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Abstract
We introduce varying spin strengths to the Ising model, a central pillar of statistical physics. With
inhomogeneous physical systems in mind, but also anticipating interdisciplinary applications, we
present the model on network structures of varying degrees of complexity. This allows us explore
the interplay of two types of randomness: individual strengths of spins or agents and collective
connectivity between them. We solve the model for the generic case of power-law spin strength and
find that, with a self-averaging free energy, it has a rich phase diagram with new universality classes.
Indeed, the degree of complexity added by quenched variable spins is on a par to that added by
endowing simple networks with increasingly realistic geometries. The model is suitable for
investigating emergent phenomena in many-body systems in contexts where non-identicality of
spins or agents plays an essential role and for exporting statistical physics concepts beyond physics.

It is difficult to overestimate the importance of the Ising model (IM) in physics and beyond. It was invented
100 years ago by Lenz [1] and solved in one dimension with nearest-neighbour interactions by Ising [2].
It draws on works of Kirwan and Weber [3, 4] who proposed that vanishing magnetization of macroscopic
para- and ferromagnetic bodies originates from random disordering of identical elementary magnets (spins)
at microscopic levels. While their ideas also explained magnetic saturation in strong external fields, they failed
to explain gradual response to weak ones. Ewing [5] introduced interactions to mend this shortcoming and
Weiss [6] used the idea in the mean-field approximation. The IM itself sits between the Kirwan–Weber non-
interacting picture and the Curie–Weiss maximally interacting one and manifests spontaneous spin alignment
as well. Yet it is its simplicity, coupled with the phenomenon of universality, that lies behind its applicability to
many real-world many-body phenomena in physics and beyond [7].

More elaborate models describe specific physical phenomena with greater precision, using greater levels
of sophistication either in spin variables themselves or interactions among them. For the former case, the
simple polarity, wherein spins have two possible states, is maintained in the continuous spin IM [8, 9]. This is
relaxed in the Potts model while maintaining spin discreetness [10, 11] and the m-vector model goes further
by introducing vector variables �σi [12, 13]. Besides loosening Ising constraints on spins, they can be relaxed
for interactions as well and simple extensions include next-nearest neighbor interactions, equivalent neighbors
[14] or probabilistic long-range interactions [15], disorder and frustrations [16].

These variants deliver new universality classes, and, while associated models have been successful in their
respective contexts, they rest on the same concept of interacting entities being identical. But not all particles
are identical—they may have different inhomogeneities in internal degrees of freedom manifestating, e.g.,
different magnetic moments. None of the above models deal with this feature.

The IM brings physics beyond its traditional realms too. E.g., it models phenomena as diverse as can-
cer cells’ response to chemotherapy [17]; yield patterns in trees [18]; and advertising in duopoly markets [19].
Although each of these involves interactions between entities that are not spins, the IM is well placed to describe
their collective properties. The importance of interactions in systems beyond physics is now well understood
in society at large, as are consequences of not understanding this [21, 22]. Still, a protest often encountered
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when seeking to export statistical concepts is ‘people are not atoms’ [24]. The term ‘agent’ was introduced to
reflect this linguistically but it does automatically de-binarise the interacting entities. Assurances such as ‘it
is the law of big numbers which allows the application of statistical physics methods’ [24] are often not
understood, welcomed or accepted. Addressing these issues (the individuality of agents as well as the role of
interactions) becomes important if we are to communicate physics to interdisciplinary colleagues or authori-
ties; not all cells, trees or bankers are the same and there are different degrees of contagiousness among infected
agents.

This suggest a new variant to the IM which, besides accounting for particle peculiarities, addresses non-
identical agents. We introduce the model on network topologies for reasons applicable to both scenarios. In
physics, there are nanosystems with topologies more akin to networks than lattices [25]. Varying spin strength
in such systems may serve to model polydispersity in elementary magnetic moments [26]. Furthermore, perfect
lattice structures are not common beyond physics and never encountered in sociophysics. Another example
may be taken from neuroscience; in their recent review, Lynn and Bassett invite ‘creative effort’ to ‘tackle
some of the most pressing questions surrounding the inner workings of the mind’ [27]. It is well known that
cognition rests on heterogeneous connectivity structures in the brain and that neural communication strongly
relies on a complex interplay between its network geometry and topology [28]. Introduction of variability to
nodal strengths may likewise contribute to network modeling [29], accounting for differences in how nodes are
defined as collections of brain tissue [30]. In particular, as an interacting unit in a brain network, the strength
of a node may reflect its internal structure on a hierarchical level. A node may itself be composed of smaller
nodes [31] or the changes in node strength may correspond to changes in node functionality over a span of
time [32].

Here, we suggest and exactly solve an IM with variable spins/agents on networks of different degrees of
complexity. Competition between individual agent strengths and collective connectivity generates a rich phase
diagram suitable for the analysis of new universal emergent phenomena in many-agent systems [33].

Methods and results

In the presence of a homogeneous field H, the Hamiltonian of the IM reads:

H = −
∑
i<j

Jijσiσj − H
∑

i

σi, (1)

For the standard version spins σi take values ±1, i = 1, . . . , N and coupling Jij is 1 for the nearest neighbor
sites and 0 otherwise. In sociophysics individuals are represented as nodes with binary spins representing dif-
ferent social states. This limitation is precisely because of the duality of spins in the generic IM. It may well be
convincing for ‘for’ or ‘against’ options in referendums [23] but not all societal activities are binary and our
model introduces gradation for individual node features.

We endow the spins σi with ‘strengths’ which vary from site to site through a random variable |σi| ≡ Si

drawn from probability distribution function q(Si). We chose a power-law decay:

q(S) = cμS−μ, Smin � S � Smax, (2)

where cμ is a normalization constant, with μ > 2 ensuring finite mean strength S when Smax →∞. The
spin length being quenched random variable, a proper definition of thermodynamic functions involves
configurational averaging besides the usual Gibbs averaging [34].5

There are several obvious motivations for choosing a power-law form in the first instance. We do not expect
to encounter physical phenomena with spin strengths distributed precisely in this manner, but it is an estab-
lished tradition in physics to take idealised models to investigate the fundamentals of a concept. Indeed Lenz
and Ising applied this strategy when introducing the model in the first place. To take examples beyond physics,
variable agent strength can be used to represent degrees of contagiousness in pandemics [20] or opinion in
social systems.

Because of the interactive nature of the IM, these strengths impact on nodes with which a given node
interacts—the greater the value of Si the more contagious or persuasive node i is. This new element is closer
to real social networks and more likely to be accepted beyond physics [35]. Thus the introduction of variable
spins to an established model opens new avenues to physics, interdisciplinarity and communication of same.

5 Since the lengths are quenched variables, the model introduced here is distinct from the continuous spin model. It should also not be
confused with spin–glass or annealed models for which a large body of literature exists. The term annealed in this presentation refers to
the random graph on which the new model is solved.
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As we shall see, these deliver very rich critical behavior and an onset of new accompanying phenomena which
are of fundamental interest in their own right.

Since we are exploring new avenues, we consider three graph architectures which permit exact solutions: the
complete graph, the Erdös–Rényi graph and scale-free networks. As in the Weiss model, every nodal pair {i, j},
is linked in the first case. The probability of connectedness is also the same for every nodal pair p = pi,j = c < 1
in the second case but it differs in that not every pair is linked. For the third case, the node degree distribution
is governed by a power-law decay [36, 37]:

p(K) = cλK−λ, Kmin � K � Kmax, (3)

for constant cλ and λ > 2. The adjacency matrix for an annealed random graph is [38–40]:

Jij =

⎧⎨
⎩1, pij,

0, 1 − pij,
(4)

where pij is the edge probability any pair i and j. For N nodes, one assigns a random degree ki to each, taken
from the distribution

pij =
kikj

Nk
+ O(1/N2), (5)

with k = 1
N

∑
lkl. The expected value of the node degree is EKi =

∑
jpij = ki and its distribution is given by

p(K) [39, 40]. The limiting cases pij = 1 and pij = c recover the complete and Erdös–Rényi random graph
respectively.

Boltzmann averaging for the partition function is bond and spin–strength {S} configuration dependent.
For annealed networks, averaging over links

〈(. . . )〉{J} =
∏
i<j

[
(. . . )Jij=1pij + (. . . )Jij=0(1 − pij)

]
(6)

delivers equilibrium and is applied to the partition function vis:

〈Z({J}, {S})〉{J} = Z({k}, {S}). (7)

The corresponding quenched free energy f ({k}, {S}) depends on the fixed random variables
{k1, k2, . . . , kN} ≡ {k} and {S1,S2, . . .SN} ≡ {S}, these sequences are taken as fixed, quenched ones,
so the free energy f is obtained by averaging over them [34]. As we show below, the corresponding partition
function, and thermodynamic functions are self-averaging; they do not depend on a particular choice of {k}
and {S}.

Since the spin product in (1) can attain only two values, we use the equality

φ(Aε) =
1

2
[φ(A) + φ(−A)] +

ε

2
[φ(A) − φ(−A)], ε = ±1,

to get for the configuration-dependent partition function:

Z({k}, {S}) =
∏
i<j

cijSpσ

(
e
∑

i<j dijσiσj+βH
∑

i Siσi

)
, (8)

cij =
√

a2
ij − b2

ij, dij = ln
aij + bij

aij − bij
. (9)

Here, β = T−1 is the inverse temperature, the trace is taken over all spins and we keep σi = ±1 representing
each spin value as σiSi. The coefficients (9) implicitly depend on pij and Si via

aij = 1 − pij + pij cosh(βJSiSj), bij = pij sinh(βJSiSj). (10)

The complete graph has pij = 1, from which cij = 1, dij = 2βSiSj, and averaging over spins gives:

Z({S}) =

∫ +∞

0
e
−x2T

2

[
e

I+μ ( x√
N

)
+ e

I−μ ( x√
N

)
]

dx, (11)
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Table 1. Critical indices governing temperature and field dependencies
of the specific heat, susceptibility, and order parameter in different parts
of the phase diagram of figure 1.

α αc γ γc β δ

Line 4 (λ = μ) λ−5
λ−3

λ−5
λ−2 1 λ−3

λ−2
1

λ−3 λ− 2

Region III λ−5
λ−3

λ−5
λ−2 1 λ−3

λ−2
1

λ−3 λ− 2

Region IV μ−5
μ−3

μ−5
μ−2 1 μ−3

μ−2
1

μ−3 μ− 2

Region V, lines 5,6, point B 0 0 1 2/3 1/2 3

having used (2) with Smax →∞. We obtain for small magnetic fields

I±μ (ε) = N

[
cμε

μ−1Iμ(ε) ± S2

T
εH

]
, (12)

with

Iμ(ε) =

∫ ∞

ε

dz
1

zμ
ln cosh z, (13)

and ε = x√
N

. In (11) and in all counterpart integral representations below, we omit irrelevant prefactors and
numerical coefficients of associated response functions are presented elsewhere [41].

The partition function (11) is independent of {k}, {S}; for the random configuration {k} this is obvious
since pij = 1 and for the random spin strength configuration {S} it is due to self-averaging. This is a generic
feature of the model as we shall see below. With the asymptotic behavior of Iμ(ε) (13) to hand [41–43] one
evaluates (11) in the thermodynamic limit N →∞ and obtains for the free energy per spin:

f

N
∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m2 + mμ−1 − mH, 2 < μ < 3,

m2 + m2 ln
1

m
− mH, μ = 3,

τm2 + mμ−1 − mH, 3 < μ < 5,

τm2 + m4 ln
1

m
− mH, μ = 5,

τm2 + m4 − mH, μ > 5.

(14)

Here, m is the order parameter and τ is the reduced temperature. A similar free energy describes the critical
behavior of the standard IM (σi = ±1) on an annealed scale-free network, with decay exponent λ in that case
[40] playing the role of μ in the current one. The system is ordered at any finite temperature when μ � 3 and
has a second order phase transition when μ > 3. All universal characteristics of the transition are μ-dependent
when 3 < μ < 5 and theμ > 5 region is mean-field like. At μ = 5 logarithmic corrections feature [37–40, 44],
governed by exponents which adhere to the usual scaling relations [45]. These and leading exponents are listed
in the third row of table 1 and discussed in further detail in that context.

For Erdös–Rényi graphs one substitutes pij = c into (9). This delivers a similar partition function (8)
to that of the complete graph up to renormalized interaction so that critical behaviors of both models are
essentially equivalent.

For annealed scale-free networks, with pij given by (5), the thermodynamic limit N →∞ (i.e. with
small pij) applied to (9) gives dij ∼ pijβJSiSj. The Stratonovich–Hubbard transformation delivers the trace
over spins in (8) and a partition function that has unary dependency on the random variables f (kiSi). It is
convenient to pass from the summation over nodes i to summation over random variables ki, Si

N∑
i=1

f (kiSi) = N
kmax∑

k=kmin

Smax∑
S=Smin

p(k)q(S)f (k,S).

Considering the variables k and S as continuous and taking the thermodynamic limit N →∞, we put
kmax = Smax →∞ and we choose the lower bounds kmin = Smin = 2 [41]. It is straightforward to see that the
partition function Z({S}, {k}) is independent of the random variables k and S and is self-averaging. Indeed,
when both distribution functions p(k), q(S) attain power-law forms (2) and (3) we obtain

Z =

∫ +∞

0
e
−kT
2N x2

[
eI+

λ,μ(
√

x
N )

+ eI−
λ,μ(

√
x
N )
]

dx, (15)
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Figure 1. Phase diagram of the IM with power-law distributed spin strength (2) on an annealed scale free network with node
degree distribution (3). See tables 1 and 2.

and

I±λ,μ(ε) = N

[
cλcμ

(ε
2

)λ+μ−2
Iλ,μ(ε) ± S2 k

4T
ε2H

]
(16)

where

Iλ,μ(ε) =

∫ ∞

ε

∫ ∞

ε

ϕ(k,S)dS dk (17)

with

ϕ(k,S) =
1

kλSμ
ln cosh (kS) , (18)

and the lower integration bound ε = 2
√

x/N tends to zero, when N →∞.
As in the case of the model on the complete graph (13), the partition function (15) and hence the free

energy is determined by the asymptotics of the integral (17) as ε→ 0. This is governed by the interplay of the
decay exponents λ and μ. In particular, for the diagonal case λ = μ we get:

Iλ,λ(ε) = aλ + bλ ln(ε)iλ(ε), (19)

with

iλ(ε) 


⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(ε2), 2 < λ < 3,

(ln ε)2/2 + O(ε4), λ = 3,

ε6−2λ

2(λ− 3)2
+ O(ε2), 3 < λ < 5,

ε−4/8 + (ln ε)2/6 + O(ε2), λ = 5,

ε6−2λ

2(λ− 3)2
− ε10−2λ

12(λ− 5)2
+ O(ε2), 5 < λ < 7.

(20)

The constants in (19) can be readily evaluated and are presented elsewhere [41]. For the non-diagonal case
μ �= λ, due to the symmetry Iλ,μ = Iμ,λ it is enough to evaluate the integral for λ > μ. With estimates available
from [41], we apply the steepest descent method to get the exact solution for the partition function (15). The
results that follow from the analysis of the free energy are summarized in figure 1 and tables 1 and 2.

Figure 1 presents the phase diagram of the model in the λ–μ plane. Behavior is controlled by the parameter
with the smaller value. In regions I and II, for which distributions are fat-tailed with λ < 3 or μ < 3, the
system remains ordered at any finite temperature T. There, the order parameter decays with T as a power law,

m ∼ T
1

λ−3 or m ∼ T
1

μ−3 for 2 < λ < 3 and 2 < μ < 3, correspondingly. Both asymptotics coincide along line
1 in the figure.

The decay is exponential m ∼ Te−T along lines 2 and 3 whereλ = 3 orμ = 3 as well as at point A where they
coincide. Second order phase transitions occur when both λ,μ > 3. In region III where 3 < λ < 5 (μ > λ)
the critical exponents are λ-dependent and in region IV where 3 < μ < 5 (μ < λ) they are μ-dependent.

5
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Table 2. Logarithmic-correction exponents in different regions of
figure 1. Exponents along line 4 (μ = λ) and at point B represent new
universality classes.

α̂ α̂c γ̂ γ̂c β̂ δ̂

Line 4 (λ = μ) − 3
λ−2 − 3

λ−2 0 − λ−3
2(λ−2) − 1

λ−3 − 1
λ−2

Point B −2 −2 0 −2/3 −1 −2/3
Lines 5, 6 −1 −1 0 −1/3 −1/2 −1/3

When λ = 5 or μ = 5 logarithmic corrections to scaling appear. For example, the order parameter in lines

4–6 behaves as m ∼ τβ | ln τ |−β̂ . The values of the logarithmic correction exponents in lines 5 and 6 coincide
with those for the IM on a scale-free network [40, 44]. The additional richness of the phase diagram is char-
acterised, for example, by new type of logarithmic corrections which emerge in line 4 where 3 < λ = μ < 5
as well as point B where λ = μ = 5. All of them obey the scaling relations for logarithmic corrections [45].
Critical exponents are summarized in tables 1 and 2.

Thus introduction of variable spin or agent strengths to the IM on networks delivers rich new phase dia-
grams and universality classes relevant to circumstances wherein interacting spins and agents carry degrees of
complexity over and above the binary features mostly considered in physics and often rejected in other dis-
ciplines. On the other hand, introducing random variables into the IM either in form of annealed network
or random spin strength makes the interaction separable, as in Mattis [46] or Hopfield models [47] used in
description of spin glasses.

The model with power-law decaying random strength distribution (2) on the complete graph has simi-
lar critical behavior to the standard IM on a scale-free network with random node degree distribution (3)
with decay exponents μ and λ playing equivalent roles. This suggests that the level of complexity introduced
by allowing spin strengths to vary is on a par to the level of complexity introduced by allowing network
architecture to vary; i.e., individual strength matter as much as connectivity.

When introduced to already rich annealed scale-free network the complexity level is magnified yet more.
Besides self-averaging, it is governed by the concurrence of two parameters describing different phenomena
arising from inherent interplay of two types of randomness. The full phase diagram of the model (figure 1)
is symmetric under μ ↔ λ interchange, critical behavior governed by the smaller of the two parameters.
Ordering, critical behavior and logarithmic corrections all feature.

The IM itself taught us that interactions in physics play as important a role as spin properties, for with-
out them we have no cooperative behavior or spontaneous magnetization. We have seen that spin strength
and system architecture play similar counterbalancing roles and are tuned by the exponents μ and λ. In socio-
physics terms they suggest duality between strength of individual opinions and societal cohesion. We hope that
introduction of the former to the IM goes some way to addressing interdisciplinary objections that ‘people
are not atoms’ [24]. But we hope the variable-strength IM is suggestive of more than this too. Region V of
the phase diagram has high values of μ and λ which may be interpreted as representing populism and weak
society. Regions I and II, on the other hand, represent empowerment of individuals and high social connec-
tivity. Regions III and IV then represent the critical divide between these very different societies and suggests
critical phenomena may play a role in further studies of the interplay between the individual and the collective.
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