretic formulation of network participation
Pavle Cajic1, Dominic Agius1, Oliver M Cliff1,2, James M Shine2,3, Joseph T Lizier2,4,∗
and Ben D Fulcher1,2,∗
1 School of Physics, Faculty of Science, The University of Sydney, Sydney NSW 2006, Australia
2 Centre for Complex Systems, The University of Sydney, Sydney NSW 2006, Australia
3 Brain and Mind Centre, Faculty of Medicine, The University of Sydney, Sydney NSW 2006, Australia
4 School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney NSW 2006, Australia
∗ Authors to whom any correspondence should be addressed.

E-mail: joseph.lizier@sydney.edu.au and ben.fulcher@sydney.edu.au

Keywords: participation, information theory, complex networks

Abstract
The participation coefficient is a widely used metric of the diversity of a node’s connections with
respect to a modular partition of a network. An information-theoretic formulation of this concept
of connection diversity, referred to here as participation entropy, has been introduced as the
Shannon entropy of the distribution of module labels across a node’s connected neighbors. While
diversity metrics have been studied theoretically in other literatures, including to index species
diversity in ecology, many of these results have not previously been applied to networks. Here we
show that the participation coefficient is a first-order approximation to participation entropy and
use the desirable additive properties of entropy to develop new metrics of connection diversity with
respect to multiple labelings of nodes in a network, as joint and conditional participation
entropies. The information-theoretic formalism developed here allows new and more subtle types
of nodal connection patterns in complex networks to be studied.

Many real-world networks exhibit modular structure, in which nodes form densely interconnected modules
with relatively sparse connectivity between modules. Such modularity is observed in social networks, food
webs, metabolic networks, protein–protein interaction networks, air-traffic networks, and brain networks
[1]. Within such modular networks, individual nodes can vary substantially in their degree of within- versus
across-module connectivity. These differences can provide important insights into a node’s functional role
within a network, such as facilitating local information processing (consistent with strong within-module
connectivity) versus distributed/integrative communication (strong cross-module connectivity).

To measure the extent to which a given node’s connections are distributed within or across modules, the
participation coefficient was introduced by Guimerà and Amaral [1, 2]. It has been used widely to analyze
networks across domains, including the Internet, metabolic, air transportation, protein-interaction, and
neural networks [3, 4]. For example, the participation coefficient of nodes in macroscopic brain networks
has been used to distinguish levels of consciousness caused by brain injury [5] and to identify emerging new
research directions from scientific publication citation networks [6]. This concept of nodal connection
diversity across modules was also formulated as a Shannon entropy by Rubinov and Sporns [7]. Quantifying
diversity is a general problem studied across many fields, with a prominent application to species diversity in
ecology for which the Shannon entropy and Gini–Simpson index (the measure underlying the participation
coefficient [7]) formulations have been used for decades, among a host of alternative indices [8, 9].
Mathematical relationships between different formulations of diversity indices have been uncovered. For
example, the Gini–Simpson index and Shannon entropy have each been shown to be special cases of
‘generalised entropies’ [10–12]. Zhang and Grabchak [13] have further shown that the Gini–Simpson index
can be expressed as a first-order Taylor approximation to the Shannon entropy formulation of diversity.

Despite the wide variety of diversity indices used in ecology, the participation coefficient has remained
the dominant measure of node participation in network theory since it was introduced in 2005 [1, 2]. Here
we connect the problem of quantifying nodal connection diversity in networks with a large and existing
literature on diversity indices, and in particular explain the relationship between the participation coefficient
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and the corresponding Shannon entropy-based formulation of connection diversity [7], which we call
‘participation entropy’ here. We argue that participation entropy is a better-motivated measure of node
participation diversity, primarily due to its additive behavior with respect to chaining probability
distributions, an operation which can arise naturally when the nodes in a network have labels in multiple
module sets. Taking advantage of this behavior, we define novel measures of connection diversity—‘joint’
and ‘conditional’ participation entropy—for quantifying more nuanced types of connection patterns in
complex networks.

1. Participation coefficient and participation entropy

We consider a binary, undirected network partitioned intoM non-overlapping modules, with each node
labeled as belonging to a module, from the setM= {m1,m2, . . .,mM}. Note that this modular partition is
most commonly obtained as the result of a community-detection algorithm operating on the network [14],
but could in general represent any assignment of categorical labels to nodes in a network. GivenM, the
participation coefficient, Pi, of node i is defined as

Pi (M) = 1−
M∑
j=1

(
κij

ki

)2

, (1)

where κij is the number of edges between node i and a node in modulemj, and ki is the degree of node i (the
total number of connections made to all other nodes in the network) [1, 2]. For simplicity, we focus on
undirected networks here, but note that this formulation extends straightforwardly to weighted networks
(substituting κij and ki for weighted versions that sum edge weights) and directed networks (e.g. by defining
κij and ki as counting connections outward from, or arriving to node i, as the in-degree or out-degree).
Equation (1) exhibits the desired behavior of a connection diversity metric, taking a minimal value for a
node with connections entirely within a single module (Pi = 0) and a maximal value for a node that
connects equally across allM modules (Pi = 1− 1/M).

1.1. A probabilistic formulation
An alternative interpretation of equation (1) can be considered by identifying κij/ki as the probability, pi(mj),
that a randomly selected connected neighbor of node i is assigned to modulemj. An example is depicted in
figure 1(a), which depicts the connected neighbors of node i across each of three modules,
M= {m1,m2,m3}. This, or any other pattern of connectivity, can be represented as a probability
distribution, {pi(m)}m∈M, plotted for this simple example in figure 1(b). In this probabilistic formulation,
Pi can be expressed as a function of pi(m) by rewriting equation (1) as Pi(M) = 1−

∑
m∈M pi(m)2.

This formulation allows us to clearly see that the participation coefficient is an implementation of the
Gini–Simpson index of diversity [15], as observed previously [7]. This is an important measure used in many
other contexts, including quantifying biodiversity [8, 9]. Following the interpretation that motivated
Simpson’s original formulation [15], Pi can be interpreted as the probability that two randomly selected
nodes connected to node i (with replacement) lie in different modules.

1.2. Participation entropy
The Shannon entropy [16, 17] of pi(m) is a natural measure of the connection diversity of node i across the
label set,M:

Ei (M) =H [pi (m)] =−
∑
m∈M

pi (m) logpi (m) . (2)

We term Ei(M) the ‘participation entropy’ of node i, which measures the uncertainty (or average surprise)
in the module labels (fromM) of its connected neighbors. This matches a previous formulation of nodal
connection diversity introduced by Rubinov and Sporns [7] (named the ‘diversity coefficient’ in its
implementation in code in the Brain Connectivity Toolbox [18]). Participation entropy exhibits the same
desired qualitative behavior as the participation coefficient, Pi; that is, Ei = 0 is minimal when all connected
neighbors of node i are in the same module (minimum uncertainty about the module label of node i’s
neighbors) and Ei = log(M) is maximal when connected neighbors are equally distributed across all of the
modules (maximum uncertainty about the module label of node i’s neighbors). Note that both Ei and Pi

may be normalized by dividing by their maximum value for a given number of modulesM, if desired (as
‘normalized connection diversity’ [7], which has the effect of setting its range to the unit interval).

Compared to Pi, quantifying connection diversity as an entropy, Ei, provides an interpretable measure of
diversity as the uncertainty in a target node’s label given the underlying probability distribution of these
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Figure 1. A probabilistic formulation of a node’s connection diversity with respect to a set of labels. (a) We plot the connected
neighbors of a given node, i, which span three labeled modules:m1 (3 edges),m2 (4 edges), andm3 (2 edges). (b) This pattern can
be represented as a probability distribution, pi(m), that captures the probability of node i’s connected neighbors being in each of
the modules. The participation coefficient, Pi, and participation entropy, are then computed from pi(m).

labels, pi(m). Moreover, Ei is the unique formulation that satisfies three key advantageous axioms
simultaneously (see [16, 19], noting that there are multiple slightly different sets of axioms which lead to the
same conclusion [17, 20]). First, it is continuous with respect to changes in pi(m). Second, it increases
monotonically with the number of modules,M, when pi(m) = 1/M, ∀m. Third, and most importantly, Ei
can be decomposed consistently across multiple labeling sets for nodes [16, 19] which directly and uniquely
leads to a chain rule relating univariate and multivariate measures of nodal participation. The ability to chain
these entropy measures opens new ways of quantifying and interpreting nodal connection patterns in
networks, as we develop later (in section 2 ). As per the original formulation of Pi, it also generalizes
straightforwardly to weighted and directed networks.

1.3. Connecting the two formulations
The mathematical relationship between the Gini–Simpson index and Shannon entropy is well-known
[10–12] and has been demonstrated in the context of species diversity indices [13]. But the connection has
not been reported for the corresponding measures of nodal connection diversity in networks, P and E . The
relationship can be seen through the series expansion of participation entropy via the logarithm in
equation (2):

Ei (M) =−
∑
m∈M

pi (m)
∞∑
n=1

− [1− pi (m)]
n

n
. (3)

This quantity converges for 0< pi(m)⩽ 1, and we take 0 log0→ 0 by convention, so there is no contribution
from any pi(m) = 0. Limiting the expansion to the leading term, n= 1, yields

Ei (M)≈
∑
m∈M

pi (m)− pi (m)
2
,

= 1−
∑
m∈M

pi (m)
2
, (4)

= Pi (M) . (5)

We thus recapitulate the participation coefficient as a first-order approximation to participation entropy (as
per the Gini–Simpson index and Shannon entropy [13]).

In order to investigate the discrepancy between Ei and its first-order approximation, Pi, we sampled from
possible distributions, pi(m) forM= 2, . . .,5, and plotted the resulting accessible regions of Pi–Ei space in
figure 2. We used 5× 104 random samples forM= 3 andM= 4, and 106 samples forM= 5, and the
boundary function in Matlab, which was sufficient to obtain smooth boundaries in each case. Our
numerical results match analytic expressions for these regions for the underlying measures on pi(m) derived
by Vajda and Zvárová [12]. We find that Pi varies monotonically with Ei forM= 2, but forM> 2, allowed
values of Pi and Ei are constrained to specific regions of the space. This accessible region expands with the
addition of each new module; figure 2 annotates the additional accessible region with each increment ofM.
The results indicate that there can be a substantial discrepancy between an analysis using Pi versus Ei, with
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Figure 2. Constraints on the relationship between Pi and Ei for networks containingM= 2, . . .,5 modules. The shaded region
for eachM indicates the additional allowed region, in addition to that accessible for lowerM values.

greater potential for differences at moderate-to-high values of Pi and with increasingM. Published results
using Pi to quantify nodal diversity (or extract a list of ‘high-participation nodes’ [4, 21]), may thus obtain
different results when using Ei instead of its first-order approximation, Pi.

2. Joint and conditional participation entropy

A major advantage of formulating Ei as an entropy is the ability to capture more subtle types of
connection-pattern diversity in networks. Here we demonstrate this capability by developing entropy-based
network participation measures for the case that each node is annotated withmultiple labels. Specifically, we
consider L different module sets,M1,M2, . . .,ML, that each define a labeling of network nodes. In a social
network, this could correspond to individuals being labeled by both gender,Mg, and friendship group,Mf.
Or, in a brain network, it could correspond brain regions being labeled by both their hemisphere,Mh (left or
right) and their functional network module,Mf (e.g. auditory, visual, association, etc). There is no clear way
of extending Pi to such a setting, but it can be incorporated naturally in the information-theoretic
formulation of Ei.

Extending participation entropy with respect to any single labeling of nodes,M, we now consider the
diversity of connections involving node i across multiple label sets jointly. Writing the L sets as
M= (M1,M2, . . .,ML), and a combination of labels fromM for a given node as
m= (m(1),m(2), . . .,m(L)), we define the joint probability distribution pi(m) for the connected neighbors of
node i. We can then define the joint participation entropy of node i as:

Ei (M) =H [pi (m)]

=−
∑
m

pi (m) logpi (m) . (6)

This tells us the total diversity of connections across these multiple module sets,M.
Similarly, we can define the conditional participation entropy as the entropy of modular assignmentsm

from setsM of the connected neighbors of node i, given knowledge of the modular assignments n from
other setsN :

Ei (M|N ) =H [pi (m|n)] ,
= Ei (M,N )−Ei (N ) . (7)

This quantifies the remaining uncertainty in the distributions of connections across the modules of setsM,
given that we already know their distributions across setsN .

The joint participation entropy, Ei(M), and conditional participation entropy, Ei(M|N ), are related via
the chain rule for entropies [17] (vis-à-vis equation (7)), which means that we can consistently decompose
and re-compose the diversity of connections over multiple module sets, regardless of which order we
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Figure 3. Participation entropy can be extended to the case where each node is labeled according to multiple module sets. Here we
illustrate the case in which each node is labeled by two different module sets:M= {m1,m2,m3} and S = {I,⃝,9}. Three
cases are illustrated: (a), (b), labelingsM and S are redundant; (c), (d), labelingsM and S are statistically independent; and (e),
(f), labelingsM and S exhibit non-trivial dependence. (a), (c), (e) show the pattern of connectivity from a target node, i, to a set
of nodes labeled byM and S . (b), (d), (f) show conditional probability matrices, p(mi|sj) for connected neighbors of node i from
both labelings.

chain our knowledge of the module labelings. This property is unique to the information-theoretic
formulation [19].

To illustrate the calculation of conditional participation entropy, we show some illustrative examples in
figure 3 for the simple case of two node labelings:M= {m1,m2,m3} and S = {I,⃝,9}. The three cases
shown in figure 3 correspond to distinct types of connection patterns of node i with respect toM and S . In
figure 3(a), the labels assigned to node i’s connected neighbors are redundant with respect toM and S . That
is, for a given connected neighbor, knowledge of the label s leaves no uncertainty about the labelm (and
vice-versa), resulting in the symmetric p(mi|sj)matrix shown in figure 3(b). For this case, the conditional
participation entropy of node i, Ei(M|S) = 0.

For the connection pattern shown in figure 3(c), the labelingsm and s are statistically independent. That
is, for a given connected neighbor, knowledge of the label s does not reduce our uncertainty about the label
m, as reflected in the p(mi|sj)matrix in figure 3(d). In this case, Ei(M|S) = Ei(M).

In general, a node’s connection pattern will involve non-trivial statistical dependencies between the
combinations of labels. Such a case is shown in figure 3(e), where knowledge of the label s reduces our
uncertainty aboutm. For example, as depicted in figure 3(f), if we learn that a node is labeled s=⃝, then
our uncertainty about its label,m, is reduced, from {p(m1),p(m2),p(m3)}= {0.25,0.5,0.25} to
{0,0.5,0.5}. As such, 0< Ei(M|S)< Ei(M) here.

The conditional participation entropy thus provides a new way to quantify a node’s connection diversity
across multiple labelings of network nodes. For example, in a structural brain network in which brain areas
(nodes) are annotated by both by a functional annotation,Mf (e.g. visual, auditory, motor, etc) and their
hemisphere,Mh (left or right), E(Mh|Mf) could be used to highlight nodes whose diversity of connectivity
between left and right hemispheres depends on which functional module they connect to.

3. Conclusion

We have introduced an information-theoretic formulation of nodal connection diversity in complex
networks, incorporating results from the broader literature on quantitative diversity indices that builds on a
prior introduction of the Shannon entropy formulation of participation coefficient [7]. Quantifying
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connection diversity as the average uncertainty in the module label of a connected neighboring node, termed
participation entropy, Ei, has mathematically favorable properties over the more commonly used
participation coefficient. Using a probabilistic formulation of the two measures, we show that the
participation coefficient is a first-order approximation to the participation entropy (as per the relationship of
the underlying measures of diversity [13]). Using the additivity of participation entropy with respect to
chaining probability distributions for multiple module sets, we introduce new ways of measuring connection
diversity for cases where nodes are labeled from multiple label sets, defining joint and conditional
participation entropy.

Future work may build on the theoretical foundations laid here, including applying the new measures to
data. This will require developing statistical significance tests against appropriate null distributions. For
example, analysis on the conditional participation entropy of a node, Ei(M|N ) (i.e. the diversity of
connectivity across modulesM given the labelingN ) requires comparison to an appropriate null
hypothesis. One choice of null hypothesis is that node i connects randomly with respect toM, while
preserving the distribution of connections overN (which could be sampled from numerically). Future work
could also explore alternative probabilistic formulations of connection diversity that may differently account
for module size [21, 22]. In summary, the new theory introduced here enables practical new ways of
understanding and quantifying more subtle types of nodal connection patterns in complex networks.
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