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Abstract
Existing information-theoretic frameworks based on maximum entropy network ensembles are
not able to explain the emergence of heterogeneity in complex networks. Here, we fill this gap of
knowledge by developing a classical framework for networks based on finding an optimal trade-off
between the information content of a compressed representation of the ensemble and the
information content of the actual network ensemble. We introduce a novel classical network
ensemble satisfying a set of soft constraints and we find the optimal distribution of the constraints
for this ensemble. We show that for the classical network ensemble in which the only constraints
are the expected degrees a power-law degree distribution is optimal. Also, we study spatially
embedded networks finding that the interactions between nodes naturally lead to non-uniform
spread of nodes in the embedding space, leading in some cases to a fractal distribution of nodes.
This result is consistent with the so called ‘blessing of non-uniformity’ of data, i.e. the fact that real
world data typically do not obey uniform distributions. The pertinent features of real-world air
transportation networks are well described by the proposed framework.

1. Introduction

The principle of maximum entropy states that the unique probability distribution, encoding all the informa-
tion available about a system but not any other information, is the one with largest information entropy [1].
Available information about the system corresponds to constraints under which entropy is maximized. The
principle of maximum entropy has found applications in many different disciplines, including physics [2],
computer science [3], geography [4], finance [5], molecular biology [6], neuroscience [7], learning [8], deep
learning [9], etc.

Powerful information-theoretical frameworks that extend and generalize maximum entropy principles by
making use of operations such as compression or erasure of information have been recently proposed. A
paradigmatic example is the information bottleneck principle [8]. The principle allows to optimally learning a
given output from an input signal, and the optimization relies on finding the best trade-off between accuracy
of the prediction and effectiveness of the compression. Another notable example of this type of theoretical
frameworks is the study of computation and the investigation of the entropic cost of bit erasure [10].

Applications of the maximum principle can be found also in network science [11–19], where the maximum
entropy argument is applied to the distribution of probabilities P(G) of observing a given graph G of finite size
N in an ensemble of random graphs. Different entropy-maximization constraints lead to different network
models. For example, if the constraints are soft, i.e., if they deal with expected values of network properties,
then P(G) is a Gibbs-like distribution corresponding to ERGMs [12, 20].

This approach can be used to model networks with heterogeneities, e.g., in node degrees [21, 22], edge
weights [23], and community sizes [24, 25]. However, an important shortcoming of this approach is that it
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cannot explain why these heterogeneities can be found so ubiquitously in real networks. Indeed, current max-
imum entropy approaches can only generate the least biased network ensembles with given expected degree
sequence, but they cannot be used to explain or justify why in many cases we observe heterogeneous degree
sequences. Similarly for spatially embedded networks, current maximum entropy approaches can be used to
provide ensembles of spatial networks for a given distribution of nodes in the space, but they cannot be used
to draw any conclusion on the expected spatial distribution of the nodes in the network. Therefore if we want
to infer the positions of the nodes in network embedding we do not have information theory guidelines on
how to choose the prior on the spatial distribution of the nodes.

In the present paper, we address this fundamental shortcoming of current information-theoretical
approaches to the study of networks. Specifically, we derive a novel framework that is able to predict the opti-
mal degree distribution and the optimal spatial distribution of nodes in space. Both distributions turn out
to be heterogeneous, thus providing a principled explanation of the origin of heterogeneities in complex net-
works. Our approach is based on finding the best compressed representation of a network ensemble, given the
content of information conveyed by the ensemble. We consider network ensembles where any pair of nodes
is associated with a set of hidden variables obeying an arbitrary distribution, e.g., arbitrary degree distribu-
tion or arbitrary distribution of distances between pair of nodes, expressed in general as PV (x). We measure
the information content of the network ensemble and of its compressed network ensemble representation in
terms the corresponding entropies S and H, respectively. Finally we propose to find the optimal hidden vari-
able distribution P�

V (x), e.g., degree distribution or spatial distribution of distance between pair of nodes, by
maximizing

P�
V (x) = arg max

PV (x)
[H − λS] (1)

under the constraints that the network contains a given number of nodes and links, and that the entropy of the
network ensemble is given, i.e., S = S�. As explained in the main text and in the appendices, this principle is
solidly rooted in information theory [26] as the classical network ensemble and its compressed representation
can be seen respectively as the input and output of a communication channel. Therefore the definition of the
optimal hidden variable distribution can be interpreted as the optimal input distribution of a communication
channel in information theory.

We believe that our results not only provide an information-theoretical explanation for the emergence
of heterogeneous properties in complex networks, but also open a promising perspective for devising a new
generation of inference methods for finding optimal network embeddings.

2. Results

2.1. Classical network ensembles
The simplest examples of maximum entropy ensemble are the G(N, p) and G(N, L) ensembles obtained by
enforcing a constrain on the expected and the actual total number of links, respectively [27, 28]. In network
theory these ensembles can be respectively generalized to canonical and microcanonical network ensembles
enforcing a set of soft and hard constraints [13–15] which are not in general equivalent [14, 15, 29]. A major
example of canonical network ensemble is the exponential random graph mode (ERGM) enforcing a given
expected degree sequence [12] whose conjugated microcanonical ensemble is the configuration model [14,
15, 30].

In all the examples above, the maximum entropy principle is de facto applied to network adjacency matrices
A whose elements are understood as sets of edge variables correlated by the imposed constraints. Calculations
generally lead to the derivation of the probability πij = P(Aij = 1) for the pair of nodes i and j to be connected.
If networks are undirected, then Aij = Aji and πij = πji. This approach is very similar to the one used in quan-
tum statistical mechanics to describe systems of noninteracting particles whose role is played by network edges,
while particle states are enumerated by node pairs (i, j) [12, 13]. In fact the adjacency matrix element Aij indi-
cating the number of links between a pair of nodes (i, j) corresponds to the ‘occupation number’ in quantum
statistical mechanics. Indeed in binary networks, where Aij is either 0 or 1, πij takes the Fermi–Dirac form; if
multiple edges are allowed between the same pair of nodes, then the system is described by the Bose–Einstein
statistics [31].

Here we take advantage of the principle of maximum entropy in a classical way. Instead of dealing with all
elements of the adjacency matrix (corresponding to the occupation numbers of quantum statistical mechanics)
we look directly at network edges (which corresponds to particle states). Therefore a given network G of N

nodes is identified by its edge list
{
�� [n]

}
with n ∈ {1, 2, . . . , L} where each link �� [n] is described by an ordered

pair of node labels �� [n] =
(
�[n]

1 , �[n]
2

)
, i.e., �[n]

1 indicates the label of the node i ∈ {1, 2, . . . , N} attached to the
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first end of the link n and similarly �[n]
2 indicates the label of the node attached to the second end of the link n

(see appendices for details).
We assume that the ends of each link are drawn independently from the probability distribution P(��).

Therefore P(��) indicates the probability that, by picking a random edge, nodes �1 and �2 are found at its ends.
The Shannon entropy S of this ensemble is given by

S = −L
∑
��

P(��) ln P(��). (2)

S is named the classical entropy and quantifies the information content associated with all edges in the network.
If we indicate with 〈k〉 average degree of the network, equation (2) indicates that the entropy S is given by the
sum of L = 〈k〉N/2 identical terms corresponding to the entropy associated with the typical number of ways
in which we can choose two nodes (i, j) to be connected by a single link.

The distribution P(��) that describes the ensemble is then found using the maximum entropy principle. Dif-
ferent constraints in the entropy maximization problem lead to different distributions P(��). Since the marginal
probabilities in this ensemble are exponential, we refer to it as the classical network ensemble, differentiating
it from previously explored maximum entropy ensembles where the marginals obey quantum statistics [12].
We note that the framework we consider here allows for multiedges and tadpoles as in similar approaches [4,
19]. This makes all edges uncorrelated variables, allowing for greater simplicity and flexibility.

2.2. Classical network ensemble with expected degrees
As the first very basic example of classical network ensemble, we consider the ensemble in which we constrain
expected values of node degrees. That is, we require that the probability to find node i at one of the ends of a
randomly chosen link is ki/L, ∑

��

P(��) [𝟙(�1 = i) + 𝟙(�2 = i)] =
ki

L
, (3)

where {ki} is any given degree sequence, L is a fixed number of links in the network, which is assumed to be
consistent with kis via 2L =

∑
i ki, and where 𝟙(x = y) is the indicator function: 𝟙(x = y) = 1 if x = y and

𝟙(x = y) = 0 otherwise. The constraint in equation (3) is required to hold for all nodes i = 1, . . . , N.
The maximum entropy distribution P(��) is found by maximizing the functional

G = S − μL

⎡
⎣∑

��

P(��) − 1

⎤
⎦− L

N∑
i=1

ψi

⎡
⎣∑

��

P(��) [𝟙(�1 = i) + 𝟙(�2 = i)] − ki

L

⎤
⎦ . (4)

where we have introduced the Lagrange multipliers ψi and μ associated with the constraint in equation (3)
and the normalization of P(��), respectively. The solution of this maximization problem leads to the expression
for the probability πij that a given link connects node i at one end to node j at the other end, that is

πij = P(�1 = i, �2 = j) = e−μe−ψi−ψj , (5)

where the Lagrange multipliers ψi and μ are the solutions of the constraint equations

ki

L
= 2

ki

〈k〉N = 2e−μe−ψi

N∑
j=1

e−ψj . (6)

Therefore, e−ψi = ki and eμ = (〈k〉N)2, from which we obtain

πij =
ki kj

(〈k〉N)2
. (7)

Notice thatπij is the probability that a link connects node i at the first end and node j at the second end, therefore
the πij is a distribution and obeys the normalization condition

∑
ij πij = 1. Since there are L = 〈k〉N/2 links

in the network, and two nodes are connected if there is a link attached to the two ends in any possible order,
the average number of links that connect node i to node j is given by

〈Aij〉 = 2Lπij =
kikj

〈k〉N . (8)

This is the average number of links between nodes of degrees ki and kj in uncorrelated random networks [30].
Equation (8) is the starting point of many calculations in network science that use the uncorrelated random
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networks as a null model. A popular example is the modularity function used in community detection [32].
The derivation above provides a theoretical ground for such an interpretation of the model.

We now turn to more sophisticated outcomes of the considered framework. In our classical network ensem-
ble, the degree distribution P(k) is an input parameter that we can set to whatever we wish. Among all possible
choices of the degree distribution, which one corresponds to maximal randomness?

To answer this question, we note that we can express the classical network entropy S in terms of the degree
distribution P(k) as

S = −L
∑

ij

πij ln πij = 〈k〉N
[

ln(〈k〉N) −
∑

k

kP(k)

〈k〉 ln k

]
. (9)

The entropy S quantifies the amount of information encoded in the classical network ensemble with N nodes,
L edges, and degree distribution P(k). Any given P(k) uniquely determines the value of S via equation (9), yet
the same value of S may correspond to different P(k)s.

2.3. Information theory framework
Here we describe our theoretical framework to predict the optimal degree distribution in terms of a standard
information-theoretic problem [26]. A network instance is a ‘message’. Specifically, a message consists of L
two-letter words, each representing a link �� = (i, j). Letters are node labels, so that the alphabet is given by
N distinct symbols. We assume that messages are generated by picking random pairs of nodes according to
the probability πij. For the classical network ensemble enforcing expected degrees the probability πij is only
dependent on the degrees of the nodes, i.e.,

πij = πki,kj (10)

with

πk,k′ =
kk′

(〈k〉N)2
, (11)

indicating the probability that two nodes of degree k and k′ are connected to one or the other end node of a link
in the classical network ensemble. This is our source of messages. If we change degree sequence, then we have a
different source of messages. The entropy S defined in equation (9) is the entropy of the source. In our specific
setting, S turns out to be a function of the degree distribution P(k) only, not of the specific degree sequence
{k1, . . . , kN}. Thus, if we change the degree distribution P(k), then we change the source of messages.

Once generated, messages are compressed using a lossy compression channel. The choice of the channel
is naturally suggested by the classical network ensemble under consideration. Since for the classical network
ensemble enforcing expected degrees the probability πij = πki,kj only depends on the two node degrees, we use
the channel where the link labels (i, j) are replaced with the link label of the pair of degrees (k, k′) of the two
linked nodes. Please note that the messages are still the same as those generated by the source. However, many
of them are no longer distinguishable after the application of the channel. Specifically the channel is erasing
information about the actual identity of the linked nodes and is retaining only the information about their
degrees.

The output of the channel corresponds to a coarse-grained network ensemble (see figure 1), where all nodes
with the same degree class are indistinguishable and they form a super node in the coarse-grained description.
The network ensemble can be used to compress the information of the original network retaining only the
information regarding the degree of the linked nodes. Clearly, in this ensemble we observe the same expected
number of links Lk,k′ between nodes of degree k and nodes of degree k′ as in the classical network ensemble.
If we indicate with Nk the number of nodes in degree class k, it is easy to show that Lk,k′ = Lπk,k′NkNk′ and
that

∑
k,k′ Lk,k′ = L. Every link of the coarse-grained ensemble has probability Πk,k′ to connect super-nodes

corresponding to degree classes k and k′ where

Πk,k′ =
Lk,k′

L
=

kk′P(k)P(k′)

〈k〉2
. (12)

This compressed ensemble is on its own a classical network ensemble, therefore its entropy H is

H = −L
∑
k,k′

Πk,k′ ln Πk,k′ = −〈k〉N
∑

k

kP(k)

〈k〉 ln

(
kP(k)

〈k〉

)
. (13)

We have two representations of the network ensemble at the node level and at the compressed level whose
information content is quantified respectively by the S-entropy and the H-entropy. Note that the different
notation is only introduced to distinguish between the entropy of the original ensemble and the entropy of its
compressed version. However, the entropy H is nothing else that the entropy of a classical network ensemble
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Figure 1. Classical network ensemble with expected degree and its compressed representation. (a) Schematic representation of
the classical network ensemble with expected degrees. (b) Schematic representation of the compressed classical network
ensemble. (c) The classical network ensemble constituting our source is defined by the probability πij that a link is attached at one
end to node i and at the other end to node j. This ensemble constitutes the source of messages of our channel. (d) The compressed
classical network ensemble constituting a lossy compression of the classical network ensemble is defined by the probability Πkk′

that a link is attached at one end to node of degree k and at the other end to a node of degree k′ . This ensemble is the output of
our channel that performs a lossy compression of the source of messages.

whose nodes are degree classes. Given that our channel is only erasing information, we have the interesting
results that the entropy H of the output of the channel is equal to the mutual information between the input
and the output of the channel (see appendices) and represents a metric of effectiveness of the channel: the
higher its value, the more effective is the channel in transmitting the information produced by the source.

In summary, we have potentially many sources of messages given by classical network ensemble with
different P(k)s, but we have one given channel prescribed by our coarse-grained procedure of the network.

The maximization problem that we solve consists in determining the best distribution of hidden variables
that maximizes the capacity of our channel for given value of the entropy S of the source. Therefore we max-
imize H for fixed value of S. The constraint on the entropy S is imposed as we do not want to compare the
performance of the channel over arbitrary sources of messages, but only over sources with similar level of
information.

The optimal degree distribution that will allow the best reconstruction of the original network ensemble
given only the knowledge of its compressed representation is given by

P�(k) = arg max
P(k)

[H − λS], (14)

where the optimization is performed under the constraints the network contains a given number of nodes and
links and that S = S�.

We stress that our problem is formulated as essentially an optimization of the capacity of the channel aimed
at finding the optimal distribution of hidden variables for any fixed value of the entropy S = S� (see appendix
A for more details about the oretical framework).

2.4. Optimal degree distribution
We now show how our theoretical framework can allow us to predict the optimal degree distribution of the
classical network ensemble with expected degrees. We impose the constraint S = S�, where S� is a given pos-
itive real number, i.e., we consider different network ensembles that have the same information content or
‘explicative power’ at the node level. To find the typical degree distribution P(k) under this constraint, we
maximize the randomness of the coarse-grained model quantified by the H-entropy. Clearly, P(k) must also
satisfy the constraints

∑
k kP(k) = 〈k〉 and

∑
k P(k) = 1. Combining all together, we thus have to maximize

the functional

F = H − λ
[
S − S�

]
− μN

[∑
kP(k) − 〈k〉

]
− νN

[∑
k

P(k) − 1

]
, (15)

from which we obtain
P�(k) = 〈k〉e−(μ+1) e−ν

〈k〉
k k−(λ+1). (16)

The Lagrange multipliers λ, μ, and ν are determined by the imposed constraints and they always exist as long
as λ > 1.
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Figure 2. Entropy H as a function of S�. (a) The H-entropy in equation (13) is evaluated for the degree distribution P(k) that
maximizes the functional F in equation (15). We consider N = 104, and different values of the S-entropy constraint S� and the
average degree 〈k〉. (b) Same as in panel (a), but for the spatial ensemble H (21) and F (22) with the power-law linking
probability f(δ) = δ−α/z. We consider α = 3 and different values of z.

Figure 3. Schematic representation of the classical spatial ensembles and their compressed ensemble. (a) The classical spatial
ensemble is defined by the probability πij that a link connects node i at one end and node j at the other end. (b) The compressed
representation of the ensemble in panel A is defined by the probability Πk,k′ ,δ that a link connects a node of degree k at one end
and a node of degree k′ at distance δ from the first node at the other end.

Equation (16) shows that the optimal degree distribution P�(k) with a given value of the classical entropy
in equation (9) is a power law. To be precise, the power-law decay holds for large degrees k, while in the
low-k region there is an exponential cutoff that affects the mean of the distribution. This result indicates the
information theory benefits for the widespread presence of scale-free topologies in complex networks [21]. In
figure 2(a) we show the entropy H as a function of S� for different values of the average degree 〈k〉. The lower
the S�, and consequently the lower the power-law exponent λ, the higher the entropy H. This is because even
though the number of networks with a given degree sequence decreases as S� and λ go down, the number of
ways to split L links into classes of links connecting nodes of degrees k and k′ increases. Therefore this result
highlights the entropic benefit to have networks with broad (i.e., low λ values) degree distributions that corre-
spond to low values of the S-entropy but to high values of the H-entropy. Interestingly, the same result could
be obtained by maximizing the randomness of the classical network ensemble, and therefore optimizing the
S-entropy while keeping fixed the informative power of its compressed description, i.e., the H-entropy.

2.5. Classical information theory of spatial networks
In the following, we apply the proposed information-theoretical approach to ensembles of spatial networks. We
assume that networks are generated according to different ‘sources’ of messages rather than the classical net-
work ensemble with expected degrees, and the lossy compression of the source of messages consists in replacing
link labels (i, j) with link labels associated in the most general case to (k, k′, δ) where k and k′ are the degrees
of the linked nodes and δ is their distance in the underlying space (see figure 3). The logic behind the formu-
lation of the constrained maximization problem is still the same as above: we optimize sources corresponding
to similar level of information for a specified and unchangeable channel.

Our goal is here to show how the proposed information theory approach can be used to predict the most
likely distribution of the nodes in space when pairs of nodes have a given space-dependent linking probability.
Our approach reveals that if nodes are interacting in a network, then interactions induce a natural tendency
of the nodes to be distributed inhomogeneously in space. The finding is consistent with the so-called ‘blessing
of non-uniformity’ of data, i.e., the fact that real-world data typically do not obey uniform distributions [33].
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We first consider spatial networks without any degree constraints, and then combine spatial and degree-based
information in heterogeneous spatial networks.

2.6. Space-dependent linking probability
Let δij be the distance between nodes i and j in some embedding space, and ω(δ) be the distance distribution
between all the

(N
2

)
pairs of nodes, which we also call the correlation function: the number of pairs of nodes at

distance δ is
(N

2

)
ω(δ) � N2ω(δ)/2. We define a spatial classical network ensemble by imposing the constraint∑

��

P(��)
[
𝟙(�1 = i) + 𝟙(�2 = j)

]
F(δij) = c, (17)

where F(δ) is a function of the distance. This constraint can be interpreted as a total ‘cost’ of the links. Different
functions correspond to different ensembles. For example, in the ensemble with a cost of the link proportional
to the their length, this function is F(δ) = δ. If it is F(δ) = ln δ, then the cost of a links scales like the order of
magnitude of link lengths. The maximum entropy principle dictates the maximization of the functional

G = S − μ[
∑
��

P(��) − 1] − α

⎡
⎣∑

��

P(��)
[
𝟙(�1 = i) + 𝟙(�2 = j)

]
F(δij) − c

⎤
⎦ , (18)

leading to

πij =
f (δij)

N2
, (19)

with f(δ) = g(δ)/z, z =
∫

dδ ω(δ)g(δ), and g(δ) = e−αF(δ). Therefore if F(δ) = ln δ, then the linking probabil-
ity decays with the distance as a power law, g(δ) = δ−α. If F(δ) = δ, then this decay is exponential, g(δ) = e−αδ.
Fixing the number of links in the network to L as before, the classical entropy of the ensemble is

S = −L
∑

ij

πij ln πij = 〈k〉N ln N − 1

2
〈k〉N

∫
dδ ω(δ)f (δ) ln f (δ), (20)

which is the spatial analogue of the classical entropy in equation (9).
We now ask: what is the optimal distribution of nodes in the space at parity of explicative power of the

network model? That is, what is the optimal correlation function ω�(δ) for given value of the entropy S = S�?
To answer this question, we define the entropy H of the compressed model in which we consider only the
number of ways to distribute L links such that every link connects two nodes at distance δ with probability
density Πδ

H = −L

∫
dδ Πδ ln Πδ , (21)

where Πδ = Lδ/L and Lδ = Lω(δ)f(δ) is the expected number of links between nodes at distance δ in the
classical network ensemble (which clearly satisfy the normalization condition

∫
dδ Lδ = L). Our information

theory framework shows that the maximum entropy value of ω(δ) is then found by maximizing the functional

F = H − λ
[
S − S�

]
− μL

[∫
dδ ω(δ)f (δ) − 1

]
− νL

[∫
dδ ω(δ) − 1

]
, (22)

where λ,μ and ν are the Lagrange multipliers coupled with the constraints. The solution reads

ω�(δ) = e−(μ+1)e−ν/f (δ)f (δ)−(λ+1), (23)

so that Lδ is given by
L�
δ = L e−(μ+1)e−ν/f (δ)f (δ)−λ, (24)

The Lagrange multipliers are then found as the solutions of the constraints equations. In figure 2(b), we show
the entropy H as a function of S� for a power-law decaying linking probability f(δ) = δ−α/z.

We now make several important observations. First, if the space has no boundary, and is isotropic and
homogeneous, then the networks are homogeneous since any two points in the space are equivalent and the
linking probability depends only on the distance between pairs of points. The degree distribution is thus the
Poisson distribution with the mean equal to the average degree 〈k〉 = 2L/N. Second, equation (23) says that
the maximum entropy distribution ω(δ) of distances δ between the nodes in the space is uniquely determined
by the linking probability f(δ). Third, if this probability decays as a power law f(δ) = δ−α/z, then the frame-
work describes the natural emergence of power-law pair correlation functions. Specifically, the solution in
equation (23) decays as a power law at small distances δ, while at large distances the decay is exponential due

7



J.Phys.Complex. 1 (2020) 025001 (12pp) F Radicchi et al

to the finiteness of the system. If the embedding space is Euclidean of dimension d, then points are scattered
in the space according to a fractal distribution. Define the node pair density function by

ρ(δ) =
ω�(δ)

Ωδ
, (25)

whereΩδ is the volume element at distance δ from an arbitrary point. In the d-dimensional Euclidean space, Ωδ

is the volume of the (d − 1)-dimensional spherical shell, scaling with δ asΩδ ∝ δd−1. Therefore for a power-law
linking probability f(δ) = δ−α/z, we get

ρ(δ) ∝ δβe−νzδα , (26)

where β = (λ+ 1)α− (d − 1). Therefore, the embedding in d dimensions is possible only if β < 0. Finally,
the distribution of nodes in the space is fractal, and therefore highly nonuniform, as the uniform distribution
would correspond to ρ(δ) = const.

2.7. Constraining expected values of node degrees and link costs
As the last example, we consider the classical network ensemble of spatial heterogeneous networks combining
the degree and spatial constraints of equations (3) and (17), respectively. The probability πij that a random
link connects nodes i and j is given by

πij =
κiκj

(〈k〉N)2
f (δij), (27)

where f(δ) = e−αF(δ)/z, with α the Lagrangian multiplier coupled with the constraint in equation (17), z the
normalization constant enforcing

∑
i,j πij = 1, and κi the hidden variable of node i given by κi = e−ψi〈k〉N,

with ψi the Lagrangian multiplier coupled with the constraint in equation (3). If there are no correlations
between the positions of the nodes in the space and their degrees, then the probability πij can be written as

πij =
kikj

(〈k〉N)2
f (δij), (28)

meaning that κi = ki, so that κi can be interpreted as the expected degree ki of node i. Using the same approx-
imation as in reference [34] for a power-law decaying function f (δij) = δ−α

ij /z, we can write πij as πij ∝ e−rij ,
where rij = lnκi + lnκj − αlnδij is approximately the hyperbolic distance between nodes i and j located at
radial coordinates lnκi and lnκj and at the angular distance proportional to δij. Parameter α can then be
related to the hyperbolic space curvature. The classical entropy of this ensemble is given by

S = −L
∑

ij

πij ln πij = 〈k〉N ln[〈k〉N] − 1

2
〈k〉N

∫
dκ

∫
dκ′

∫
dδ ω(κ,κ′, δ)κκ′f (δ) ln[κκ′f (δ)] (29)

where ω(κ,κ′, δ) is the density of pairs of nodes with hidden variables κ and κ′ at distance δ.
What is the optimal pair correlation function ω�(κ,κ′, δ) for a fixed value of the classical entropy S = S�?

To answer this question, we maximize the H-entropy of the compressed model

H = −L

∫
dκ

∫
dκ′

∫
dδ Πκ,κ′,δ ln Πκ,κ′,δ , (30)

where Πκ,κ′,δ = Lκ,κ′,δ/L is the probability density that a link connected two nodes of with hidden variables
κ and κ′ and at distance δ. Note that Lκ,κ′,δ = Lω(κ,κ′, δ)κκ′f (δ) indicates the expected number of links
between pairs of nodes with hidden variables κ and κ′ at distance δ in the classical network ensemble. The
maximization of H under the constraints S = S�, the normalization of Lκ,κ′,δ ,

∫
dκ

∫
dκ′ ∫ dδ Lκ,κ′,δ = L, and

the normalization of ω(κ,κ′, δ),
∫

dκ
∫

dκ′ ∫ dδ ω(κ,κ′, δ) = 1, yields the answer

ω�(κ,κ′, δ) = e−(μ+1) exp{−ν/[κκ′f (δ)]}[κκ′f (δ)]−(λ+1), (31)

where λ,μ and ν are the Lagrange multipliers coupled with the S = S� constraint, the normalization of Lκ,κ′,δ,
and the normalization ofω(κ,κ′, δ), respectively. Observe that the pair correlation functionω(κ,κ′, δ) depends
on its arguments only via w = κκ′f (δ), and for small values of w it decays as a power-law function of w. If
f(δ) = δ−α/z, then ω(κ,κ′, δ) can be also written in terms of the approximate hyperbolic distance r = lnw =

lnκ+ lnκ′ − α ln δ as
ω�(r) = e−(μ+1) exp[−(λ+ 1)r − νe−r]. (32)

As in the homogeneous spatial case, here we also observe that the optimal distribution of nodes in the space is
not uniform.
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Figure 4. The application of the information-theoretical framework to real-world airport networks. The networks correspond to
the flights operated by American Airlines (AA) during January-April 2018 between US airports [35], by Lufthansa (LU) and
Ryanair (RY) during year 2011 between European airports [36]. For each air carrier, a separate air transportation network is built,
in which nodes are airports and two airports are connected if at least one flight between the two airports is present in the data.
Using the network topology and the geographic locations of the airports, the empirical linking probability f(δ) (panel (a)) and the
density distribution P(δ) =

∫
dκ

∫
dκ′ω(κ,κ′ , δ) (panel (b)) are computed for the three networks, where distance δ is geographic

and is measured in kilometers. Panel (c) shows the pair correlation functions ω(κ,κ′, δ) = ω(w), where w = κκ′f(δ), for the
three networks. Points represent empirical densities, while the full lines are theoretical predictions according to equation (31).
Values of the Lagrange multipliers are: λ = 1.2 and ν = 120 for AA, λ = 1.3 and ν = 5 for LU, and λ = 0.45 and ν = 8 for RY.

2.8. Real-world networks
In figure 4 we apply the considered information-theoretic framework to real-world air transportation net-
works, in which nodes are airports and edges between pairs of nodes indicate the existence of at a least one
flight connecting the two airports. Specifically, we consider three networks corresponding to flights operated
in different geographic areas by three air carriers. The distances δij between airports i and j are their geographic
distances. The linking probability f(δ) is computed from the data as the empirical connection probability, and
the hidden variables κi are set to the actual degrees of the airports in the networks. We note that the empir-
ical connection probabilities f(δ) decay as power laws, and that the pair correlation functions ω(w) are well
described by equation (31).

3. Discussion

In summary, this work illustrates a classical information-theoretical approach to the characterization of ran-
dom networks. This framework is based on a tradeoff between the entropy of the network ensemble and the
entropy of its compressed representation. According to our theory, network inhomogeneities in the distri-
bution of node degrees and/or node position in space both emerge from the general principle of maximizing
randomness at parity of explicative power. The framework provides theoretical foundations for a series of mod-
els often encountered in network science, and can likely be extended to generalized network models such as
multilayer networks and simplicial complexes [37, 38] or to information theory approaches based on the net-
work spectrum [39]. In applications to real-world networks, the framework provides a theoretical explanation
of the nontrivial inhomogeneities that are an ubiquitous features of real-world complex systems.

Data availability

The networks considered in this study are generated from data corresponding to flights operated by American
Airlines (AA) during January-April 2018 between US airports [35], and by Lufthansa (LU) and Ryanair (RY)
during year 2011 between European airports [36]. Geographical coordinates of the airports have been obtained
from https://openflights.org/data.html. AA data are available upon request. LU and RY data can be downloaded
from the repository Air Transportation Multiplex at http://complex.unizar.es/atnmultiplex/.

Code availability

Code used to generate figures 2 and 4 is available upon request.
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Appendix A. The classical network ensemble

We consider a classical network ensemble defining the probability of a network G = (V, E) of |V| = N nodes

and |E| = L links. In this ensemble, a network G is described by an edge list
{
�� [n]

}
with n ∈ {1, 2, . . . , L}

where each link �� [n] is described by an ordered pair of node labels �� [n] =
(
�[n]

1 , �[n]
2

)
, i.e., �[n]

1 indicates the

label of the node i ∈ {1, 2, . . . , N} attached to the first end of the link n and similarly �[n]
2 indicates the label of

the node attached to the second end of the link n.
Every link variable ��[n] can assume values of the type (i[n], j[n]) with i, j ∈ {1, 2, . . . , N}. In the classical

network ensemble, every link is independently distributed, thus we associate to each network (edge list) {��n}
a probability

P (G) =
L∏

n=1

P
(
�� [n]

)
(A.1)

where P( ��[n]) is the probability that the nth link is connected to the pair of nodes (�[n]
1 , �[n]

2 ). The entropy of
this ensemble is given by

S(G) = −L
∑
��

P(��) ln P(��). (A.2)

Note that alternatively we could define the network ensemble as given by a set of L undistinguishable links
defined as unordered pairs of node labels ��. In that case, by following similar mathematical steps as those used
to treat the Gibbs paradox [40] in statistical mechanics, the entropy would only differ by a constant term, i.e.,

S[undis](G) = −
∑
{��}

P({��}) ln P({��})

= −L
∑
��

P(��) ln P(��) − ln(L!2L). (A.3)

The above entropy might be preferred to the entropy S associated to distinguishable links. However, the
S and S[undis] entropies differ only by a global term that depends on the total number of links only, thus
making S and S[undis] equivalent for the purpose of our mathematical framework. We further note that the
classical network ensemble is fully described by the link ensemble. The link ensemble is a triple (��,A��,P��)

where �� indicates the value associated of the random variable associated to an arbitrary link of the network,
A� = {(i, j)|i, j ∈ {1, 2, . . . , N}} indicates the set of all distinct possible values that the link random variable
can assume, and P� = {πij, i, j ∈ {1, 2, . . . , N}} indicates the set of probabilities

P(�� = (i, j)) = πi,j. (A.4)

Here, we consider maximum entropy classical network ensembles where the probabilities πij only depend on
some hidden variables xij associated to the link, i.e., where

πij = πxij . (A.5)

Alternatively, we could say that πi,j is the probability that �� = (i, j) given that the two nodes are characterized
by the hidden variables xij assigned a priori to each pair of nodes of the network. For instance, if we consider
the classical ensemble in which we constraint the expected degree sequence, we will have

πi,j = πki,kj . (A.6)

while in the spatial network we will have
πi,j = πκi ,κj,δij . (A.7)

Thus, the entropy S(G) of the classical network ensemble is given by

S(G) = −L
∑

i,j

πij ln πij = −L
∑

x

N2PV (x)πx ln πx, (A.8)

where

PV (x) =
1

N2

∑
i,j

δ(xij, x) (A.9)

indicates the probability that a random pair of nodes has hidden variable xij = x. Since the network ensemble
is constructed given the distribution of hidden variables, the entropy S(G) can be interpreted as a conditional
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entropy of the network given the distribution of hidden variables as the rightmost term of equation (A.8)
reveals.

Appendix B. The channel that compresses information

It follows that a classical network ensemble can be considered as a source of L messages. Each message is a
link �� carrying information on the node labels of the two linked nodes. We assume that the information is
compressed by a channel Q, characterized by an input �� taking values in A�� and an output x(��) indicating the
hidden variables associated to the link

x(��) = xij. (B.1)

The channel Q is a lossy compression channel that is erasing information about the identity of the nodes, and
retaining only the value of their hidden variables. The output of the channel Q is the ensemble {x(��),Ax,Px},
where the random variables associated to each link are given by the hidden variables of the linked nodes x(�).
Ax is the set of all possible values that the hidden variables of a link can take, andPx is the set of all probabilities

Πx̄ = P

(
x(��) = x̄

)
=

∑
i<j

πijδ
(

x(��), x̄
)
= πx̄N2PV(x̄). (B.2)

For instance, if the hidden variables are exclusively the expected degrees of the nodes, we have

Πk,k′ = P(x(��) = (k, k′)) =
∑
i<j

πijδ(ki, k)δ(kj, k′) = πk,k′N
2P(k)P(k′). (B.3)

If instead we are considering a spatial network with hidden variables x = (κ,κ′, δ), we have

Πk,k′,δ = P(x(��) = (k, k′, δ)) =
∑
i<j

πijδ(ki, k)δ(kj, k′)δ(δij, δ) = N2πk,k′,δω(κ,κ′, δ), (B.4)

where here we have adopted the notation of the main text. The output message defines a compressed network
ensemble of networks having entropy

H = −L
∑

x

Πx ln Πx = −L
∑

x

N2πxPV (x) ln
(
N2πxPV (x)

)
. (B.5)

Interestingly, we have that the entropy H is equal to the mutual information between the input message and
the output messages of the channel Q multiplied by L, i.e.,

H = L
∑
��,x

P(��, x) ln

(
P(��, x)

P(��)P (x)

)
. (B.6)

This fact follows immediately from the observation that the joint distribution P(��, x) between the source
message �� = (i, j) and the compressed message x is simply given by

P(��, x) = P(��)δ(xij, x), (B.7)

i.e., the value of x(��) is uniquely determined by �� and the relation

P (x) =
∑
��

P(��, x) = Πx. (B.8)

Appendix C. Optimal hidden variable distribution

Our framework aiming at finding the optimal distribution of hidden variables P�
V (x) consists in maximizing

H for a fixed value of S = S�. In particular, we define the optimal hidden variable distribution P�
V (x) as the

solution of the optimization problem

P�
V (x) = arg max

PV (x)
[H − λS]. (C.1)

under the constraints the network contains a given number of nodes and links, and that S = S�. Since H is
proportional to the mutual information of the channel Q, the maximum of H given S = S� consists in the
capacity of the channel under the constraint that the network ensemble has entropy S = S�. Interestingly, our
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optimal hidden variable distribution can be seen as a parallel of the optimal input distribution [26] of a channel,
with the difference that we consider a network model where πx fixed and we optimize only the distribution of
the hidden variables PV (x).
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