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Abstract

Completing large-scale projects on time is a daunting challenge, partly due to the intricate network
of dependencies between a project’s activities. To support this challenge, existing theory focuses on
predicting whether a delay in completing a single activity is likely to spread and impact
downstream activities. Using fine-grained information from 68 546 activities and 84 934 pairs,
associated with the delivery of a $1.86Bn infrastructure project, we show that the core mechanism
that underpins existing theory underestimates delay propagation. To elucidate the mechanisms
that drive delay, we generated null models that destroyed the structural and temporal correlations
of the original project activity network. By doing so, we argue that this underestimation is the
result of neglecting endogenous structural features within the project’s activity network.
Formulating a new mechanism that utilizes both temporal and structural features may help
improve our capacity to predict how delays spread within projects.

1. Introduction

Successful delivery of project-based operations is central to the global economy [1]. World Bank data
indicates that more than 22% of the world’s gross domestic product—equivalent to approximately $48
trillion—relies on the successful completion of projects. These projects are composed of thousands of
activities, planned over a well-defined timeline. The intricacy of the interdependencies between these
activities challenges the ability of decision makers to deliver large scale projects on time [2, 3]. As a result,
these projects regularly experience major cost escalations. For example, a survey of 258 infrastructure projects
taking place across 20 countries shows an average cost escalation of 28% [4]. The fiscal implications of such
escalations grows further due to the projected average annual growth of 1.5%—2.5% in project value [5].

Delay in completing a single activity can impact subsequent, downstream activities due to the functional
dependencies that exist between them. As a result, a seemingly insignificant delay in the completion of a
parent activity can trigger a cascade of delays to its downstream child activities [6]. The time between the
completion date of the parent activity and the start date of its child activity is the perceived centerpiece in
predicting whether a delay in completing the parent will impact the child activity. This time period is known
as the ‘free-float’.

Given sufficient ‘free-float], existing theory postulates that a delay in the completion date of the parent
activity will be absorbed without impacting the start date of its child activity. In other words, a delay in the
parent activity will impact its child only if the ‘free-floa’ between the parent and the child is smaller than the
delay in completing the parent. This ‘free-float’ mechanism is central to most delay spread prediction
models, for example Critical Path Method, Program Evaluation and Review Technique [7]. This mechanism
is also similar to the ones used to model delay spreads in other systems, namely railway [8] and airport
networks [9].

© 2023 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Delay propagation within our data. Vertical distance between nodes corresponds to the free-float (days) between each
pair. Red indicates that the node was delayed, whilst green indicates that the node was completed on time. Note the
underestimation in delay spreading between the expected scenario (based on the free-float mechanism) and the actual.

We use project data to test the accuracy of the predictions that stem from existing theory [10]. We argue
that this ‘free-float’ mechanism neglects endogenous structural aspects of the project’s activity network, and
as a result systematically underestimates the probability of a delay to spread. We provide empirical evidence of
this using a large, novel dataset that contains fine grained information of 68 546 unique activities and 84 934
unique pairs that underpin the completion of a $1.86Bn infrastructure project. Each activity is characterized
by a planned and an actual start and completion date, which determines whether it has been ‘delayed’ or
completed ‘on-time’. We consider an activity to be ‘delayed’ (‘on-time’) if the actual completion date is later
(earlier or the same) than its planned completion date. By knowing which activity is ‘on-time’ or ‘delayed, we
can spot the origin of a delay, and track its potential spread to downstream activities, see figure 1 [7].

2. Materials and methods

2.1. Network sample

Our original dataset is composed of 315 268 unique activity and 546 380 unique directed links. We created a
subset of 74 731 activities and 111 550 links, for which we have complete information on their planned and
actual start/completion dates. From this subset, we focused on the links that reflect functional dependencies
between activity pairs i.e. where the output of a parent is a necessary input to start the child activity. This is to
exclude links that may signal partial dependencies which could distort the trueness of the dependency
structure (e.g. parent activity can be completed in part, for its child activity to also start). As a result, we
ended up with our final dataset, which is composed of 68 546 unique activities and 84 934 unique links. We
used this information to generate the project’s activity network.

This activity network is a directed, acyclic graph (DAG). This is the result of the temporal ordering
enforced by the nodes, where a link from a child node cannot link back to an activity that has a start date
earlier than that child’s completion date. The network forms a single weakly connected component, and has a
heavy-tail degree distribution, see figure 2. The mean out-degree is 1.52 whilst its max out-degree is 63. The
mean in-degree is 1.52 and the max in-degree is 50. The resulting activity network is also sparse, with an edge
density of 6.2 x 107%, and has an average path length of 16.7. These statistics are consistent with those
reported in [6].

For our analysis, we focused on single-parent/single-child pairs in this activity network. In doing so, we
ensure that our results are not affected by compounding spreading dynamics that underpin more
complicated network structures. In the case of the actual and expected fractions of delayed parents, this is
composed of 53 519 unique activities and 35 380 unique links, with 15 829 delayed parents involved in 8860
unique links.

2.2. Expected delayed spread

Focusing on the subset of pairs where a parent is delayed (N = 8860), we evaluated the expectation of a child
also being delayed by comparing the actual completion date of the parent activity with the planned start date
of its child. If the actual completion date of the parent is later than the planned start date of the child, the
‘free-floa’ between them has been used and therefore, we expect that the child activity would also be delayed.
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Figure 2. Probability that the degree is larger than, or equal to, a specified value. Both axes are in log scale, where a straight line is
indicative of a heavy tail.
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Figure 3. Fraction of delayed child activities, given that their parent has been delayed, as a function of the planned ‘free-float’. Red
line corresponds to the actual fraction of delayed child activities, where the actual completion date for each child is larger than its
planned completion date. Black line corresponds to the expected fraction of delayed child activities, whose planned start date is
earlier than the actual completion date of their delayed parent. This fraction corresponds to the outcome that we would expect
using the ‘free-float’ mechanism. Both planned and actual dates used are found within the data. Dotted grey lines correspond to
the average (£20) fraction of delayed childs under Null Model 1 and 2.

Otherwise, if free-float still exists between this pair, the child activity should not be delayed. In other words, if
the parent has been delayed by more days than the free float between the parent and the child, we expect the
child to be also delayed. The outcome of this computation corresponds to figure 3, expected delays line. Note
that we use the term ‘expected’ to signal that if actual delays were identical to the expected delays (in terms of
probability of them happening and their magnitude), then the ‘free-float’ mechanism can accurately predict
how delays propagate.
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2.3. Null models

With Null Model 1, we destroyed both structural and ‘free-float’ correlations by reshuffling all links within
the activity network, in accordance with the configuration model. We first recorded the in/out degree of each
activity, and represent those as half-links [11]. We then randomly selected a pair of activities and connected
them, starting from the end of the project and moving progressively backwards in time. Starting from the
project end, we pick the activity with the latest start date—this is our candidate parent. We then find all the
activities that have a start date that is larger, or equal, to that of the completion date of that candidate parent.
All activities that satisfy this condition form a set of candidate childs. We randomly pick an activity from the
set of candidate childs, and create a link from the candidate parent to this child—we now have a new
parent/child pair. We remove the two nodes from the pool of nodes, and repeat until no nodes are left.

This process ensures ensure that for each newly formed parent/child pair satisfied the requirement of the
parent having a planned completion date before the planned start date of its child activity. If this was not the
case, we would end up with pairs where the child could have a start date that is earlier than the completion
date of its parent, which goes against the definition of a link in an activity network.

We repeated the process until all half-links are paired up. In a few cases, we missed a minor amount of
links (worst case contains 0.09% less links than the original) due to the lack of pair combinations where a
child’s start date is after the parents completion date. Depending on the order in which half-links are paired,
the resulting network of each reshuffle is different whilst preserving the in/out degree of each activity. With
Null Model 2, we maintained the structure of the activity network and destroy the ‘free-float’ correlations by
randomly reassigning free floats across all pairs. As with Null Model 1, the stochastic nature of the switch
results in different temporal correlations for each reshuffled network.

We created 100 reshuffled networks for each Null Model. For each reshuffled network, and once the
reshuffled process was completed, we compared the actual completion date of a delayed parent with the
planned start date of its child. If the actual completion date was larger than the planned start date of the
child, then we would mark the child as delayed. We repeated this process across all parent-child pairs to get
the fraction of delayed childs. We repeated this process across all 100 instances and averaged the fraction of
delayed childs for each Null Model, as shown in figure 3 (standard deviation across 100 instances for each of
the Null Models is also shown in figure 3).

3. Results

We first confirmed that a delay in a parent activity can spread to its child activity, and that the probability of
doing so reduces as ‘free-float’” increases. This observation is in step with existing theory, where ‘free-float’ is
the determining quantity in evaluating whether a delay in completing a parent activity can impact its
downstream activities.

We found that this negative correlation between ‘free-float’ and probability of delay spreading vanishes
once structural and ‘free-float’ correlations are destroyed. This means that the importance of the ‘free-float’
mechanism relies on a combination of temporal and structural correlations within the underlying activity
network. We employed two null models that allowed us to selectively destroy these correlations [12]. With
Null Model 1, we destroyed both structural and ‘free-float’ correlations by randomly rewiring all activities
(N = 68 546) according to the network configuration model [11]. This corresponds to the bulk of tasks
having a similar number of dependencies (in reality, some tasks have many more dependencies than the
average). With Null Model 2, we randomly reshuffled the ‘free-float’ entries across all activity pairs
(N = 84934). This corresponds to tasks being planned without any consideration to operational and
financial constraints (in reality, ‘free-float’ is often used to smoothen spending across the project’s life cycle).

We next focused on the ‘free-float’ mechanism by which delay is currently thought to be predicated
on, and tested whether this mechanism can be used to effectively predict delay spreading. We compare the
actual delay spreading patterns with the expected delay spreading patterns (figure 3 across all single-parent/
single-child unique pairs (N = 35 380). We focus on single-parent/single-child pairs to ensure that our
results are independent from compounding spreading dynamics that may underpin more complicated
structures [13, 14] (i.e. in such cases, the state of an activity may depend on the state of more than one parent
and/or child activities).

We find that the delay expectation from using the ‘free-float” mechanism consistently underestimates the
probability of a delay spreading from a parent to a child activity. This means that it is possible for a delay to
propagate from a delayed parent to its child even when there is still some ‘free-float’ between them—a
possibility that is unaccounted for within existing theory. This may be due to the incomplete formulation of
the ‘free-float’ mechanism in current theory. Specifically, we noted that the relationship between ‘free-float’
and probability of a delay to spread is a function of both temporal and structural features (figure 3; Null
Models 1 and 2). Yet the ‘free-float’ mechanism utilizes temporal features only. Formulating a new
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mechanism that characterizes delay spread by taking into account both temporal and structural features
could improve the accuracy of predicting whether a delay can spread within any project, leading to
significant cost savings.

4, Conclusion

Our results indicate that the probability of a delay spreading within the project is related to the length of the
‘free-float), in step with existing theory. We showed that this relationship may be due to a combination of the
structural and temporal features that underpin activity networks. We show that existing delay prediction
methods which currently rely on the ‘free-float’ mechanism systematically underestimate the actual delay
spread. This may be due to the existing ‘free float’ mechanism focusing solely on temporal features, despite
the evidence above that suggests that the importance of ‘free-float’ is due to a combination of both structural
and temporal features.
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