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Decarbonization in the energy sector has been accompanied by an increased penetration of new
renewable energy sources in electric power systems. Such sources differ from traditional productions
in that, first, they induce larger, undispatchable fluctuations in power generation and second, they
lack inertia. Recent measurements have indeed reported long, non-Gaussian tails in the distribution
of local voltage frequency data. Large frequency deviations may induce grid instabilities, leading
in worst-case scenarios to cascading failures and large-scale blackouts. In this manuscript, we in-
vestigate how correlated noise disturbances, characterized by the cumulants of their distribution,
propagate through meshed, high-voltage power grids. For a single source of fluctuations, we show
that long noise correlation times boost non-Gaussian voltage angle fluctuations so that they prop-
agate similarly to Gaussian fluctuations over the entire network. However, they vanish faster, over
short distances if the noise fluctuates rapidly. We furthermore demonstrate that a Berry-Esseen
theorem leads to the vanishing of non-Gaussianities as the number of uncorrelated noise sources
increases. Our predictions are corroborated by numerical simulations on realistic models of power
grids.

I. INTRODUCTION

The fight against climate change is arguably the
biggest challenge currently facing humankind [1]. Glob-
ally increasing atmospheric and oceanic temperatures
have been directly related to the emission of greenhouse
gases [2]. Therefore, key to mitigating climate changes is
our ability to reduce emissions of such gases. Of par-
ticular interest is carbon dioxide, because of its large
emission volumes and century-long lifetime in the at-
mosphere. Decarbonization, i.e. the reduction of car-
bon dioxide emissions from human activities, requires
a fast, fundamental shift to renewable, low-carbon en-
ergy sources and a systematic electrification of the en-
ergy sector. This will affect the operation of AC elec-
tric power grids as both productions and consumptions
will change [3]. In particular, higher penetration of re-
newable energy sources means fluctuating and uncertain
power productions [4], as well as reduced electromechan-
ical inertia [5, 6], which impacts dynamic properties of
power systems. It is expected – and in fact already ob-
served – that future power grids will be subjected more
often to stronger external perturbations to which they
may respond more strongly [7, 8].

AC power grids are technological entities that can be
modeled as network-coupled dynamical systems. Since
they operate according to market rules, it is often dif-
ficult to obtain true, reliable data on their operational
state. Only recently has it been possible to get access
to sufficiently large, statistically significant voltage fre-
quency datasets. Analyses of these datasets have em-
phasized the non-Gaussian nature of frequency fluctua-
tions in AC power grids [9–12], with distributions ex-

hibiting long tails and large increments. The source of
these large deviations is often attributed to the presence
of new renewable sources of energy [4, 9, 13, 14]. Large
frequency deviations are an important risk factor for the
stability and hence the operational safety of present and
future AC electric power systems. It is therefore of the
utmost importance to understand how non-Gaussian dis-
turbances propagate through electric networks. Many
recent papers have investigated the propagation of dis-
turbances originating from fluctuating power feed-in into
complex, meshed power grids [9, 14–22]. However, most
of them considered either non-noisy, monochromatic ex-
citations or Gaussian-distributed noise, with two notable
exceptions. First, Ref. [9] showed analytically for a one-
dimensional system that the variance of noise-induced
frequency fluctuations decays exponentially away from
its feed-in source. Numerical investigations further indi-
cated that this decay seems to hold for meshed graphs
as well. Furthermore, the frequency kurtosis was numer-
ically observed to exhibit a slower, possibly power-law
decay. Second, Ref. [14] conjectured that the structure of
power grids amplifies non-Gaussianities in power feed-in.
Different noise probability distributions have been con-
sidered, yet the influence of fundamental noise character-
istics such as correlation time, or the presence of multiple,
independent noise sources has been neglected so far. Be-
low we show that these characteristics are indeed key to
understanding how non-Gaussian fluctuations of voltage
angles propagate through high-voltage power grids.

The short-time dynamics of power grids is commonly
modelled by the swing equations [5], which are nonlinear,
damped wave equations on discrete networks. Source
terms, representing fluctuating power feed-in, generate
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RoCoF < 0.04 Hz/s 0.04 Hz/s ≤ RoCoF < 0.1 Hz/s 0.1 Hz/s ≤ RoCoF < 0.2 Hz/s 0.2 Hz/s ≤ RoCoF < 0.5 Hz/s

FIG. 1. Calculated spatio-temporal evolution of the voltage angle disturbance across the synchronous grid of continental
Europe. Color-plotted are the local Rates of Change of Frequency (RoCoF, defined on the ith node as ∂2

t θi(t)) for an abrupt
power loss of δP = 900 MW in the Iberian Peninsula (location indicated by the pink circle). Panels correspond to snapshots
giving the maximal RoCoF over time intervals 0-0.5[s], 0.5-1[s], 1-1.5[s], 1.5-2[s] and 2-2.5[s] from left to right.

voltage angle and frequency waves that spread through
the system. In this manuscript we investigate the propa-
gation of such waves through realistic high-voltage power
grids and characterize the noisy source terms by the
cumulants of their distributions and by their correla-
tion time τ0. Given a single, or several sources of non-
Gaussian noise, we calculate the first four cumulants of
the voltage angle distribution at any node i on the power
grid, over the distribution of the noise injected at one
or several nodes. Non-Gaussianities are quantified by
nonzero third and fourth cumulants – skewness and kur-
tosis. We are particularly interested in finding how far
they propagate away from the noise sources, and what is
their fate in the presence of multiple independent sources
of noise. First, we find that non-Gaussianities in noise
disturbances propagate differently, depending on the re-
lation between τ0 and the intrinsic network timescales.
When τ0 is the shortest time scale, non-Gaussianities
disappear over short distances relative to Gaussian fluc-
tuations, while when τ0 is the longest time scale, they
propagate through the whole system just like Gaussian
fluctuations do, independently of the distribution of iner-
tia. This network-wide propagation of non-Gaussianities
is distinct from and goes beyond the bulk, low-frequency
response reported in Refs. [20] and [7]. This is what
happens when a single noise source is present. Second,
from a Berry-Esseen theorem we show that, for identi-
cally but independently distributed sources of noise, non-
Gaussianities disappear with the number of noise sources
in both asymptotics of short and long τ0. Our analytical
results are corroborated by numerical simulations on re-
alistic high-voltage power grids. Numerics further show
that our analytical conclusions regarding voltage angles
also apply to voltage frequencies.

Compared to earlier works on noise propagation in
complex synchronous networks of oscillators and meshed
power grids [9, 14–21, 23–28], our manuscript (i) goes
beyond the white-noise limit, and includes in particular
regimes of long noise correlation time that are partic-
ularly relevant for high-voltage power networks, (ii) is
based on analytical calculations valid for general meshed
coupling networks, and (iii) considers the case of multiple
sources of power feed-in noise. Our approach relies on a

single restrictive assumption, that the non-Gaussianities
can be modelled by the first few cumulants of their dis-
tribution. While this excludes Lorentzian and power-law
distributions with small exponents, it is not an important
restriction, however, since the frequency fluctuations that
have been reported in power systems so far exhibit close
to exponential tails [9–12].

The manuscript is organized as follows. Following this
introduction, we construct our model for the dynamics
of high-voltage AC power grids in Section II. Analytical
results are derived and presented in Section III. We
confirm them numericallly in Section IV and discuss
their importance and relevance in Section V. Additional
theoretical and numerical results are presented in the
Appendix and the Supplemental Material.

II. THE DYNAMICAL MODEL

A. The Swing Equations

The operational state of an AC power grid is deter-
mined by complex voltages Vi = |Vi| exp[iφi] at each
of the i = 1, . . . N nodes of the grid. In normal op-
eration, voltage amplitudes are fixed not far from their
rated value, and voltage angles rotate close to the rated
frequency, φi(t) = Ω0t + θi(t), with Ω0/2π = 50 or
60Hz. Over time intervals ranging roughly from seconds
to several tens of seconds, the transient dynamics of high-
voltage power grids is given by the swing equations [5].
They govern the time-evolution of voltage angles in a
frame rotating at the rated frequency. In high-voltage
power grids, a standard approximation is the lossless line
approximation, which neglects Ohmic losses. The swing
equations then read

miθ̈i + diθ̇i = Pi −
∑
j

Bij sin(θi − θj) , (1)

with the inertia (mi) and damping (di) parameters. The
active power Pi is positive for generators and negative
for loads, and Bij = bij |Vi||Vj | denotes the product of
the voltage magnitudes at nodes i and j with the line
susceptance. If there is no line between i and j , then
bij = Bij = 0 . In the lossless line approximation, line
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conductances are neglected. The approximation is jus-
tified when dealing with very high-voltage power grids,
which typically have g/b < 0.1 for the ratio of conduc-
tance over susceptance (see Supplemental Material).

At equilibrium, electric power grids are synchronized
network systems [29]. They lie close to an operational
synchronous state where voltage angles are solutions to
a set of transcendental equations called the power flow
equations. Under our assumptions, they read

Pi =
∑
j

Bij sin(θi − θj) . (2)

Their solution {θ(0)
i }i=1,...N corresponds to the instanta-

neous, synchronous operational state of the power grid.

B. Wave Propagation

We want to investigate how a local perturbation about
the solution to Eq. (2) propagates across the system and
influences voltage angles far away from it. Such an oc-
curence is illustrated for the PanTaGruEl [30] model of
the synchronous grid of continental Europe in Fig. 1. Ini-
tially, the system is in a steady-state solution of Eq. (2).
An abrupt power loss Pi → 0, corresponding to the dis-
connection of a large power plant in Spain, brings the
system out of equilibrium. Following that perturbation,
a voltage angle wave propagates across the grid, which is
represented in five consecutive color-coded snapshots in
Fig. 1.

In large power grids, even the loss of large power plants
is a relatively weak perturbation in a mathematical sense.
For instance the European Network of Transmission Sys-
tem Operators for Electricity (ENTSO-E) reference inci-
dent considers the simultaneous tripping of two of the
largest power plants, connected to the same bus [31].
This corresponds to less than one percent of the total
power injected in the synchronous grid of continental
Europe. For the case plotted in Fig. 1 of a power loss
of ∆P = 900MW, corresponding to a large power plant,
frequency deviations never exceed ∆ω/2π = 0.12 Hz, i.e.
a fraction of a percent of the rated frequency [17]. Power
feed-in noises being by nature smaller than the rated
power on which they are superimposed, it is therefore
legitimate to investigate them through the linearization
of Eq. (1) about the operational synchronous state. With

θi = θ
(0)
i + δθi and Pi = P

(0)
i + δPi, one gets

Mδθ̈ + Dδθ̇ = δP− Lδθ , (3)

where we grouped the voltage angle deviations into a vec-
tor δθ, and introduced the diagonal inertia and damping
matrices, M = diag(mi) (with mi = 0 on load nodes),
D = diag(di) as well as the weighted network Laplacian
matrix L,

Lij =

{
−Bij cos(θ

(0)
i − θ

(0)
j ) , for i 6= j ,∑

k Bik cos(θ
(0)
i − θ

(0)
k ) , for i = j .

(4)

The perturbation generating a wave of voltage angle and
frequency disturbances is encoded in the source term vec-
tor δP, whose components are non-zero at nodes where
the perturbation is active. Below we consider cases of (i)
a single noisy perturbation and (ii) a collection of inde-
pendent, geographically distributed noisy perturbations.

Power grids have two types of nodes, corresponding to
power plants and loads. They have very different dynam-
ical inertia and damping parameters. Most loads as well
as inverter-connected, new renewable sources of energy
have no inertia, mi = 0, while traditional power plants
have an inertia roughly proportional to their rated power
output [5]. Furthermore, loads have a damping parame-
ter significantly smaller than generators [32]. While it is
crucial to incorporate these dynamic inhomogeneities in
any analysis of realistic power grids, they render analyt-
ical approaches intractable. Recent works took a pertur-
bation theory approach to incorporate small deviations
about the homogeneous case [33, 34], however most are
based on homogeneity assumptions [35–38]. To justify
it, one often invokes a Kron-reduction [39] into an effec-
tive network with modified line susceptances connecting
only inertiaful, generator nodes. This transformation is
based on Schur’s complement formula [40], and since the
reduced load nodes have no inertia and a much smaller
damping term, this reduction modifies the dynamics on
the generators only marginally. Once the reduction is
performed, one furthermore argues that considering uni-
form damping and inertia, di = d, mi = m is justified,
because, only large plants, all with large rated power are
connected to the high-voltage grids we are focusing on
here. Additionally, machine measurements indicate that
the ratio of damping over inertia does not vary by much
from one machine to another [41]. Hence, in our an-
alytical treatment, we consider noise propagation from
Eq. (3) for a Kron-reduced network with homogeneous
dynamic parameters, di = d, mi = m. However, our nu-
merical simulations are entirely free from this assumption
and are based on a realistic, inhomogeneous power grid
model. Our numerical results corroborate our analytical
results in the particularly relevant regime of long noise
correlation time.

III. DISTURBANCE WAVE PROPAGATION :
ANALYTICAL APPROACH

A. Linearized swing equations and modal
decomposition

Eq. (3) is a damped wave equation with a source term.
It is defined on a discrete, meshed complex network en-
coded in the Laplacian matrix L, which accordingly re-
places the Laplace operator of continuous wave equa-
tions. Given a source term δP(t), we compute the mo-

ments µp ≡ 〈δθ̃pi (t → ∞)〉, p ≤ 4 of the distribution of
angle deviations at any node i on the network. Because
we are interested in local fluctuations about the instan-
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taneous average response, we measure angle deviations
from their geographical average, δθ̃i(t → ∞) = δθi(t →
∞) −∆ where ∆ = N−1

∑
j δθj(t → ∞). Here, t → ∞

means that the observation takes place long after the
onset of the noisy perturbation, to avoid transient be-
haviors. To shorten notations, we do not explicitly write
it from now on.

To calculate µp ≡ 〈δθ̃pi 〉, we use a modal expansion of
Eq. (3) over the set of eigenmodes {uα} of the Laplacian
matrix L. We first write the total angle deviation as
δθi(t) =

∑
α cα(t)uα,i . Eq. (3) then gives

m c̈α + d ċα + λαcα = δP(t) · uα , (5)

where Luα = λαuα, with λα ≥ 0, α = 1, . . . N . Because
angle deviations δθ̃i(t) = δθi(t)−∆(t) are defined relative
to their geographical average ∆(t), the bulk voltage angle

shift along the zero-mode u1,i = 1/
√
N of the Laplacian

matrix is subtracted, and the rest of this manuscript con-
siders the dynamics orthogonal to that zero-mode. This
in particular removes contributions from time-dependent
excursions of angle/frequency averages, which may be
another source of non-Gaussianity [12].

Eq. (5) is the differential equation for a damped, driven
harmonic oscillator. It is easily solved by means of
Laplace transforms. The general solution reads [30]

cα(t) = m−1e−(γ+Γα)t/2

∫ t

0

eΓαt2

×
∫ t2

0

e(γ−Γα)t1/2 δP(t1) · uα dt1dt2 , (6)

with Γα =
√
γ2 − 4λα/m and γ = d/m . Moments µp

of voltage angle deviations are calculated as averages
over the noise distribution. From Eq. (6), µp contains
an ensemble-average 〈δPi1(t1)δPi2(t2) . . . δPip(tp)〉, over
the product of p sources of noise inside exponential inte-
grals. One therefore needs to specify the moments of the
noise distribution. We start from a geographically uncor-
related feed-in noise on nodes labeled i0, whose first two
moments are given by

〈δPi0(t1)〉 = 0 , (7a)

〈δPi0(t1)δPi0(t2)〉 = σ2 e−|t1−t2|/τ0 , (7b)

to which we add non-Gaussianities in the form of finite
skewness and kurtosis of the noise distribution,

〈δPi0(t1)δPi0(t2)δPi0(t3)〉 = a3 σ
3
∏
m<n

e−|tim−tin |/τ0 , (8a)

〈δPi0(t1)δPi0(t2)δPi0(t3)δPi0(t4)〉c = a4 σ
4
∏
m<n

e−|tim−tin |/τ0 , (8b)

where 〈. . .〉c explicitely refers to a cumulant. This
in particular substracts all disconnected averages such
as 〈δPi0(t1)δPi0(t2)〉〈δPi0(t3)δPi0(t4)〉. The parameters
a3,4 characterize non-Gaussianities in the noise distribu-
tion. They correspond to skewed distributions (a3 6= 0),
with tails longer (a4 > 0) or shorter (a4 < 0) than the
normal distribution.

The moments µp are given by exponential integrals and
are straightforwardly calculated. However, their exact
expressions are somewhat complicated. We give them for
the variance only and, for the third and fourth cumulants,
discuss limiting cases of long and short correlation time.

B. Time scales in high-voltage power grids vs.
noise correlation time

Eq. (5) makes it clear that, beside τ0, the other
time scales are the damping time γ−1 = m/d, the αth

oscillator period Tα =
√
m/λα and the combination

γT 2
α = d/λα of the two [18]. For the high voltage syn-

chronous grid of continental Europe, a detailed analysis
based on realistic line admittances and dynamic param-
eters gave estimates for these time scales as γ−1 ' 2.5s,
Tα < 1s and γT 2

α < 0.4s ∀α. Therefore the regime
of long noise correlation time is already reached for

τ0 & 5− 10s, while the short correlation time regime re-
quires τ0 . 1µs [17, 18]. In between lies a hybrid regime,
where disturbance time scales overlap with spectral time
scales [20].

While circuit breakers and other switches may discon-
nect power lines and put a power plant off-line in a frac-
tion of a second, disconnection-reconnection sequences
may occur at most two to three times consecutively by
design. It is hard to think of a significant noise perturba-
tion fluctuating persistently on a time scale shorter than
a few seconds. Moreover, in the Supplemental Material
we show several examples of feed-in power fluctuations
from renewables, which are all characterized by corre-
lation times τ0 & 1 min in the sense of the two-point
correlator of Eq. (7b). Hence, we conclude that the long
correlation time regime is the relevant one for our inves-
tigations.

We first consider the case of a single source of noise
and discuss multiple noisy nodes in paragraph III F.

C. Voltage angle variance

In the limit of large observation time, the voltage an-
gle variance is given in Eq. (S10) of the Supplemental
Material. The two limiting cases of long and short noise



5

correlation time τ0 give key insights on noise propagation.
First, when τ0 is the largest time scale, the voltage

angle variance at node i reads

lim
τ0→∞

〈δθ̃2
i 〉 =

σ∑
α≥2

uα,i0uα,i
λα

2

. (9)

Because we consider deviations from the geographically
averaged response, the sum excludes the zero-mode of
the network Laplacian matrix. The quantity squared in-
side the parenthesis in Eq. (9) is the Green’s function
for the linear operator L, from the noise source to the
observation node i. For optical or electronic waves prop-
agating through disordered mesoscopic systems, quan-
tities similar to 〈δθ̃2

i 〉 in Eq. (9) decay as power laws
with the distance between i0 and i, when averaged over
a relatively narrow but high-lying spectral interval [42].
Eq. (9) instead corresponds to a “zero-energy” Green’s
function, indicating that fluctuations with long corre-
lation times are transmitted by a few low-lying, long-
wavelength eigenmodes of L, for which the perturbative
approaches of Ref. [42] cannot be directly applied.

Second, when τ0 is the shortest time scale, one obtains

lim
τ0→0
〈δθ̃2

i 〉 = 2σ2τ0
∑
α,β≥2

uα,i0uβ,i0uα,iuβ,i
d(λα + λβ) + m

2d (λα − λβ)2
. (10)

In the inertialess limit, m = 0, the variance is given by a
two-particle Green’s function in this case.

D. Higher voltage angle cumulants : Long
correlation time regime

In the limit of long correlation time, it is straightfor-
ward to show that higher cumulants behave similarly to
the variance, Eq. (9), namely (see Supplemental Material
Sec. II, C.)

lim
τ0→∞

〈δθ̃pi 〉c = ap

σ∑
α≥2

uα,i0uα,i
λα

p

, (11)

with the parameters ap giving the deviation from Gaus-
sianity in the feed-in fluctuations, Eqs. (8). The most re-
markable thing is that, from Eqs. (9) and (11), standard-

ized higher cumulants are given by 〈δθ̃pi 〉c/〈δθ̃2
i 〉p/2 = ap,

regardless of the distance between the measured node
and the noise source. This is one of the main results of
this paper: long correlation times enable non-Gaussian
fluctuations from a single noise source to propagate over
the whole network and persist at their initial relative
value compared to the variance, i.e. to Gaussian fluctua-
tions. This result is in particular independent of inertia,
suggesting, as previously found in Ref. [43], that distur-
bances with long characteristic times are affected only
marginally by inertia, even when the latter is inhomoge-
neously distributed. This independence of inertia makes
sense since in the long-correlation time limit the system

PanTaGruEl
Sub-PanTaGruEl
SciGRID

FIG. 2. Left panel: Normalized ratio 〈δθ̃3i 〉/〈δθ̃2i 〉3/2 in the
limit of short correlation time, given by Eqs. (S4) and (S8) in
the Supplemental Material. Right panel: Normalized voltage
angle kurtosis 〈δθ4i 〉/〈δθ2i 〉2 in the limit of short correlation
time and in the absence of inertia, given by Eqs. (S4) and
(S9). Data are plotted as a function of the geodesic distance
d(i0, i) between the measurement node i and the noise source
node i0. Black symbols correspond to the full PanTaGruEl
model of the synchronous grid of continental Europe [17, 18],
red symbols to a connected subsection with N=1000 nodes of
PanTaGruEl and green ones to the SciGRID model of the high
voltage power grid of Germany [44]. Error bars indicate the
data spread for different measurements at the same geodesic
distance. PanTaGruEl data for the kurtosis are missing be-
cause they require prohibitively large computation times.

response simply tracks the equilibrium point of Eq. (2)
with perturbed power inputs. Large voltage angle fluc-
tuations are therefore boosted by finite-time correlated
disturbances. We stress that, as defined in Section III A,
Eq. (11) refers to voltage angle deviations from their ge-
ographical average. Therefore, the network-wide prop-
agation of non-Gaussianities predicted by Eq. (11) goes
beyond the bulk response reported in Refs. [20] and [7].

E. Higher voltage angle cumulants : Short
correlation time regime

In the limit of short τ0, the third moment of voltage
angles is given in Eq. (S11) in the Supplemental Material.
In the limit of vanishing inertia, m = 0, it gives,

lim
τ0→0
〈δθ̃3

i 〉 = σ3τ2
0

∑
α,β,γ≥2

uα,i0uβ,i0uγ,i0uα,juβ,juγ,j
d2(λα + λβ + λγ)

, (12)

which, together with Eq. (10), reflects the fact that, for
Kuramoto, i.e. inertialess oscillators, non-Gaussianities
in the pth cumulants propagate as a p−particle Green’s
function in the white-noise limit.

As mentioned previously, Green’s functions decay ex-
ponentially with distance in disordered mesoscopic sys-
tems [42], however it is not clear whether this behavior
applies to the ”zero-energy” case considered here, nor to
p-particle Green’s functions. To understand better the
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m=0
m=0.1
m=1
m=10

FIG. 3. Normalized ratio 〈δθ̃3i 〉/〈δθ̃2i 〉3/2 in the limit of short
correlation time, given by Eqs. (S10) and (S11) in the Supple-
mental Material, as a function of the geodesic distance d(i0, i)
between the measurement node i and the noise source node
i0. Data correspond to the full PanTaGruEl model of the syn-
chronous grid of continental Europe [17, 18] without inertia
(black), with m = 0.1 (red) m = 1 (green) and m = 10 (blue).
Data are normalized such that the inertialess case goes to one
as the geodesic distance goes to zero. Error bars indicate the
data spread for different measurements at the same geodesic
distance.

propagation of non-Gaussianities in the short correlation
time regime, we therefore numerically evaluate the ex-
pressions in Eqs. (10) and (12). First, Fig. 2 shows the
theoretically predicted standardized skewness and kurto-
sis (normalized by a3 and a4 respectively) for inertialess
networks, as a function of the geodesic distance to the
source of noise, for various power grid models. In con-
trast to the the long correlation time prediction, both
skewness and kurtosis decay fast away from the noisy
node (seemingly exponentially fast) before they saturate
at a constant, small value. This means that, for iner-
tialess networks subjected to fast-varying noise, skew-
ness and kurtosis exhibit an additional decay, on top of
the exponential decay of the angle variance reported in
Refs. [9, 20].

It is well known that inertia plays an important role in
absorbing fast fluctuating disturbances with short corre-
lation time. Therefore, we further show in Fig. 3 the
standardized kurtosis as predicted by the formulae of
Eqs. (S10) and (S11), for various values of inertia. As
inertia increases, the kurtosis is further suppressed com-
pared to the variance. The influence is especially strong
a short distance away from the noise source. This agrees
with numerical data reported in Ref. [9] and corroborates
earlier findings that inertia impacts the dynamics mainly
locally and at short times [43].

The data presented in Fig. 2 and 3 show that short
noise correlation times suppress the propagation of non-
Gaussian voltage angle fluctuations through meshed net-
works over a network-dependent distance. This is an
additional effect, further suppressing non-Gaussianities
relative to the already decaying voltage angle variance.
The effect becomes stronger at larger inertia. Note also

that the grid models used in Figs. 2 and 3 fairly capture
the parameters of actual high-voltage power grids.

F. Multiple sources of noise

We finally consider the case with M distinct, indepen-
dently but identically distributed sources of power feed-
in fluctuations. In that case, there are M contributions
similar to that in Eq. (11), but M !(M−p/2)!/(p/2)! pair-
ings of the noise sources for the moment of even order p.
These latter contributions are much more numerous and
they result in a Gaussian pth moment – this is the stan-
dard mechanism behind central limit and Berry-Esseen
theorems [45]. For instance for the p = 4 moment in the
large correlation time limit, one obtains

lim
τ0→∞

〈δθ̃4
i 〉 =

M∑
i0=1

(
σ
∑
α≥2

uα,i0uα,i
λα

)4

+3
∑
i0 6=j0

(
σ
∑
α≥2

uα,i0uα,i
λα

)2(
σ
∑
β≥2

uβ,j0uβ,i
λβ

)2

, (13)

where the factor 3 in the second line accounts for all pos-

Long
Short

FIG. 4. Numerically evaluated voltage angle skewness and
kurtosis for the UK high voltage power grid with realistic, i.e.
inhomogeneous damping and inertia parameters and 1 (left
column), 40 (middle) and 120 (right) sources of noise, whose
locations are shown in the grid map in the top panels. Blue
(red) crosses correspond to noise with long (short) correlation
time. Error bars are indicated on nodes that have the largest
numerical fluctuation when doubling the simulation time. In-
jected noises have skewness and kurtosis with a3 = −0.15
and a4 = 0.4 for long correlation time and a3 = −1.4 and
a4 = 18.9 for short correlation time.

sible pairings between the product of four noise sources,
δPil , l = 1, . . . 4. The pairing mechanism giving the sec-
ond term on the right-hand side of Eq. (13) leads to the
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FIG. 5. Left panel: map of the PanTaGruEl model of the synchronous grid of continental Europe, with 3809 nodes connected
by 4944 power lines [17, 18]. Center and right panels: time series for voltage angle (center) and frequency (right) generated by
a single non-Gaussian source of noise for the PanTaGruEl model with inhomoneneous inertia and damping. Noise in the regime
of long correlation time is injected at the pink node indicated by the red arrow in the left panel. Voltage angle and frequency
deviations are measured at the colored nodes and time sequences for the pink, blue and violet nodes are shown. Time series
for the orange, red and grey nodes are shown in Fig. S1 in the Supplemental Material

convergence of the voltage angle distribution to a Gaus-
sian distribution, with 〈δθ̃4

i 〉/〈δθ̃2
i 〉2 → 3 [to see this, sum

over the noisy nodes i0 = 1, . . .M in Eq. (11) and com-
pare the result with (13)]. The convergence is the same
as in the Berry-Esseen theorem [45]. When M is large,
this second term dominates over the first one by a fac-
tor (M − 1)/2, so that the ratio of the fourth cumulant
– a measure of non-Gaussianity – to the fourth moment
becomes ∝M−1. With the standard definition [45], non-
Gaussianities disappear at a rate ∝M−1/2.

IV. NUMERICAL RESULTS

We numerically confirm our analytical results and ex-
tend them to voltage frequency distributions, the latter
being of direct interest for electric power grids.

Our two main theoretical predictions are that,
(i) non-Gaussianities propagate over the entire network

just like Gaussian fluctuations, when they originate from
a noisy source with long correlation time. They disappear
exponentially with the distance from the source for short
noise correlation time,

(ii) non-Gaussianities become smaller with the number
M of uncorrelated sources of noise. We confirm these
two predictions by numerical integration of Eq. (1) for
various networks with single or multiple sources of noise
with short and long correlation times.

Fig. 4 first illustrates how voltage angle fluctuations
behave as more uncorrelated sources of noise are added.
Blue and red crosses correspond to long and short noise
correlation times respectively, and three situations of a
single (left column), 40 (middle) and 120 (right) uncor-
related sources of noise are shown. When a single noise
source is present, skewness and kurtosis of voltage an-
gles directly reflect their value for the noise source for

FIG. 6. Normalized distributions of voltage angles δθi =

δθ̃i/
√
〈δθ̃2i 〉 (left panels) and frequencies δθ̇i = δ

˙̃
θi/

√
〈δ ˙̃
θ2i 〉

(right panels), from a single non-Gaussian source of noise in
PanTaGruE, with homogeneous inertia and damping param-
eters. All normalized distributions are the same, up to a
sign inversion, in agreement with our analytical prediction of
Eq. (11). Dashed lines indicate a Gaussian distribution. Col-
ors refer to the colored nodes in the left panel of Fig. 5, and
distributions for the orange, red and grey nodes are shown
in Fig. S2 in the Supplemtanl Material. Voltage angle dis-
tributions retain their non-Gaussianity regardless of the dis-
tance to the disturbance, in agreement with our predictions
of Eq. (11).

long noise correlation time, while they are significantly
reduced for short correlation time. In the latter case, a
finite skewness persists over more than half of the net-
work, and fluctuates about zero for the rest of the net-
work nodes. As the number of noise sources increases,
both skewness and kurtosis are suppressed as voltage an-
gles become normally distributed following the action of
the Berry-Esseen theorem. Numerical data still fluctuate
due to the discreteness of time steps and the finiteness
of the integration time. Error bars indicate the largest
data variation upon doubling of the integration time.
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FIG. 7. Normalized distributions of voltage angles δθi =

δθi/
√
〈δθ2i 〉 (left panels) and frequencies δθ̇i = δ

˙̃
θi/

√
〈δ ˙̃
θ2i 〉

(right panels), as in Fig. 6, but for an inhomogeneous, realis-
tic configuration of inertia and damping of the PanTaGruEl
model. Colors refer to the colored nodes in the left panel
of Fig. 5. Distributions for the orange, red and grey nodes
are shown in Fig. S3 in the Supplemental Material. Voltage
angle distributions retain their non-Gaussianity regardless of
the distance to the disturbance, in agreement with our pre-
dictions of Eq. (11).

A remarkable feature in Fig. 4 is the sign change in the
long-correlation-time skewness in the middle-left panel.
It is easily understood when re-expressing the single-
particle Green’s function in terms of graph theoretic in-
dicators as∑
α≥2

uα,i0uα,i
λα

= −1

2
[Ωi0i − C−1

1 (i0)− C−1
1 (i) + 2Kf1/n

2] ,

(14)

where Ωi0,i is the resistance distance between node i0 and
i [46], C1(i) = (n−1

∑
j Ωij)

−1 is the resistance centrality

of node i and Kf1 =
∑
i<j Ωi,j is the so-called Kirchhoff

index [46, 47]. The sign of all odd-p cumulants in the
long correlation time limit, see Eq. (11), is given by the
pth power of the Green’s function. It is therefore deter-
mined by a trade-off between the centralities of the input
and measured nodes on the one hand, and the resistance
distance between them on the other hand. As but one
consequence, the skewness changes sign as the measure-
ment point i is taken further and further away from i0,
when the resistance distance Ωi0i becomes larger than the
sum of the inverse node centralities in Eq. (14). Theory-
simulation agreement for the UK model is excellent, and
well within the error bars of finite-time integration.

We next turn our attention to a larger-scale, more re-
alistic model of a high-voltage power grid and consider
the PanTaGruEl model of the synchronous grid of con-
tinental Europe [17, 18]. As discussed in Section III B,
intrinsic time scales in such large-scale power grids are
such that the short correlation time limit corresponds
to τ0 . 1µs while the long correlation time regime cor-
responds to τ0 & 5 − 10s. Persistent sources of noise
therefore correspond to the long correlation time regime,
which we focus on.

Figs. 5 shows data for an inhomogeneous high-voltage

power grid with realistically distributed inertia (mi) and
damping (di) parameters in Eq. (1). A non-Gaussian
power feed-in noise is injected at the pink node indicated
by the red arrow on the network map (left panel), and
voltage angle as well as frequency fluctuations are mea-
sured at the colored nodes. Time series for voltage angles
and frequencies are shown, which fluctuate differently in
magnitude, depending on the measurement location. In
the considered regime of long correlation time, the re-
sponse is inhomogeneous and distinct from the bulk re-
sponse discussed in [20], where all nodes have the same
voltage angles and frequencies response.

We focus on voltage angle and frequency distributions
in Figs. 6–8. One sees first in Fig. 6, that all voltage
angle and frequency distributions are the same, up to a
sign inversion δθ̃i → −δθ̃i, in the homogeneous case of
constant inertia and damping, mi = m and di = d in
Eq. (1). This corroborates our prediction of Eq. (11),
according to which all standardized cumulants are the
same, up to possible sign changes in odd cumulants, in
the case of noise with long correlation time. The observed
sign change is consistent with Eq. (14), where the blue
node has the same normalized voltage angle distribution
as the source, pink node, because it is close to it and the
right-hand side in Eq. (14) is dominated by the sum of the
inverse centralities, C−1

1 (i0) + C−1
1 (i) > Ωi0,i. All other

nodes are further away and correspond to a regime where
the inequality is reversed, C−1

1 (i0) + C−1
1 (i) < Ωi0,i and

odd cumulants undergo a sign change. Note the different
magnitude of fluctuations for voltage angle and frequency
trajectories in the different panels of Fig. 5.

FIG. 8. Normalized distributions of voltage angles δθi =

δθ̃i/
√
〈δθ̃2i 〉 (left panels) and frequencies δθ̇i = δ

˙̃
θi/

√
〈δ ˙̃
θ2i 〉

(right panels), as in Fig. 7, but for 381 different, uncorrelated
sources of non-Gaussian noise in the PanTaGruEl model. Col-
ors refer to the colored nodes in the left panel of Fig. 5. Dis-
tributions for the orange, red and grey nodes are shown in
Fig. S4 in the Supplemental Material.

In the regime of long correlation time, we saw in Sec-
tion III D that voltage angle cumulants depend neither
on inertia, nor on damping, and following Ref. [43] we
conjectured that the prediction of Eq. (14) also applies
to cases with inhomogeneous inertia and damping. We
confirm this conjecture in Fig. 7, where the normalized
voltage angle and frequency distributions also keep their
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non-Gaussianities all over the network, regardless of the
distance between source and measurement nodes, in the
PanTaGruEl model with realistically inhomogeneous dy-
namic parameters mi and di.

Finally, we investigate the case when multiple un-
correlated sources of noise are present. Fig. 8 confirms
that, for 381 sources of power feed-in fluctuations,
non-Gaussianities disappear and both voltage angle
and frequency deviations become Gaussian distributed.
These numerical simulations with realistic models of
high-voltage power grid fully confirm the theoretical
predictions presented in Section III.

V. CONCLUSION

The theory presented has uncovered two previously ne-
glected, yet crucial characteristics determining how volt-
age angle and frequency disturbances propagate through
power grids: the correlation time τ0 (i.e. the characteris-
tic time over which sources fluctuate) and the number of
sources of fluctuations. First, we show that non-Gaussian
fluctuations decay with the distance from the source
faster than Gaussian fluctuations do in the white-noise
limit of short τ0. Such white-noise fluctuations eventually
saturate at small values, which are determined by, e.g.,
the relevant multi-particle Green’s function in the limit
of small inertia. Second, in the other limit of long corre-
lation times, non-Gaussian noise propagates through the
whole network, regardless of the distance to the source
and independently of inertia, leading to voltage angle
fluctuations with the same non-Gaussian distribution as
the feed-in power noise. Such large-scale propagation has
been observed in frequency measurement over the Conti-
nental European grid (See Fig.6 in [10]). Third, these
non-Gaussianities disappear, in the presence of multi-
ple, uncorrelated sources due to the action of a Berry-
Esseen/central limit theorem.

Modern power grids are rather resilient and in partic-
ular able to absorb moderate voltage angle fluctuations

in a normal operational mode. Yet, future grids will be
subjected to more disturbances, especially from new re-
newable energy sources. As such, a major planification
and operational concern is that electro-mechanical inertia
may be significantly reduced at times of large renewable
power production. While inertia reduction clearly poses
a number of challenges form the point of view of short-
range and/or short-time absorption of disturbances, our
results indicate that, from the point of view of mid- to
long-range disturbance propagation, the effects of inertia
are small for the correlation-time regime relevant for re-
newable energy sources. Indeed, significant fluctuations
in the power feed-in of large wind or solar farms typically
happen over a few seconds, which is slow compared to
the grid time scales. Fluctuations on shorter time scales
may originate from local control, faults or changes in the
consumption, which according to our results will remain
local.

We finally point out that our results on noise propaga-
tion originating from correlated and multiple sources of
fluctuations should be generally applicable to diffusively
coupled agent systems, well beyond the power grid and
phase-oscillator models described in detail in this work.

Future works should consider a in-depth comparison
between our results and voltage measurements on
high-voltage power grids.
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