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Abstract
Modelling, forecasting and overall understanding of the dynamics of the power grid and its
frequency are essential for the safe operation of existing and future power grids. Much previous
research was focused on large continental areas, while small systems, such as islands are less
well-studied. These natural island systems are ideal testing environments for microgrid proposals
and artificially islanded grid operation. In the present paper, we utilise measurements of the power
grid frequency obtained in European islands: the Faroe Islands, Ireland, the Balearic Islands and
Iceland and investigate how their frequency can be predicted, compared to the Nordic power
system, acting as a reference. The Balearic Islands are found to be particularly deterministic and
easy to predict in contrast to hard-to-predict Iceland. Furthermore, we show that typically
2–4weeks of data are needed to improve prediction performance beyond simple benchmarks.

1. Introduction

An increasingly interdisciplinary community is contributing to the understanding of power grid dynamics
and stability, including dynamical modelling, simulations and machine-learning-based forecasts, see e.g. [1]
for a recent review. The energy system is a very important and challenging research area as it constitutes a
complex system with many interacting entities, e.g. its energy markets, generators, consumers, different
control areas and control mechanisms.

In this article, we investigate the dynamics and predictability of the power grid frequency in five grids of
very different sizes. The grid frequency is critical to ensure a safe and reliable supply of electricity due to its
central role in power system control [2]. The electric frequency of the alternating current power grids
mirrors the current balance in supply and demand: An excess of demand effectively draws from the kinetic
energy stored in rotating turbines and slows these down. Vice versa, an excess of generation cannot be stored
directly in the grid and thereby leads to an increased frequency (unless batteries, pumped hydropower or
other storage options are set in operation to restore the power balance). Critically, the frequency has to be
controlled tightly using numerous control mechanisms [2–4], as otherwise consumers or generators have to
be disconnected. Desired frequency ranges depend on the synchronous area, i.e. the connected power grid
sharing the same frequency, and range from f= 50± 0.2Hz [5] to f= 50± 0.05Hz [6] for the areas
considered in the present paper. With an increasing share of volatile renewable generation, in particular wind
and solar power, the total inertia of the power system decreases, while fluctuations overall increase [7, 8].
This further amplifies the need for accurate forecasts and a solid understanding of power systems.

Islands and their power grids are particularly interesting for two reasons: First, there exist many natural
islands which are unconnected to any other power grid or will only be connected via high-voltage-directed-
current (HVDC) links, still ensuring decoupled frequency dynamics [9]. Small island grids typically have
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lower inertia and display larger frequency deviations than large integrated networks [10]. Hence they may
provide valuable insights for variable grid operation. Second, microgrid proposals [11–13], which suggest
establishing a local cell of the power grid, are receiving much attention. Depending on the specific scenario,
cells might be mostly autonomous, have their own market [14] or only decouple during emergencies to
stabilise the grid and avoid cascading failures [15, 16].

Fully modelling the short-term frequency dynamics is very challenging due to its combined
stochastic-deterministic nature and the numerous external influences [10, 17, 18], suggesting the use of
data-driven approaches [19] and the usage of machine learning to predict time series as well as to understand
and control energy systems [20–23]. These data-driven approaches complement modelling-based
approaches [10, 24] as they do not make any assumptions about the governing dynamical equations but still
provide forecasts and explanations of the system.

Any data-based forecasting method depends on the availability of data with a sufficient quality covering a
sufficiently long period. Unfortunately, such data are still not easily available. Even research projects, such as
the GridEye/FNET initiative [25], are not always open, which limits their value for the research community.
In recent work, we have pushed for more open data of power grid frequency measurements [26–28],
including coverage of power grids on islands. Still, with only limited measurement devices available, some
questions arise: Are previously developed methods which forecast the power grid frequency [20] applicable
to islands? How much data are necessary to develop data-driven approaches that can outperform simple
benchmarks? How can additional information, e.g. from transparency platforms [29], be integrated into
frequency forecasts?

To answer these questions, the remaining paper is structured as follows. We start with an overview of the
data obtained from the Nordic system, the Faroe Islands, Ireland, the Balearic Islands and Iceland in
section 2. Next, we provide an introduction to the nearest-neighbour predictor used for forecasting in
section 3.1. Then, we investigate the performance of the predictor, compared to benchmarks and as a
function of available data in section 3.2 to then discuss the possibility of extending the predictor by including
additional data in section 3.3. We close with a discussion in section 4.

2. Data overview

In the present article, we analyse the power grid frequency time series from four different European islands in
addition to the Nordic synchronous area. These islands are the Faroe Islands, Ireland, the Balearic Islands
and Iceland, see also figure 1, showing good geographical spread and a difference in size. We consider time
series from 6 days (Faroe Islands) up to 450 days (Balearic Islands) for our analysis. The five regions (Nordic
and the islands) are also very different in terms of their energy mix, regulations and interconnections:

The Nordic power system includes Norway, Sweden and Finland as well as the Eastern part of Denmark,
a total of approximately 24million people. The energy mix for the Nordic electricity supply consists of a
significant share of renewable energy, in particular wind and hydropower, with a steady increase in recent
years [30].

The Faroe Islands are an archipelago of 18 major islands in the Atlantic Ocean, with approximately
50 000 inhabitants. The power generation relies mostly on fossil fuels [31].

The Irish power system covers both the Republic of Ireland and Northern Ireland, with about 6.8million
inhabitants in total. Ireland’s generation is tailed towards a high share of wind energy and in 2020 renewable
electricity generation reached 43% of annual generation [32]. Ireland is connected to Great Britain via
HVDC cables [33].

The Balearic Islands, belonging to Spain, are located in the Mediterranean Sea with a total population of
about 1.2million. Generation relies mostly on fossil fuels such as gas (combined cycle gas turbines) and
diesel engines leading to a share in generation of more than 70% [34]. Furthermore, an HVDC cable
connecting the islands to mainland Spain is an important factor in the electric system.

Finally, Iceland is located in the North Atlantic Ocean and has roughly 300 000 inhabitants. Its main
source of electricity generation is hydropower, making up 75% of the total generation. In addition, Iceland’s
volcanic activities allow extensive geothermal power generation. These cheap energy sources have attracted
energy-intensive industries such as ferrosilicon, aluminium smelters and data centres [35].

The data for the Nordic grid are based on measurements provided by the Finish operator Fingrid [36],
see also [26–28]. Meanwhile, the time series of the islands are obtained via our measurement device, the
electrical data recorder (EDR), which has been developed at KIT. The EDR records the voltage with a
sampling frequency of 25 kHz and assigns a standard time to each data point based on a GPS recorder. Then,
the frequency is extracted based on zero-crossings of the voltage signal, see [27, 37–39] for details. Finally, the
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Figure 1. Frequency data are taken from several European islands. We display the synchronous areas analysed within the present
article: Ireland, Balearic Islands, Iceland and the Faroe Islands as the island systems with the Nordic synchronous area as a
continental reference system. Map created via Basemap and Python 3.

frequency data are pre-processed to identify acquisition interruptions and to remove outliers. Unfortunately,
some single devices had some longer measurement outages, leading to up to 25% of missing data related to
the installed time period in the Balearic Islands and Ireland, respectively, but typically less than 1% for the
other locations, see also code for details [40].

To obtain an initial impression of the frequency dynamics in the different regions, we compute the daily
profiles in figure 2, noting stark differences. The daily profile is the average frequency for each second of a
day, averaged over all days in the data set, defined in detail in the next section. The daily profile in the Faroe
Islands displays the largest deviations and seems to be somewhat unpredictable. This is in part due to the
short time series available (6 days) and might further be linked to the small population size. Meanwhile,
Ireland, the Balearic Islands and the Nordic grid all display clear patterns with the frequency jumping up and
down at specific hours. These jumps are associated with typical power dispatch actions and load and
generation ramps at full hours [41, 42]. Finally, the Icelandic daily profile is mostly flat and does not display
clear patterns, likely because the dominant hydropower and geothermal power plants are easily controllable
on the generation side.

While the daily profile (mean daily frequency values) provides insights into what typical frequency values
to expect, the daily standard deviation reveals the spread of frequency values over the day, see figure 3.
Technically, instead of computing the mean value, we compute the standard deviation for each second of a
day. Analysing the standard deviation confirms a previous observation from the daily profile: The Balearic
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Figure 2. The daily profile acts as the benchmark for all regions. We define the daily profile as the average of all recordings for
every second of the day, averaged over all days in the data set, see also equation (7). We note that the daily profiles in the Nordic
and Balearic grids are not significantly affected if the time series is truncated to shorter periods, see also the code [40].

Islands, the Nordic and to a slightly lesser extent the Irish systems show clean curves with regular distinct
peaks at the hourly dispatch intervals. This is consistent with earlier observations: Larger deterministic
frequency excursions at the start of an hour are complemented with smaller but random fluctuations in
between [10, 17, 42]. Meanwhile, the Faroe Islands show little structure and the largest absolute standard
deviation, consistent with the large frequency deviations observed earlier. Iceland is special in that the
standard deviation is on average higher than in Ireland, the Balearic Islands or the Nordic grid and
occasionally, very large values of the standard deviations are observed due to extreme frequency deviation of
the order of Hertz, instead of deviations of tens or maybe one hundred mHz as would be observed in the
other synchronous areas.

Complementing the daily profile and standard deviation, we analyse how much history is preserved in
the trajectories by computing the autocorrelation decay [17]. For a generic stochastic time series, we might
expect an exponential decay of the autocorrelation [43] and we do indeed observe such a (quick) decay in all
time series, see figure 4. For all grids except Iceland, we also observe regular peaks in the autocorrelation on a
daily basis, reinforcing the idea that the frequency follows daily patterns. Iceland is special in that the
frequency displays almost no correlation and seems to be much more stochastic than the frequency in the
other regions. Note that the Faroe Islands are omitted due to their short time series.

Finally, we also investigate the increment distribution, see figure 5. The increments are given as
∆fτ = f(t+ τ)− f(t). If the system dynamics followed a simple stochastic process, e.g. an
Ornstein–Uhlenbeck [10, 43], the increments should resemble a Gaussian distribution on all time scales τ . In
practice, we observe that for smaller τ values, the deviations from Gaussianity are more pronounced, while
for larger values of τ , the increments become more Gaussian [26, 44]. We observe the same effect in figure 5:
All synchronous areas display deviations from Gaussianity on short time scales (τ = 1s, circles), while the
statistics approach a more Gaussian shape for longer time scales (τ = 10s, triangles). Ireland and even more
so Iceland still display strong non-Gaussian distributions for τ = 10s.
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Figure 3. The daily standard deviation reflects the variability within the frequency samples at each second of the day. The Faroe
Islands and Iceland show particularly large deviations, in contrast to the deterministic profiles in Ireland, the Balearic Islands and
the Nordic grid.

Figure 4. The autocorrelation reveals daily and other regular patterns in three out of the four island grids. We plot the
autocorrelation function with time lags up to 20 days and notice very pronounced patterns in the Balearic Islands but almost no
patterns in Iceland.
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Figure 5. The increments statistics of all power grids deviates from Gaussian increments, particularly on short time scales. We plot
the frequency increments∆fτ = f(t+ τ)− f(t) for delays of τ = 1s (circles) and τ = 10s (triangles), normalised with the
respective standard deviation of a grid σ and plot a Gaussian curve (blue solid line) for reference. Curves are shifted vertically for
better visibility.

3. Forecasting frequency on islands

3.1. Introducing the weighted nearest neighbour (WNN) predictor
To forecast the power grid frequency, we expand upon an earlier paper [20], which investigated numerous
aspects of frequency predictability with a WNN predictor. This earlier paper [20] focused on the three largest
synchronous areas in Europe, for which several years of data are available. In contrast, measurements from
islands, investigated in the present article, cover a few weeks or months up to 450 days in the case of the
Balearic islands. The WNN algorithm identifies similar patterns in the past to forecast future dynamics, see
figure 6 for an illustration.

Let us specify the details of the prediction process: For each synchronous area, the time series is split into
chunks of equal length which are then used to find similar chunks (neighbours) from the past. More
formally, we define the pattern vectors:

Fn =


f(t0 − (n+ 1)γτ)

f(t0 − (n+ 1)γτ + τ)
f(t0 − (n+ 1)γτ + 2τ)

. . .
f(t0 − nγτ − τ)

 , (1)

6
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Figure 6. The WNN predictor predicts the next hour trajectory based on similar patterns from the past. The past hour is
compared with patterns from the training set, for which the next hour is available, and patterns most similar to the past hour are
identified. Here, as an example, the three nearest neighbours are shown. A weighted average of the nearest neighbours’ next hour
trajectory is computed as the prediction and can thus be compared to the actual trajectory from the test set.

where t0 is the last time point for which we have data in our initial pattern F0. Furthermore, the time delay τ
is identical with the time resolution τ = 1s and we choose γ= 3600 data points so that γτ = 3600 s covers
one hour, a central time scale for market dynamics and regular grid patterns [42]. Hence, each pattern Fn is a
vector with 3600 frequency measurements and the entire time series is covered by combining
non-overlapping sets as:

F = {Fn|∃i ∈ N : nγτ = i · 24h} (2)

and the index n is used to distinguish between different patterns. Given the past hour pattern as F0, the next
hour of the frequency time series is predicted by searching the set F for the most similar patterns to this
initial pattern. We implement this search by computing the Euclidean distance between the initial pattern
and all patterns in F :

d(Fn) = ∥Fn − F0∥. (3)

The patterns in F are then sorted based on these distances in increasing order, thus resulting in a new set of
patterns. This set only contains the kmost similar patterns to F0 given as

Nk = {n1,n2, . . . ,nk|Fnj ∈ F}. (4)
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The final prediction fwnn(t0 +∆t) with time steps∆t ∈ {1 s, 2 s, 3 s, . . ., 3600 s} is performed by a weighted
average of the k nearest neighbours’ next hour trajectories:

fwnn(t0 +∆t) =
1∑k
j=1αj

k∑
j=1

αjf(t0 − njγτ +∆t). (5)

Note that by the construction of F , we restrict our search for frequency patterns to the same hour, e.g. we
predict the frequency at 9 pm only using training data from 9 pm as well, see also [20, 40]. The weighting α
decreases with greater distance between the patterns, since close neighbours should have a stronger influence
on the prediction than more distant ones:

αj =
d(Fnk)− d(Fnj)

d(Fnk)− d(Fn1)
. (6)

The number of nearest neighbours k is a hyperparameter of the WNN predictor, which has to be optimised.
Within this paper, we utilise the adaptive-k approach [20], which optimises k for every time step as follows:
The optimal k-value is given by the lowest MSE∆t( fwnn) of the predictor for each∆t, i.e. we obtain an
adaptive-k vector with 3600 values. The adaptive-k is smoothed with a sliding window of 1min to avoid
sudden jumps and noise for any time steps, see [40] for details.

As a benchmark, we compare the WNN performance with the daily profile, which effectively is an
unweighted k=∞ predictor (including all patterns) defined as:

fdp(t0 +∆t) =
1

|F|
∑
n∈F

f(t0 − nγτ +∆t). (7)

3.2. Performance of theWNN predictor
Let us now investigate whether the WNN predictor can outperform common benchmarks on islands, as it
did in continental regions [20]. We consider three prediction models: first: a naive and constant 50Hz
predictor, as this is the typical mean value for each hour, second: the daily profile, which takes all patterns
into account equally and third: the WNN, which selects fewer patterns and weights them to obtain a forecast.
For all predictors, we use about 70% of the data for training (i.e. data to select patterns from or data to
compute the daily profile), 15% as validation (to determine the optimal number of nearest neighbours k)
and 15% as a test (to evaluate the performance), see the code [40] for details.

The WNN predictor typically outperforms these benchmarks even when little data are available, see
figure 7. We compute the root-mean-squared error (RMSE) for each predictor for each minute, averaged
over all hours. Consistent with the daily profiles, we note that both benchmarks display a large error at the
start of an hour, as dispatch actions such as generation or load ramps lead to large deviations in the
frequency. Especially at the beginning of an hour, the WNN predictor is more precise than the benchmarks,
leveraging its specific information from the previous hour. The further away the prediction is evaluated from
the start of the hour, the less specific information is contained in the previous patterns and the WNN
approaches the daily profile behaviour, as also seen for continental regions [20]. There are two more
interesting observations: First, even with only 6 days of training and test data available, the WNN
outperforms the daily profile and 50Hz predictor in the Faroe Islands. Second, all predictors fare
approximately equal for Iceland, where the grid frequency time series shows almost no characteristic patterns
but large stochastic deviations. Intuitively, power grids should be easier predictable, the more their
trajectories follow deterministic patterns, compared to stochastic influences. Let us discuss this in terms of
increment statistics: Large and particularly non-Gaussian increments signal many erratic (random) jumps,
while smaller increments signal more regular dynamics. Indeed, we observed for Iceland clear non-Gaussian
increments in figure 5. Meanwhile, we also observe non-Gaussian increments for Ireland, for which both the
daily profile and WNN predictor yield lower forecasting errors. Hence, increment statistics might provide
some possible explanations why certain areas are harder to predict than others but further comparisons and
metrics will have to be explored in the future.

In many situations, we will not have access to years or months of data, due to a large variety of potential
reasons: Measurement time is limited, large parts of the data are corrupted, the specific grid is very new,
either because the grid is newly built or major changes were made, such as the expansion of a synchronous
area [45] or a change in regulations. Regardless of what limits the access to data, we need to understand how
well the WNN predicts the frequency with shorter periods of training data available.

Interestingly, there is no general threshold of how many weeks of data are necessary for the WNN to
outperform the daily profile, see figure 8. There, we systematically investigate the prediction quality as a
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Figure 7. For three out of four islands, the WNN predictor outperforms the two benchmark models. We plot the RMSE of the
WNN prediction model versus the daily profile and a constant 50Hz prediction. In all regions except Iceland, the WNN predictor
outperforms the null models, especially the first 15min of the hour. The Balearic Islands have the lowest absolute error, while the
Faroe Islands have the highest. The y-axis varies between the subplots due to the varying error between the regions.

function of the length of available data by computing the RMSE for the constant 50Hz prediction, the daily
profile and the WNN. The latter two predictors are based on data ranging from one week up to 6months
(where available) and always utilised an 80-20 split for training and validation, hence reporting the
validation RMSE. Again, the Faroe Islands are excluded as less than one week of data are available. We
typically note that for very little data, the constant prediction is the best, followed by the daily profile and the
WNN coming in last. If measurement times are too short, the unspecific, average prediction is superior and
the WNN restricts itself to finding patterns in its very limited training set, leading to a bad performance. Vice
versa, if sufficient data are available, the WNN correctly identifies characteristic patterns and is capable to
make the best predictions.

Notably, this transition from ‘unspecific information being best’ to ‘specific historic patterns being best’
depends on the power grid at hand: The Balearic islands with their very deterministic frequency profile, only
require 2weeks for the WNN to outperform the daily profile, compared to about 4weeks necessary in
Ireland, while in Iceland even with 2months of data, the constant 50Hz prediction is still better than daily
profile or the WNN predictor.

3.3. Additional features
So far, we have only used historic frequency information to forecast frequency time series. However, there are
an increasing amount of energy system data available, so we ask: How can additional information, such as
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Figure 8.With sufficient data, the WNN predictor outperforms the daily profile at three out of four islands. We plot the average
root mean square error for the WNN predictor and the two null models for different time intervals. As the data size increases, the
WNN predictor is the best model for all regions except Iceland, where the constant 50Hz prediction performs best. The Faroe
Islands are not included in the analysis as the region’s frequency time series is shorter than the minimum interval of 1 week.

the generation of coal power plants or volatile renewable generation (wind and solar power), be integrated
into the frequency prediction, and how do they influence the performance of the WNN predictor?

To answer this question, we utilise additional information on the Balearic energy system, obtained from
the transmission system operator of Spain, Red Eléctrica de España, and their real-time electricity demand
and generation tracker [46]. It seems intuitive that (frequency) patterns of the power system will differ based
on the total load or the mix of generation types. Mathematically, we extend the WNN predictor as follows:
Let aorigin be the original additional time series. To compensate for the large deviations in the typical values of
aorigin, we carry out a min-max scaling:

a=
aorigin − amin

amax − amin
, (8)

where a is the transformed data point and amax and amin are the maximum and minimum values of the
original time series. Next, the additional feature is split into non-overlapping patterns An, similar to Fn from
equation (1):

An =


a(t0 − (n+ 1)ηλ)

a(t0 − (n+ 1)ηλ+λ)
a(t0 − (n+ 1)ηλ+ 2λ)

. . .
a(t0 − nηλ−λ)

 , (9)

where η is the number of additional data points in each pattern, and λ is the time resolution. ηλ is thus the
prediction window size and must be the same size as the frequency patterns to represent the same specific

time window of 3600 s, matching Fn. Hence, ηλ
!
= γτ . When the vectors An are concatenated with Fn, the

result is new vectors given as:

Gn =

(
Fn
An

)
. (10)

As the extended model is also limited to searching through patterns from the same time of the day, G is a new
set similar to F from (2). To now choose the nearest neighbours in terms of distance, the previous distance
computation equation (3) is extended to:

d(Gn) = ∥Fn − F0∥+β · ∥An −A0∥, (11)

10
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Figure 9.With additional features included in the WNN predictor for the Balearic Islands, the prediction performance is
increased. Presented are the three best-performing features, all improving the performance by an average of 1%–1.5%. Across the
full hour, the first 15min got worse, but the last 45min significantly improved.

where ∥ · ∥ denotes the Euclidean distance, and β is a tunable weight to adjust the influence of the additional
feature. With new distances, the weighting α from (6) is now computed as:

αj =
d(Gnk)− d(Gnj)

d(Gnk)− d(Gn1)
. (12)

The weights are then used as in equation (5) to forecast the frequency time series.
Additional information might improve performance slightly for certain time periods, see figure 9. To

obtain these results, we optimised the hyperparameter β via a grid search β ∈ 0.1,0.2, . . . ,1.5 Including the
information about actual renewable generation accounted for the best performance improvement, closely
followed by improvements by including data from combined cycle or coal [47] generation, all of which lead
to a reduction in RMSE of more than 1%. Interestingly, the additional features decreased the performance
during the first 15min, while it improved after that. Without additional features, the predicted trajectory has
its best performance at the start of an hour and then deteriorates since the information of the previous hour
is slowly being invalidated by additional, unforeseen events, see also [20]. The additional feature balances this
effect: In the first few minutes, the additional feature dilutes the specific information, leading to a larger
RMSE, while in the later parts of the hour, the additional information is more useful. Further research will be
necessary to clarify the exact effects of additional features included in the WNN predictor, especially when
applying it to other islands, such as Iceland, for which unfortunately no public data on demand and
generation were available when writing this article. Moreover, in our current implementation, we use the
actual generation for the hour for which we forecast the frequency. Thereby, we mix past and future
information. Future research could rely on forecasts or scheduled generation, which are not always publicly
available but might be available to system operators wishing to implement the WNN predictor.

4. Discussion and conclusion

The power grid frequency in islands may be predicted via a WNN predictor [20]. Compared to the
continental areas considered [20] and the Nordic area analysed in the current article, the four investigated
islands displayed more extreme properties: The daily profile in the Balearic islands is the most pronounced
and regular behaviour we have observed so far, while the frequency dynamics in Iceland show no
characteristic patterns but strong stochastic deviations, making it particularly tricky to predict. We also note
some dependency on the population size and the composition of the power generation and consumption:
the Faroe Islands and Iceland are the hardest to predict. These two islands are the least populated areas and
have very special generation and demand patterns, influenced e.g. by large industry in Iceland. Meanwhile,
the very good predictability of the Balearic Islands might at least be partially explained by its strong
interconnection with the Continental European Synchronous Area and the predominance of combined cycle
production with its fast control capabilities [48]. Overall, we have shown that the WNN predictor
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outperforms the daily profile even when only limited data are available in three out of the four island grids.
Furthermore, we have demonstrated how additional time series, such as generation, could be included as
additional information when forecasting the frequency.

Concluding, we make two contributions in this article: First, we demonstrate with a simple
nearest-neighbour predictor that the power grid frequency is predictable using machine learning in islands if
sufficient data are available. Second, we provide a tool that could be useful for the planning and operation of
islanded grids, let these be natural islands or islanded microgrids [12]. Transmission system operators
(TSOs) could use these forecasts to estimate the stability conditions for the upcoming hour and both TSOs
and balancing power provider could use forecasts to estimate control needs for future time intervals: Large
frequency deviations will require additional control to be activated to stabilise the power system. Notably,
almost no prior knowledge about the system at hand is necessary nor do we require many assumptions to
apply the WNN. Even the difference between weekends and weekdays is implicitly included in the WNN:
Given sufficient data, it will select suitable patterns. Furthermore, the WNN could be used as a diagnostic
tool, e.g. to analyse systematic offsets in the frequency or external perturbations and thereby detect
anomalies.

Further research is necessary to fully characterise to which extent power grids are predictable and which
external factors should be included. Also, further ML methods, beyond nearest-neighbour techniques could
be considered [49], e.g. to handle any concept drift in long-term forecasting or to provide further monitoring
capabilities.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files)
[28].

Acknowledgment

This project has received funding from the Helmholtz Association under Grant No. VH-NG-1727, the
Program ‘Energy System Design’ and the Helmholtz Association’s Initiative and Networking Fund through
Helmholtz AI. DG and PC acknowledge financial support from Maria de Maeztu program CEX2021-
001164-M of MCIN/AEI /10.13039/501100011033/.

ORCID iDs

Heidi S Nygård https://orcid.org/0000-0002-1639-7634
Damiá Gomila https://orcid.org/0000-0002-3500-3434
Pere Colet https://orcid.org/0000-0002-5992-6292
Ralf Mikut https://orcid.org/0000-0001-9100-5496
Richard Jumar https://orcid.org/0000-0001-6854-4678
Heiko Maass https://orcid.org/0000-0002-8365-6042
Uwe Kühnapfel https://orcid.org/0000-0002-2218-3229
Veit Hagenmeyer https://orcid.org/0000-0002-3572-9083
Benjamin Schäfer https://orcid.org/0000-0003-1607-9748

References

[1] Witthaut D, Hellmann F, Kurths J, Kettemann S, Meyer-Ortmanns H and Timme M 2022 Rev. Mod. Phys. 94 015005
[2] Machowski J, Lubosny Z, Bialek J W and Bumby J R 2020 Power System Dynamics Stability and Control (New York: Wiley)
[3] Modig N, Eriksson R, Ruokolainen P, Ødegård J N, Weizenegger S and Fechtenburg T D 2022 Overview of frequency control in the

nordic power system (available at: www.epressi.com/media/userfiles/107305/1648196866/overview-of-frequency-control-in-the-
nordic-power-system-1.pdf) (Accessed 25 April 2022)

[4] Tosatto A, Dijokas M, Weckesser T, Chatzivasileiadis S and Eriksson R 2021 Sharing reserves through HVDC: potential cost savings
in the Nordic Countries IET Gener. Transm. Distrib. 15 480–94
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