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Abstract
Inorganic-based micro light-emitting diodes (microLEDs) offer more fascinating properties and
unique demands in next-generation displays. However, the small size of the microLED chip
(1–100 µm) makes it extremely challenging for high efficiency and low cost to accurately,
selectively, integrate millions of microLED chips. Recent impressive technological advances
have overcome the drawbacks of traditional pick-and-place techniques when they were utilized
in the assembly of microLED display, including the most broadly recognized laser lift-off
technique, contact micro-transfer printing (µTP) technique, laser non-contact µTP technique,
and self-assembly technique. Herein, we firstly review the key developments in mass transfer
technique and highlight their potential value, covering both the state-of-the-art devices and
requirements for mass transfer in the assembly of the ultra-large-area display and virtual reality
glasses. We begin with the significant challenges and the brief history of mass transfer
technique, and expand that mass transfer technique is composed of two major techniques,
namely, the epitaxial Lift-off technique and the pick-and-place technique. The basic concept and
transfer effects for each representative epitaxial Lift-off and pick-and-place technique in mass
transfer are then overviewed separately. Finally, the potential challenges and future research
directions of mass transfer are discussed.
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1. Introduction

After liquid crystal display (LCD) and organic light-
emitting diode (OLED) display, micro light-emitting diode
(microLED) displays are recognized as the next-generation
display technology in terms of their superior characteristics,
such as ultrahigh brightness (∼107 cd m−2, compared with
1500 cd m−2 of OLED [1, 2]), nanosecond response time
(∼104 and ∼107 times shorter than those of OLED and LCD
[3], respectively), low power consumption (∼1% of LCD and
40% of OLED [4]), and long lifetime (>10 years, ∼8 years
of LCD, ∼4 years of OLED [5]), high color reproduction
of 140% (75% of LCD and 100% of OLED [6]) and wide
view angle (Max.180◦, Max. 89◦ of LCD and OLED [7]),
etc. Currently, many fascinating displays, which cannot be
realized with traditional display technologies, become real-
ity with microLED, examples vary from ultra-large displays
(e.g. 146 inches ‘The Wall’ developed by Samsung) to ultra-
high-resolution (>5000 PPI [8]) virtual reality (VR) glasses
and head-up displays. In addition, microLED-based flexible
electronics can be served as medical sensors [9–11] to mon-
itor physical/psychological conditions or treat disease [12],
and microLED-based visible light communication (VLC) sys-
tems with high data rate (⩾10 Gbps [13–15]) and modulation
bandwidth (⩾100 MHz [16, 17]) make deep-sea commu-
nication possible [18, 19]. These excellent features provide
a strong incentive to develop high-efficiency and low-cost
assembly concepts and processes for large-scale and high-
density microLED arrays.

High-resolution microLED displays rely on millions of
polychromatic self-emissive elements that consist of red,
green and blue (RGB) microLEDs [20]. Figure 1 shows the
simplified fabrication process of microLED displays (center
part in figure 1) and representative applications that have been
described above. Generally, limited by the growth techniques,
it is difficult to simultaneously grow RGB microLEDs on
a epitaxial wafer (only ∼8 inches [21, 22]). Thus, determ-
inistic assembly of microLED chips from different growth/-
donor substrates is required. However, since the feature size of
microLED chips are <100 µm, there is a trade-off between tiny
feature size and fabrication feasibility. There are three enorm-
ous challenges. (a) The extreme transfer efficiency (∼tens
of millions h−1) is vital because of their vast numbers. For
an 8 K displays, more than ∼100 million chips need to be
transfered onto the receiver substrate, which will take several
weeks for traditional pick-and-place techniques (e.g. assembly
throughput ∼8000 chips per hour [23–25] for current flip-
chip bonding equipments [23, 26]). (b) The extreme place-
ment accuracy is critical for microscale chips (∼5% of the
microLED chip size [20, 27]). For example, the transfer error
of a 10 µm-sized microLED chip should be smaller than
0.5µm,which is far beyond the accuracy of traditional transfer
techniques (e.g. only∼30µm [28]). (c) The extreme reliability
(∼99.9999% [21]) is also essential. Otherwise, a 0.01% failure
rate could result in thousands of dead pixels [29]. In short, tra-
ditional assembly methods are not practical for MicroLEDs.

As a revolutionary technique specified by industry and
mass transfer, which can release massive microscale chips
(e.g. ∼millions h−1) from the donor/growth substrate an effi-
cient rate and move them to the backplane/receiving sub-
strate with high precision and reliability, it has proven to
be a promising solution. These techniques typically intro-
duce physical/chemical interactions (e.g. Van der Waals
(VDW) force [33, 34], fluid tension [35], electrostatic force
[36, 37], laser ablation [38, 39], selective etching [40, 41],
etc) to switch the adhesion/de-adhesion state of the interface
between the donor/transfer medium (e.g. elastomer stamp,
fluid) and microLED chips in a highly controlled, scalable,
and accurate way. For instance, the micro-transfer printing
(µTP) utilized an elastomer stamp with thousands of tiny
posts (∼10 800 posts [42]) to control the interface adhesion
by tuning the peeling speed. Thus, microscale and even nano-
scale structures can be selectively transferred in parallel.
X-Celeprint demonstrated that µTP can achieve the transfer
reliability (chip size of 8 × 15 µm2) of ∼99% [43], with the
maximum transfer efficiency of >6.5 million h−1 [44] and the
placement accuracy of∼1.5 µm [45]. Recently, different kinds
of lasers have been introduced to enable digital and paral-
lel transfer processes with highly enhanced throughput, cost-
efficiency, and process flexibility. Especially, extremely high
assembly rates (>100 million h−1) can be achieved by arrays
of laser beams [39, 46]. Because of recent significant progress,
these mass transfer techniques could become candidates for
industrialized manufacturing of microLED displays.

Recently, many review papers have merely focused on
microLED displays [5, 7, 47–49], which mainly concluded
the technological path of microLED chips or the solution of
full-color displays. Here, we attentively present an in-depth
analysis of the latest developments of mass transfer tech-
niques. In section 2, we first discuss the general assembly
process (i.e. epitaxial lift-off and pick-and-place process) of
microLED displays and highlight key challenges of mass
transfer techniques. Then, various state-of-the-art mass trans-
fer strategies and principles adopted in different production
steps of microLED displays are described in the subsequent
two sections. Finally, we discuss the future opportunities and
challenges in this field.

2. Evolution of microLED displays and mass
transfer technique

2.1. Basic knowledge of mass transfer

The assembly of microLED chips generally includes several
key process steps, including releasing massive microLED
chips from the donor/growth substrate (i.e. epitaxial lift-off
process), adjusting pitch size, and finally aligning and mov-
ing them to a backplane/receiver substrate (i.e. pick-and-
place process) [3, 42]. For achieving full-color microLED
displays, mass transfer techniques can be divided into two
categories [50, 51]. (a) The first strategy is the selective batch
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Figure 1. The manufacturing process of microLED displays and representative examples of microLED displays. From [11]. Reprinted with
permission from AAAS. [30] John Wiley and Sons. ‘Visible light communication’. [19] John Wiley & Sons. Reprinted by permission from
Springer Nature Customer Service Centre GmbH: Springer Nature, Sci. Rep. [31] © 2019. Reproduced from [32]. CC BY 4.0.

transfer of RGB microLED chips, respectively (figure 2(a))
[52]. At the epitaxial lift-off process, microLED chips with
different colors are separated from their growth substrates
(figures 2(a-ii)). Next, in the pick-and-place process, a transfer
medium is used to pick up the RGB microLED chips from
different growth substrates (figures 2(a-iii)–(a-v)), followed
by a delivery step to place RGB microLED chips to the tar-
get receiver substrate (figure 2(a-vi)). (b) The second strategy
is the selective batch transfer of monochromatic Blue/UV
microLED chips (figures 2(b-ii, iii)), followed by integrating
color conversion (figures 2(b-iv, v)) such as ink jet printing
of quantum dots (QD [53–55]) or light-emitting polymer [56],
as shown in figure 2(b). Notably, only for some special kinds
of displays with extremely high resolution (e.g. AR [57, 58]),
the entire blue microLED chips can be directly transferred

right after the epitaxial lift-off process (termed as ‘mono-
lithic transfer’ [59–62]) with no need for changing the original
distance between adjacent microLED chips [63]. However, the
color conversion techniques are still plagued by some tech-
nical issues, such as difficulties in heat dissipation, low color
conversion efficiency, and thermal stability [2, 64–66]. There-
fore, till now, a mass transfer process is still an indispensable
step.

Essentially, a mass transfer technique fundamentally relies
on the efficient, reliable, and parallel control of interfacial
adhesion at some critical interface, i.e. microLEDs/growth
substrate, transfer medium/microLEDs, and microLEDs/re-
ceiver. Firstly, the epitaxial lift-off process determines the
interface adhesion state of the microLEDs/growth substrate.
For the fabrication of microLEDs, a buffer/sacrificial layer

3
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Figure 2. Two general process strategies for fabricating microLED displays. (a) The selective batch transfer of RGB microLED chips
respectively. (b) Schematic illustration of the selective batch transfer of monochromatic blue microLEDs, followed by integrating color
conversion.

must be introduced on the growth substrate (sapphire) to
reduce the effect of lattice/thermal mismatch [67]. The
GaN buffer layer connects with the sapphire substrate by
strong sp3-type covalent bonds (i.e. chemical interactions,
∼1000 kJ mol−1 [41, 68]). This strong adhesion makes it very
difficult to regulate interfacial adhesion only by a physical
stimulus. Therefore, high-energy processes (e.g. laser [69, 70])

or chemical etching is required [40, 41]. Due to a complic-
ated coupling between the physical (e.g. laser-induced heat-
ing and molten, and shock [39]) and chemical (decomposi-
tion of the sacrificial layer [71, 72]) processes, mass transfer
techniques firstly face a serious challenge of how to control
the epitaxial lift-off process selectively and precisely. A wide
range of factors, such as the chip thickness [73], structure
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[74, 75], size, and the method for injecting energy (laser or
etchant) at the interface for peeling, affect the final interface
adhesion state, as well as the quality of the peeled chip. Typ-
ically, the epitaxial lift-off process can only enable the direct
preparation of a limited range of microLED displays, while
for large-area displays with variable pixel arrangements, addi-
tional pick-and-place processes are required.

By contrast, physical adhesion (e.g. VDW force [76, 77],
fluid tension [78–80], electrostatic force) plays a critical role in
pick-and-place processes. The ability of the transfer medium
to switch adhesion from the strong to the weak state in a highly
parallel, efficient, and accurate manner is the main factor to
determine the capability of mass transfer techniques. During
the pick/retrieval step, the adhesion strength of the transfer
medium/microLEDs interfacemust be stronger than that of the
microLEDs/donor, thus, allowing for the successful peeling of
microLED chips from the donor substrate. During the place/-
printing step, a low interface adhesion strength is favorable
for the transfer of microLEDs to the receiver substrate. Com-
pared with chemical adhesion, some physical adhesion could
provide a much lower and variable adhesion strength [68]. For
typical reversible adhesive systems, the critical force for the
interface separation Fc is found to be Fc =

√
Gcrit

√
A/C [81],

where Gcrit (critical energy release rate) is a property set by
the materials comprising the interface, A is the surface area
of adhering, and C is the system compliance. This relation-
ship suggests that the physical adhesion of an interface is gov-
erned by three key parameters, which are dependent on both
the geometry and material properties of the interface [82].
Consequently, how to regulate the above three key paramet-
ers by external stimulation to enable reversible adhesive, and
how to exert external stimulation in a fast, accurate, selective,
and massive way are emphasis and core difficulties of mass
transfer techniques.

2.2. A brief chronology of the development of mass transfer

Based on different strategies to realize batch control of
interfacial adhesion, a series of mass transfer techniques have
been developed. A timeline is illustrated in figure 3 to outline
the major milestones toward the development of mass trans-
fer. As a prerequisite step of mass transfer, the epitaxial lift-off
technique was first developed in 1978 [40, 83, 84], LEDs with
AlAs sacrificial layer were selectively etched byHF, i.e. chem-
ical lift-off (CLO) technique. Soon after, the VDW epitaxial
lift-off (VWDE) technique and laser lift-off (LLO) technique
was developed in 1997 [85–87]. Unlike the CLO technique,
the VWDE technique uses a buffer layer of two-dimensional
materials to substantially lower the interface adhesion by
replacing chemical adhesion with VDW forces [88, 89]. To
improve the peeling efficiency and quality, lasers were intro-
duced to enable the decomposition of the sacrificial GaN layer.
Afterward, LLO became the mainstream [90–92]. Meanwhile,
the capacity of selective peeling microLED chips provide
a simpler solution to adapt the specific pixel arrangement
density. Hence, selective lift-off techniques were developed
recently [93, 94].

Generally, pick-and-place techniques can be classified into
three types according to the relative position of the transfer
medium and receiving substrate. (a) The contact µTP tech-
nique requires microLED chips directly in contact with the
receiving substrate with the assistance of a special stamp,
which was first introduced by Rogers et al [33, 95]. In 2013,
LuxVue proposed a new design concept of the contact µTP
via the electrostatic force [96, 97]. Typical contact µTP tech-
niques can reach a high transfer yield (>99.99%). However,
the low transfer rate is a bottleneck. (b) The laser non-contact
µTP technique, which introduces a laser to separate the selec-
ted chip from the stamp by an interfacial thermal mismatch
or blister ejection introduced in 2012 [98–101]. Specifically,
these techniques need a certain distance between the stamp
and the receiver substrate. The laser non-contact µTP tech-
nique can achieve a high transfer rate (∼100 million h−1),
however, with an unacceptable success rate (∼90%). (3)
The self-assembly technique utilizes fluid (e.g. fluid self-
assembly in 2008 [102–104]) as a transfer medium, and gen-
erates gravitational, hydrophobic, or hydrophilic forces to
identify and localize microLED chips with specific dimen-
sions. The self-assembly technique could also achieve a high
transfer rate (∼99.9%,∼100 million h−1 [105]), nevertheless,
with special requirements for microLED chips and receiver
panels.

The continuous progress of mass transfer significantly pro-
motes the display quality and integration scale of microLED
displays, as shown in the right part of figure 3. The devel-
opment of microLED displays can be generally divided into
three stages: integration of monochromemicro-displays, high-
cost integration of large-area displays with low PPI (figure 3.
Right), and low-cost integration of any size display with high
PPI (future). The microLED display was first invented by
Jiang’s group in 2000 [2], and the transfer technique at this
time could only integrate a few arrays of microLED to form a
passive matrix (PM) micro-display. A first 10 × 10 resolution
PM microLED display was achieved in 2001 [111], an array
of 32× 32 in 2002 [114], 64× 64 in 2003, 128× 96 in 2004,
andmanymore elements were subsequently reported. In 2008,
Rogers’ group first used theµTP technique to realize a 16× 16
microLED display [111], which laid the foundation for prepar-
ing large-area displays. The first large-area display (55-inch
LCD) with 6 million microLEDs launched on the market in
2012, which were fabricated using pick-and-place techniques.
In 2014, a full-color microLED display with 1700 PPI resol-
ution was fabricated by contact µTP [115]. To achieve bet-
ter resolution and brightness, the active matrix(AM)-driving
technique had been introduced [38, 116]. In 2019, a 3.3-inch
full-color AM microLED display (324 µm × 324 µm pixel
size) was demonstrated by contact µTP combined with CLO
[116]. The most recent large microLED display (∼16 K) with
a dimension of 21 m × 5.5 m was presented by Sony in
2019. In recent years, the growing presence of new microLED
display products has relied on the progress of mass trans-
fer techniques. However, till now, the high price of man-
ufacturing costs has hindered the popularity of microLED
displays.
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Figure 3. Schematic diagram of a brief chronology of the development of microLED displays and mass transfer techniques. Reprinted from
[86], Copyright (1992), with permission from Elsevier. ‘GaN film was peeled by laser lift-off’ Reprinted [85], with the permission of AIP
Publishing. ‘Contact µTP technique by PDMS stamp’ [33], Reprinted with permission from [106]. Copyright (2007) American Chemical
Society. ‘Fluid self-assembly’, Reproduced with permission from [107]. ‘Blister-based laser-induced forward transfer’, Reprinted from
[108], Copyright (2013), with permission from Elsevier. ‘RTR-µTP technique’ [109], John Wiley & Sons. ‘Electrostatic µTP by new
stamp’, From [37]. Reprinted with permission from AAAS. ‘Laser contact µTP technique’, From [110]. Reprinted with permission from
AAAS. ‘KSU logo of microLED were integrated’ Reprinted from [111], with the permission of AIP Publishing. ‘Display was realized by
CLO combined with µTP’, From [112]. Reprinted with permission from AAAS. ‘Large-area display with 55-inch’, Reprinted from [113],
with the permission of AIP Publishing. ‘The Wall’ by Samsung”, [42] John Wiley & Sons. ‘Extremely large 16K display’, [109] John
Wiley & Sons. ‘Flexible displays was achieved by RTR stamp’, Copyright 2017, AIP Publishing. ‘2 in. AM microLED display’ [38], John
Wiley and Sons.
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Table 1. Comparison of various mass transfer.

Mass transfer characteristics Material
Regulating
adhesion

Transfer effects
(e.g., rate
precision and
yield) Advantages Disadvantages References

Epitaxial
Lift-off (the
first step of
mass transfer)

Chemical
Lift-off

Etching
solution

Chemical
etching

Low No thermal stress
and shock
damage

Low efficiency [40, 87]

Laser Lift-off Excimer Laser Ablation High Selective peeling thermal stress
and shock
damage

[38, 132]
Nd:YAG Laser whole-area

peeling
Femtosecond
Laser

Fast peeling
efficiency

Van der Waals
Epitaxy Lift-off

2D material Van der Waals
force

Low No thermal stress
and impact
damage

Small area
peeling No
selective
peeling

[91]

Pick-and-place
(the second
step of mass
transfer)

Contact µTP SMP/PDMS/
Magn-etic
stamp

Control of van
der Waals/
electrostatic/ele-
ctromagnetic
forces at the
corresponding
interface

Elastomer
stamps+
CLO/LLO
(∼10 million h−1,
99.99%,
±1.5 µm)

High transfer
precision
Selectively
transferable

High seal
design
requirements
(e.g. flatness)

[44, 116]

Roll stamp +
CLO/LLO
(∼36 million h−1,
99%/∼)

[112]

Magnetic/
Electrostatic
stamp
(∼0.9 million h−1)

[113]

Laser
non-contact
µTP

Excimer Laser
Nd:YAG Laser
Femtosecond
Laser

Gas impact/
blister/thermal
mismatch

MPLET+LLO
(∼100 mil-
lion h−1, ∼90%,
±1.8 µm)

Selectively
transferable Fast
transfer
efficiency

Poor transfer
accuracy
Thermal and
shock damage

[106, 111]

Self-assembly Fluid media
special
structure of
microLEDs

Complementary
chip shapes
and fluid
forces (e.g.,
Surface
tension)

Fluid
assembly + CLO/
LLO (∼100 mil-
lion h−1,
99.9%)

Parallelizability
Transfer

No selective
transfer
Requires
specific chip

[108]

There is a continuous pursuit of a more cost-effective
(relying on extreme high efficiency, yield, and accuracy) mass
transfer technique to become the key point of popularity of
microLED displays. To facilitate a better understanding of dif-
ferent mass transfer techniques, table 1 summarizes the char-
acteristics, transfer yield, available efficiency, the mechanisms
for adjustable interface adhesion, and limitations of all covered
techniques. The detailedmechanism of each specific technique
will be described in the next section.

3. Epitaxial lift-off technique

3.1. Laser lift-off technique

To achieve the cost-efficient mass transfer process, the epi-
taxial lift-off process with high yield and reliability is the
prerequisite. LLO provides a well-established route for the

epitaxial lift-off process, as shown in figure 4(a) [38, 117,
118]. A laser passes through the transparent sapphire sub-
strate (figure 4(a-ii)), which causes a rapid temperature to rise
at the interfacial GaN. The high temperature could make the
sacrificial GaN layer decompose into metallic gallium and
nitrogen (decomposition temperature ∼800 ◦C [73, 119]). As
a result, the interfacial adhesion between the sapphire substrate
and microLED chips can be largely weakened, and the sap-
phire substrate can be released by remelting the metal or etch-
ing the metal away by HCl (figure 4(a-3)). Various high-power
laser sources with photon energy greater than the bandgap
of GaN (3.4 eV) have been employed in LLO, such as exci-
mer lasers (248 nm for KrF laser [92, 120], 193 nm for ArF
laser [121], and 308 nm for XeCl laser [122]) and Q-switched
lasers (355 nm laser [119, 122] and 1064 nm laser which
needs additional InGaAsN sacrificial layers [123]) with a short
(nanosecond) pulse width.

7
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Figure 4. (a) Schematic diagram of the LLO of GaN microLED chips. [38] John Wiley & Sons. (b) Cracking of the GaN film after the LLO
process. Reproduced with permission from [73]. Reprinted from [129], Copyright (2003), with permission from Elsevier. (c) The process
window of a reliable LLO process is related to several process parameters. Reprinted from [124], with the permission of AIP Publishing. (d)
The distribution of tensile stress of GaN film under Gaussian and uniform laser energy distribution. Reprinted from [125], Copyright 2012,
with permission from Elsevier. (e) Schematic diagram of the area-selective LLO process. Reproduced from [130]. CC BY 4.0.

A reliable LLO process should not only achieve complete
interface separation but also avoid the occurrence of defects
that affects the electronic/optical properties of released chips.
The adhesion strength between GaN and the sapphire sub-
strate is closely related to the laser energy density, where
there exists a threshold for lift-off. Some thermal/mechanical
effects (e.g. cracking in figure 4(b) [73], buckling caused by
thermal stress, the vapor pressure of nitrogen, thermal shock,
etc) of the high-energy laser could make the damage-free lift-
off process become a tough challenge. Numerous studies have
revealed that it is important to control the laser processing
parameters [124]. Typically, as shown in figure 4(c), the pro-
cess window of the reliable lift-off is related to laser energy
(EP), spot size (dp), pulse width (τ ), and GaN thickness (hf).
Also, compared with the laser spot with uniform distribu-
tion of energy density, the laser with Gaussian distribution
is better to avoid damage, since the latter can cause a smal-
ler temperature distribution at the edges of the laser irradiated
zone, resulting in smaller nitrogen pressure and thermal stress
(figure 4(d) [125]). To further improve the process quality,

several optimizations were proposed. Insertion of a sacrificial
layer or blocking layer between GaN and sapphire was a popu-
lar choice. For example, the carbon nanotube (CNT)was inser-
ted into the GaN-sapphire interface. The CNT could act as
a heating wire to elevate the GaN temperature more effect-
ively to reduce the required energy threshold (from 1.5 to
1.3 J cm−2). Another attempt is to introduce the femtosecond
laser (350 fs–520 nm laser [69, 126]) in consideration of its
highly suppressed thermal effect. Especially, the absorption
of 520 nm laser relies on two-photon absorption with sub-
bandgap excitation [127].

The conventional LLO is a whole-area peeling process,
which must rely on additional assembly techniques to accom-
plish selective integration (to adapt to required pixel arrange-
ment) of heterogeneous RGBmicroLED chips into the display
panel. To remarkably reduce the difficulties in the following
assemble process, selective LLO (SLLO) was developed to
enhance the overall efficiency of mass transfer [93, 94, 128].
In SLLO, a laser is irradiated to selectively separate microLED
chips from sapphire. Generally, controlled adhesion between

8
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Table 2. Representative materials and processes of sacrificial layers.

Active device layer Sacrificial layer Substrate Etch solution References

GaN CrN Sapphire Ce(NH4)2(NO3)6 + HCLO4 [133, 134]
GaN Nb2N SiC XeF2 [135]
GaN ZnO Sapphire HCL [136, 137]
GaAs AlAs GaAs HF/NH4OH:H2O2:H2O [138]
GaAs Ga2O3 Sapphire HF [139]
Si{111} Si Si KOH [140]
GaN InGaN Sapphire KOH [141]
GaN AlInN Sapphire Nitrilotriacetic [142]
GaN GaAs Al0.96Ga0.04As HF [4]
GaAs/InGaP GaAs GaAs HCL [67, 131]

the selected LED and the substrate is key for SLLO. Thus,
a lot of studies seek to understand the fundamental rela-
tionship between adhesion and laser parameters. Interest-
ingly, figure 4(e) shows a novel SLLO process by a two-
step procedure [128]. During the first step (figure 4(e-ii)), the
perimeter of the selected area for separation is scanned by
a high energy (∼26 J cm−2) femtosecond laser for obtain-
ing high-quality boundaries through laser-induced cracking.
In the second step, to avoid chip damage, lower pulse energy
(∼9 J cm−2) is used to peel the selected region (figure 4(e-iii)).
The experimental results show that this SLLO is capable
to fabricate freestanding InGaN/GaN LED chips with thick-
nesses lower than 5 µm. Till now, SLLO is still in the early
stages and its practical effect needs to be further verified.

3.2. Chemical lift-off technique

Unlike the LLO technique, microLED chips will not undergo
any physical/thermal impact during the CLO process, which
removes microLED chips by selective wet etching of sacri-
ficial layer between the device layer and sapphire substrate.
Table 2 lists some commonly used sacrificial materials for
CLO. A typical choice is Si sacrificial layer. Once the Si sac-
rificial layer reacts with the KOH solution, it will decom-
pose into K2SiO3 and H2, causing the interface separation.
Another example is the AlInP sacrificial layer, which can react
with HCL to produce reaction byproducts, AlCl3, InCl3, PH3

[67, 131], and after selective etching and epitaxial release,
atomically smooth GaAs surfaces. Meanwhile, to avoid the
floating away of microLED chips, protective anchors that will
not be etched are made together with microLED chips [132],
thus allowing the suspension of microLED chips after etch-
ing. And then, once the transfer stamp touches the microLED
chips to exert some pressure, the anchor will be broken to fully
release to the chip.

The relatively low production efficiency is the main prob-
lem for CLO since the wet etching of a sacrificial layer often
takes several hours [20, 143, 144]. For example, a 2-inch GaN
film with a SiO2 sacrificial layer needs ∼56 h to achieve 70%
peeling area by HF etching [145]. To improve the peeling effi-
ciency, sacrificial layers with nanopores [146, 147], nanorods
[148], and other special structures (e.g. triangular-shaped
hole structure [145], hexagonal-shaped air-void structure [75])
have been developed. Zhang et al introduced GaN nanorods

structure by electrochemical etching [74], ∼1 cm2 freestand-
ing GaN layers (thickness ranging from 500 nm to several
microns) can be delaminated in <20 min. Similarly, for the
LED structure with triangular-shaped voids at the GaN/sap-
phire interface, the peeling efficiency and success rate can be
increased 2 and 1.3 times, respectively, compared with the ori-
ginal structures. In addition to these special structural designs,
the peeling process can be facilitated by introducing addi-
tional electric fields or optical fields (i.e. photoelectrochemic-
al/electroCLO technique). UV illumination is used to generate
electron–hole pairs on the semiconductor surface, which can
enhance the oxidation and reduction reactions in electrochem-
ical cells. Youtsey et al demonstrated that a 4-inch wafer-scale
GaN epitaxial material can be peeled off in <2 h. Although
significant progress has been achieved in CLO, the peeling
efficiency and success rate still need further improvements. In
addition, how to achieve selective peeling is still a tough chal-
lenge for CLO.

3.3. Van der Waals epitaxy lift-off technique

As the latest lift-off technique, the VWDE utilizes 2D mater-
ials as the sacrificial layer [89, 149, 150], such as graphene
[1], boron nitride (BN) [151, 152], and MoS2. There are two
significant advantages of this technique. Firstly, 2D mater-
ials can overcome the thermal expansion mismatch and in-
plane lattice constant mismatch (only ∼0.58% [153, 154])
between the GaN layer and growth substrate. Secondly, the
VDW force between two adjacent layers of 2D materials is
muchweaker than the chemical interactions of covalent bonds.
Therefore, the VWDE can enable a mechanical lift-off pro-
cess without the assistance of additional chemical solution or
laser, as shown in figure 5(a) [87]. Taking the BN sacrificial
layer as an example, figure 5(b) shows a detailed process of the
interface separation [155]. After applying mechanical loading,
the detaching position is always inside the III-nitride epilayer
(at the h-BN/h-BN interface), mainly due to the almost free-
sliding path between hBN/hBN. The energy barrier required to
separate the hBN/hBN interface (2.0 meV per atom) is lower
than that of the GaN/BN interface (4.5 meV per atom). There-
fore, the success of VDWE requires precise control of the
layer-to-layer bond strength (i.e. 2D/2D layer) between mul-
tilayered structures.

9



Int. J. Extrem. Manuf. 4 (2022) 042005 Topical Review

Figure 5. (a) Schematic diagrams of the Van der Waals epitaxy lift-off process. Reprinted from [87], Copyright (2021), with permission
from Elsevier. (b) Schematic diagram of the interface separation of the NB release layer. Reprinted from [160], with the permission of AIP
Publishing. (c) Photograph, optical microscope, and SEM of GaN/conventional AlN/BN (i), (iii) and GaN/high-temperature AlN/BN
(iv)–(vi) grown on sapphire, respectively. Reprinted with permission from [156]. Copyright (2020) American Chemical Society. (d) A
theoretical model of the Van der Waals epitaxy lift-off process describes that the peel strength changes with different peeling angles (e) and
peeling speeds (f). (e) Reproduced from [157]. © IOP Publishing Ltd. All rights reserved. (f) Reprinted from [161], Copyright (2021), with
permission from Elsevier.

To enable a reliable VDWE, it is essential to fabricate a
high-quality GaN layer on a 2D-materials-covered sapphire
substrate with controllable interface adhesion. For example,
a unique approach of controlling the adhesion of h-BN has
been reported by Vuong et al, which could achieve both
desired lift-off layered h-BN and mechanically inseparable
robust h-BN layers [156]. As shown in figure 5(c), the

quality of AlN/h-BN structures grown at different temper-
atures (1100 ◦C and 1200 ◦C) is compared through optical
and scanning electron microscope (SEM) observations. The
conventional GaN/AlN/h-BN structure (1100 ◦C) enables
an easy mechanical lift-off process from the growth sub-
strate by using a transparent tape (figures 5(c-i)–(c-iii)),
while the GaN/AlN(high-temperature)/h-BN structure was
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mechanically inseparable (figures 5(c-iv)–(c-vi)). A possible
explanation is that the high-growth temperature leads to Al
diffusion into h-BN, which enhances the surface and interface
dangling bonds and anchors the layered h-BN. Also, a series
of theoretical models (figure 5(d)) indicate that the peeling
stress (F), peeling angle (θ), peeling speed (v), and geometric
dimension (length and width) of the 2D layer also play import-
ant roles in VDWE [157]. Figures 5(e) and (f) present the
peel strength change with different peeling angles and peel-
ing speed. The peel strength increases linearly with the peel-
ing speed while decreasing with the peeling angle. Therefore,
a large peeling speed with a small peeling angle could be more
appropriate for VDWE.

Although substantial progress has been made in VDWE in
recent years, there is still a lot of studies that need to be done
before mass production. One of the studies is to ensure the film
quality of GaN. Especially, the lack of dangling bonds on the
surface of 2D materials makes it difficult to ensure nucleation,
thus further optimization schemes need to be introduced, such
as the introduction of buffer layers (e.g. aluminum buffer lay-
ers, whose aluminum is more easily bonded to BN [158]) or
nanopatterned sapphire [159]. Meanwhile, area-selective lift-
off with large areas is still rarely studied. The need to con-
sider, for example, the effect of inhomogeneities in large-area
2D materials due to local buckling or defects on the VDWE
process still needs further study. Finally, further exploration
of inexpensive techniques to prepare 2d materials is needed.

4. Pick and place technique

4.1. Contact µTP technique

As the most common form of pick and place, contact µTP
generally utilizes a specially designed stamp as a medium to
enable the batch transfer of microchips between the donor sub-
strate and the receiver substrate. At the beginning, a proper
preload is applied on the stamp to ensure full contact between
the stamp and chips, which should provide enough adhesion
to pick up chips from the donor substrate. Then, the stamp
is brought into contact with the receiver substrate by precise
manipulation of the stamp/chip adhesion to print chips onto
the receiver substrate. The whole pick-and-place process is
highly demanded in a selective and massively parallel way for
high throughput. Thus, the key to successful contact µTP is a
timely, flexible and ingenious use of adhesion modulation of
the stamp/ink interface. According to the control principle of
interfacial adhesion, the contact µTP techniques can be classi-
fied as follows: (a) VDW contact µTP technique; (b) Electro-
static/Electromagnetic contact µTP technique.

4.1.1. Van der Waals contact µTP technique. VDW con-
tact µTP technique utilizes a viscoelastic stamp (e.g. PDMS)
to introduce VDW adhesion force. By cleverly manipulating
the interface adhesion (denoted as the critical energy release
rate Gcrit for peeling), several advanced transfer printing tech-
niques have been developed. In figure 6(a), Rogers’s group
verified that the adhesion strength of a viscoelastic stamp

is rate-dependent [106, 162, 163]. The result shows that the
adhesion switching ratio (the achievable maximum adhesion
strength for high peeling rate divided by the minimum adhe-
sion strength for low peeling rate) is over 3. Based on this
adhesion switching ability, as shown in figure 6(b), microLED
chips can be separated from the growth substrate with a quick
peeling step and printed on the receiver with a much slower
peeling process [164]. A higher adhesion switching ratio is
directly related to the success rate for contact µTP. RTR con-
tact µTP with a∼100 adhesion switching ratio was developed
by KIMM (figure 6(c)) [109]. The results revealed that the
adhesion of the RTR stamp is not only related to the peeling
rate but also determined by the geometry dimension and mov-
ing direction of angled posts of the stamp. Figures 6(d) and
(e) show the predicted interface adhesion (G) with the rolling
speed for different rotation directions and roll radius R. A
much higherG can be achieved by forward rolling with a large
R. Thus, forward rolling is suitable for separating microLED
chips from the growth substrate with an appropriate roll radius.
Generally, for the selective batch transfer of microLED chips
with specific arrangements and sizes, special PDMS stamps
were designed and fabricated with structured micro-pillars. So
far, these special PDMS stamps with structured micro-pillars
can be fabricated by nanoimprint lithography [165–167], laser
ablation [168, 169], soft lithography [95, 170, 171], or silicon-
based mold fabrication [172, 173], when covering a small
area. However, it is difficult to maintain the high uniform-
ity of the micro-pillars over large areas. Also, the clustering
[174–176], self-collapse [177, 178], and other phenomena of
adjacent micro-pillars during the contact µTP process need to
be strictly avoided, which still causes many difficulties.

To enable the substantial control of the interface adhe-
sion for an enhanced transfer success rate, several improve-
ments of VDW contact µTP have been proposed by modi-
fying the contact area or elastic modulus of the stamp, such
as the surface-relief-structured stamp with a ∼1000 adhesion
switching ratio [95], and an inflatable stamp with a∼50 adhe-
sion switching ratio [181], etc. These improvements have been
well summarized in some other reviews [77, 182, 183, 190]. In
addition to the improvement of the adhesion switching ratio,
another attempt is to enhance the efficiency and flexibility of
the transfer process by incorporating lasers in contact µTP,
namely laser-assisted contact µTP [39, 98, 184, 186]. The
selective transfer can be easily obtained by controlling the
shape of the laser spot, as well as the scanning paths, which
can avoid the use of the above-mentioned sophisticated stamps
with microstructures.

Figure 7 shows several representative laser-assisted contact
µTP techniques. Huang et al have demonstrated that revers-
ible VDW adhesion can be achieved by utilizing the shape
memory (SMP) stamp with pyramid posts, as schematically
described in figure 7(a) [184]. At first, an SMP stamp with
pyramid posts is heated and pressed onto the target chip for
achieving a large contact area, then its shape is fixed by cool-
ing (figure 7(a-i)). Subsequently, the chip was peeled from
the growth substrate due to the high adhesion (figure 7(a-ii)).
For the printing step (figure 7(a-iii)), a laser heats the SMP
to initiate shape recovery to largely reduce the contact area,
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Figure 6. (a) Schematic illustration of the relationship between the critical energy release rate G and peeling rate. Reprointed with
permission from [106]. Copyright (2007) American Chemical Society. (b) Schematic illustration of the kinetically-controlled µTP
technique process. [164] John Wiley & Sons. (c) Schematic illustration of the RTR contact µTP process. [109] John Wiley and Sons. (d)
Demonstrations of rotation direction-dependent adhesion of an angled post roller. [179] John Wiley and Sons. (e) Demonstrations of
radius-dependent adhesion of an angled post roller. Reprinted with permission from [180]. Copyright (2016) American Chemical Society.
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Figure 7. (a) Programmable transfer printing process via a shape memory stamp with trapezoidal posts (left). Valid trapezoidal post designs
in terms of W1/l and γl/Eh0 to achieve successful µTP with the pickup and printing(right), and the top right panel shows the structural
dimensions of the trapezoidal post. Reprinted with permission from [184]. Copyright (2016) American Chemical Society. Reprinted from
[185], Copyright (2015), with permisssion from Elsevier. (b) Schematic illustration of a laser-assisted µTP process via shape memory stamp
with vertical posts (left). Theoretical and experimental results of the functional relation between normalized pull-off force F/EstampL2post and
the shear strain εshear, for the post width L = 200 µm and L = 250 µm. Reprinted from [187], Copyright (2016), with permission from
Elsevier. Reprinted from [188], Copyright (2012), with permission from Elsevier. (c) Schematic illustration of a laser-assisted µTP via a
gripper stamp process (left), the top right panel shows energy release rate (G) of stamp after being heated on a hotplate at various
temperatures. From [110]. Reprinted with permission from AAAS. (d) Schematic illustration of the gripping and release process of the
shape memory gripper (right). Experimental results of the functional relation between and grip strength Fgrip−force and grip speed at
temperatures of 120 ◦C and 30 ◦C. From [189]. Reprinted with permission from AAAS.

thus, the chip could be successfully transferred (figure 7(a-iv)).
Theoretical analyses (figure 7(a), right) show that the regions
of successful transfer printing are determined by the dimen-
sionless constant W1/ l and γl/Eh0, where W1, l, h0 are the
spacing, height, and length of the trapezoidal posts, E is the
elastic modulus of the stamp, and γ is the work of adhesion
[189]. Therefore, a rational design of the pyramidal post is
required. The pyramid posts could be further replaced by
vertical posts (figure 7(b), left [185]). The lateral displacement

of a vertical post was induced by laser heating, which causes
a mixed-mode loading at the interface for decreasing adhe-
sion (figure 7(b-iii)). Similarly, a fracture mechanics model
is developed to calculate the pull-off force (in figure 7(b),
right). The pull-off force F decreases with the shear strain
εstrain, and it can be predicted by the scaling law: F

EstampL2post
≈(

24
πEstampLpost

)0.5
− 1.3εstrain

Lpost
, where Γ0is fracture toughness of the

stamp/micro-device interface [187], Estamp and Lpost are the
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stamp elastic modulus, post width, and post height, respect-
ively. More recently, Wang et al invented a simple shape-
conformal stampwithmicro-spheres [110]. In the pick-up pro-
cess, due to the strong viscosity of the shape-conformal stamp,
the device is peeled off from the donor substrate. In the print-
ing process, the extremely large volume expansion of micro-
spheres (figure 7(c-ii)) can rapidly induce hierarchical micro-
structures on the surface of the adhesive layer and decrease the
energy release rate markedly by heating (figure 7(c), right),
and the adhesion can be manipulated in the range of ∼100
times of magnitude. To massively assemble the objects with a
wide range of scales, shapes, and quantities, a universal SMP
block has been invented (figure 7(d) [188]). Since the stiffness
of the SMP can reversibly change ∼1000 times under laser
stimulus, objects can be embedded in the SMP under pres-
sure and grasped (figure 7(d-i)). Then, the shape recovery upon
the stimulation of a laser could facilitate the releasing process
(figure 7(d-iii)). The adhesion could be reduced in three orders
of magnitude (figure 7(d). Right).

Despite these achievements in laser-assisted contact µTP,
there are still some bottlenecks that need to be addressed. Typ-
ically, the laser-induced adhesion switch mostly is a thermal
activation process, however, the absorption of the laser still
relies on the surface of the chip. The challenge is how to effect-
ively avoid possible thermal damage on chips. An improved
method is to add some laser absorbing material on the stamp
surface, such as carbon black particles for absorbing 808 nm
laser [191, 192]. Moreover, little research has investigated the
actual transfer efficiency and reliability of laser-assisted con-
tact µTP techniques.

4.1.2. Electrostatic/electromagnetic contact µTP technique.
Electrostatic/magnetic contact µTP techniques utilize some
special stamps that can generate switchable electric/magnetic
force. Representatively, as shown in figure 8(a) [37], a ground-
breaking electrostatic stamp was developed by Hart et al,
which is composed of soft nanocomposite electroadhesive
(SNE,multi-walledAl2O3-coated CNTs, diameter of∼20 nm)
with a conductive bottom electrode (titanium nitride, TiN).
When an appropriate voltage (>100 V) is applied, the strong
electrostatic adhesion force of the SNE stamp can overcome
the adhesion between the target chip and donor substrate
(figure 8(a-ii)) for picking up. Since the intrinsic dry adhesion
of SNE is very low, turning off the voltage allows the easy
release of the object at the desired location (figure 8(a-iii)).
As shown in figures 8(b) and (c), the external voltage, CNT
fiber density, and Al2O3 thickness are the major factors that
affect the electrostatic adhesion of the SNE stamp. The adhe-
sion switching ratio increases with the external voltage, and
CNT density decreases with the Al2O3 thickness. Therefore,
with a proper design of the SNE stamp, this electrostatic con-
tact µTP technique could pick up objects with sizes of∼20 nm
to 100 µm.

Compared to the electrostatic contact µTP technique,
the electromagnetic contact µTP technique requires the
microLED chips with an additional magnetically sensitive

layer to generate magnetic force [193, 194]. The electrostat-
ic/electromagnetic contact µTP technique envisions a prom-
ising approach for the integration of extremely small objects.
However, the mass transfer of tiny chips with predefined pat-
terns remains a significant challenge, which fundamentally
relies on the preparation and patterning of the stamp. As shown
in figures 8(d) and (e), the above-mentioned SNE stamps
(∼100 µm long) can be patterned by CVD, chemical vapor
deposition methods [195–197]. However, the large-area pre-
paration of CNT arrays is still in a preliminary stage, with typ-
ically reported preparation abilities of only∼200 g h−1 and an
area of∼300 mm2. Meanwhile, the cyclical stability, the influ-
ence of the charge accumulation, and the homogeneity of mag-
netic material (for the electromagnetic contact µTP) require
further verification.

4.2. Laser non-contact µTP technique

For a non-contact µTP process, the stamp does not directly
contact the receiver substrate. Thus, the success of the pla-
cing process is independent of the topography and proper-
ties of the receiving surface. Without the assistance of the
receiver substrate, the stamp should achieve infinite adhesion
switchability to launch the selected chip away from the stamp.
The laser-driven non-contact µTP is the only technique that
can be manipulated in a non-contact transfer mode reported
so far, resulting from the remotely injected energy (laser) at
the chip/stamp interface. Generally, for a laser non-contact
µTP process, a shaped laser irradiates through a transparent
substrate, bringing about physical changes or chemical reac-
tions at the interface, such as local deformation, vaporiza-
tion, and thermal stress mismatch, to achieve the switch-off of
the chip/stamp adhesion. Therefore, a selective transfer pro-
cess with local, non-contact outer stimuli (laser) could greatly
enhance the versatility of mass transfer techniques. The most
significant advantage of laser non-contact µTP is the scal-
able chip size, shape, transfer frequency, and selective/paral-
lel mode, which are mainly determined by the laser beam that
can be flexibly controlled by the setup of laser equipment and
optics. In this section, three types of laser non-contact µTP
techniques are reviewed.

4.2.1. Laser-induced forward transfer (LIFT). LIFT is a
major kind of laser-assisted printing technique allowing the
deposition of a wide range of functional materials/structures
into user-defined patterns. Figure 9(a) illustrates a typical
LIFT process including five main components [198–201]: a
laser pulse, a stamp with a transparent substrate, and a laser
absorbing layer (dynamic release layer, DRL), a target chip,
and a receiving substrate [199, 202]. A laser passes through the
transparent substrate and is absorbed by the DRL, leading to
a fast increase in the interfacial pressure due to the ablation or
vaporization of the DRL. The high pressure will push the chip
from the donor to the receiver. The common choices of DRLs
are triazene polymer (TP) andmetal films (Ti, Au, and Pt) with
a thickness of hundreds of nanometers. In particular, TP is a
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Figure 8. (a) Schematic illustration of a pick-and-place procedure via an SNE stamp. (b) The relationship between the external voltage and
the electrostatic adhesion force. (c)Adhesion on/off ratio of Al2O3-CNT SNE with different Al2O3 coating thicknesses (approximately 0.2,
1, and 10 nm) and different fiber densities (sparse and dense). From [37]. Reprinted with permission from AAAS. (d) Patterned CNTs made
by chemical vapor deposition. [196] John Wiley and Sons. (e) An SEM image of patterned CNTs. [197] John Wiley and Sons.

kind of polymer that contains aryl-triazene chromophores with
high absorption at UV wavelength. It can be decomposed at
very low laser fluence (only ∼50 mJ cm−2 [203, 204]), thus
making it easier to enable the transfer process and reduce the
risk of thermal damage.

However, there are still some considerable performance
bottlenecks of LIFT that will bring tough difficulties to mass
transfer. One challenge is the generation of shock waves dur-
ing the LIFT process. As shown in figure 9(b), by time-
resolved shadowgraph, the shock wave is found to be faster

than the chip, which will be reflected by the receiver and
interact with the flying chip [205, 206]. This interaction could
cause unwanted deflection of the chip orientation, as well as
chip damage. Optimization of some key process parameters,
such as the laser energy, the gap between receiving substrate
and stamp, the DRL thickness, and environmental pressure has
been tried to avoid the impact of shock waves. Shaw-Stewart
et al revealed that the intensity of the shock wave decreases
with the gap distance (<0.5 mm) at normal atmospheric pres-
sure, so it is possible to eliminate the shock wave by choosing
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Figure 9. (a) Schematic illustration of laser-induced forward transfer process. Reprinted from [208], Copyright (2017), with permission
from Elsevier. (b) Detailed illustration of shock wave and chip drop status diagram: (i) Laser radiation in the dynamic release layer; (ii)
Ablation of the dynamic release layer; (iii) Shockwave generation and chip transfer. Reprinted from [206]. Copyright (2010) American
Chemical Society. (c) Schematic of the laser-induced forward transfer experimental setups: (i) A conventional shaping setup, and (ii) smart
beam shaping setup using a double mask system. (d) Beam profiles with associated intensities in x and y shaping setup: (i) Beam profile of
line 1 (square); (ii) Beam profile of line 2 (contour); (iii) Beam profile of line 1 and 2 (square & contour). Reprinted from [209], Copyright
2015, with permission from Elsvier.

a larger gap (∼1 mm [207]). Also, the environmental pressure
can be regulated, such as less than 100 mbar or in a vacuum,
to enable a safe transfer in a gap distance of less than 20 µm.

Another challenge is how to achieve the non-destructive
transfer of ultrathin chips. Even in a vacuum, although there is
no air resistance and shock waves, it is still difficult to ensure
the safety of the chip due to the extremely high impact velocity
(∼1200 m s−1 [206]). Lower laser energy certainly can result
in a smaller impact speed [206], thus, some specific strategies
have been developed, including reducing the DRL thickness
and introducing smart intelligent spot systems [210]. Rapp
et al proposed an intelligent beam shaping (SBS), as shown in
figure 9(c-ii) [210]. Different from a conventional LIFT beam
system (CB, line 1, figure 9(c-i)), SBS requires another mask
system, i.e. a second line (Line 2) on Line 1. Line 2 is cre-
ated by using a beam splitter before Mask 1 so that the laser
beam passes through the secondmask (Mask 2). In addition, an
additional energy attenuator is placed after Mask 1 (Line 1) to
reduce the energy in the center of the spot. The resulting irra-
diation on the stamp is the combination of Masks 1 and 2, as

presented in figure 9(d-iii). This setup allows for higher energy
at the edge of the spot (figure 9(d-ii)) while maintaining a
lower and more uniform energy distribution in the central area
(figure 9(d-i)). Due to this specially designed energy distribu-
tion, only the laser energy at the edge (Line 2) is required to
reach the transfer threshold, while allowing the center energy
(Line 1) to be reduced to half of the transfer threshold, thus
reducing damage. Although lots of achievements were made
in LIFT, it still needs to be further improved to form a stable
process window.

4.2.2. Blister-based laser-induced forward transfer technique.
To fundamentally avoid the impact of shock waves and
minimize the risk of chip damage, a blister-based laser-
induced forward transfer technique (BB-LIFT) was developed
[211–213]. Unlike the traditional LIFT, BB-LIFT util-
izes a double-layered stamp that is composed of a DRL
(e.g. 15 µm thick polyimide [100, 214] or 80 µm thick
aluminum [215, 216]) and an adhesive layer (e.g. 70 µm thick
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Figure 10. (a) Schematic illustration of the principles of blister-based laser-induced forward transfer. Reprinted from [108], Copyright
(2013), with permission from Elsevier. (b) A schematic illustrating the MPLET concept [101]. [46] John Wiley & Sons. Copyright 2018,
WILEY-VCH. (c) Schematic illustration of the principles of reusable blister-based laser-induced forward transfer process. (d) Presentation
of microLED chips (400 × 200 × 90 µm) printed onto various planar and curvilinear surfaces: (I) A PDMS pillar array with a pillar
diameter of 100 µm; (II) Steel sphere with a diameter of 1 mm; (III) A piece of paper; (iv) A Scindapsus leaf to form a letter ‘Z’. (v) A
mobile-phone shell to form a letter ‘P’. (c), (d) Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer
Nature, Nat. Commun. [217], © 2018.

PDMS [216, 217]) to bond chips. During laser irradiation, only
a small portion of the DRL is ablated to provide impact energy
via gas products. The DRL can encapsulate the shock wave
inside by creating an expanding blister that serves as a soft
ejector to push the chip more gently toward the receiving sub-
strate, as shown in figure 10(a) [108]. Thus, instead of dir-
ectly using the impact energy of the ablated DRL, the created
blister can also realize a quick release (the transfer process
takes <50 µs) with higher accuracy (reported minimum place-
ment error of 1.8 µm) and less damage. Moreover, the most
significant advantage of BB-LIFT is high scalability. Parallel
laser-enabled transfer (MPLET) technology was developed to
achieve an extremely high assembly rate (>100 M units h−1

[46]) by simultaneously transferring a large number of chips
just by one laser pulse. As shown in figure 10(b), an array
of laser beams irradiates multiple chips together, which are
divided from a single laser beam with the help of a diffractive
optical element. Since each beam can transfer one chip, the
maximum assembly rate can be multiplied by the number of
diffracted beams.

The same as conventional LIFT processes, the high fall-
ing speed (e.g. ∼540 m s−1 for 10 ns–1064 nm laser with
aluminum as DRL [215, 216]) still becomes a tough problem,

which brings difficulties for controlling the transfer accur-
acy. A statistical test indicated that the transfer error, which
mainly includes the lateral offset and the angular deflec-
tion, is positively related to the gap between the stamp and
the receiver substrate. Unfortunately, when setting the gap
very close, the squeeze-film effect may reduce the kinetic
energy of the released chip, which will also affect the transfer
accuracy [100]. Therefore, it is difficult to accurately control
the placement accuracy of multi-beam lasers. Under practical
conditions, affected by many factors such as laser energy fluc-
tuations, inconsistency of multi-beam size/shape, initial align-
ment deviation, and the heterogeneity of material/geometric
properties, etc, some unexpected results might occur after laser
irradiation, including the failure of chip peeling, unaccept-
able deviation, and chip damage (creaking), etc. The industry
usually uses the experimental trial-and-error method to get
a better combination of process parameters. However, up to
now, MPLET can achieve a success rate of only about 90%
[46], which is far below the desired value. Due to the lack
of in-depth research on transfer mechanisms, it is still unable
to fundamentally reveal the reasons for the transfer failure, as
well as the influence of process parameters on transfer results.
Therefore, it still requires a lot of effort in experimental and
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Figure 11. (a) Schematic illustration of a type of laser-induced forward transfer technique based on thermal mismatch. Reprinted from [99],
Copyright (2012), with permission from Elsevier. (b) The scaling law for the laser pulse time for delamination of the stamp–chip interface.
Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Flex. Electron. [183], © 2018.(c)
Examples of micro-structures constructed by a LIFT-TM technique based on thermal mismatch [99]. (i) Photomicrograph of silicon squares
printed on a silicon substrate with gold traces; (ii) Three-dimensional pyramid structures consisting of silicon chips;(iii) An example of
printing micro-structures on a ceramic sphere; (iv) Functional microLEDs printed on a CVD-grown polycrystalline diamond on a silicon
substrate. (d) Maximum later displacements error of transferred chips as a function of the standoff height. Reprinted from [99], Copyright
(2012), with permission from Elsevier.

theoretical research to gradually improve the process stability
and reliability.

Another limitation of BB-LIFT is that the stamp cannot be
reused due to the irreversible ablation of DRL. As shown in
figure 11(c), for the cost-benefit consideration, a reusable BB-
LIFT technique was developed [46] based on an ingenious
design of a reusable stamp, which is composed of a microcav-
ity with a metal layer attached to the cavity wall and an elastic
adhesive stamp with microstructures for encapsulating the
microcavity and bonding the chip. Under the irradiation of an
808 nm laser (∼400 mW), the metal layer absorbs the laser to
generate heat, which causes the expansion of the internal air
of the cavity due to the rapid temperature rise (∼100 ◦C in
100 ms). The deformed stamp could largely reduce its adhe-
sion (adhesion switching ratio >1000). Figure 10(d) shows the
ability to print a microLED chip (400 × 200 × 90 µm) on
a variety of tack-free flat or curved surfaces, such as a PDMS
column array with a column diameter of 100 µm and a column
pitch of 150 µm (figure 10(d-I)), a steel ball with a diameter of

1 mm (figure 10(d-II)), and a sheet of paper (figure 10(d-III)).
Figure 10(d-iv) shows microLED chips were transferred onto
the curvilinear surface of a Scindapsus leaf to form a let-
ter ‘Z’. The same square microLED chips were printed on a
mobile-phone shell with a pit to form a letter ‘P’, as shown in
figure 10(d-V). These presentations demonstrated the power-
ful ability to accurately place microLED chips regardless of
the receiver surface properties. Nevertheless, how to further
reduce the geometric sizes of this cleverly designed stamp
with high manufacturing accuracy is a big problem for this
technique.

4.2.3. Laser-induced forward transfer based on the thermal
mismatch. A new LIFT-type technique based on the thermal
mismatch of a multi-layer structure (LIFT-TM) combines
the accuracy and versatility of traditional transfer printing
processes in picking up chips directly and selectively from
their growth/fabrication substrates and has the advantage of
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conventional LIFT processes to realize noncontact placing
process [98, 218–220]. As shown in figure 11, the LIFT-TM
utilizes an elastomeric stamp made of PDMS to selectively
pick up chips to be transferred. Then, a NIR pulsed laser
is focused on the stamp-chip interface and the chip absorbs
the laser and generates heat, which makes the chip released
from the stamp resulting from different thermomechanical
responses of the chip and the PMDS stamp [98]. An accur-
ate thermomechanical model has been developed to establish
a scaling law governing the delamination of a chip, as shown
in figure 11(b). The energy release rate at the stamp/chip inter-

face is characterized by tdelamination
t0

= f
(
qtotal
q0

,L ′
si

)
, which is a

function of total heat flux qtotal/q0 and the normalized width
of the silicon chip (L ′

si = cPDMSρPDMSLchip/(cchipρchiphchip)),
where tdelamination and qtotal are the delamination time and total
heat flux, Lchip is the width of the chip, ci (i= PDMS,chip) is
the specific heat of stamp and chip, ρi (i= PDMS,chip) is the
mass density of stamp and chip, t0, q0 are the normalized char-
acteristic time, normalized heat flux, and normalized width
determined by properties of the stamp, chip and their interfaces
in the system, respectively. Thus, theoretical models can serve
as powerful tools for determining the critical process paramet-
ers, estimating the temperature, and calculating stresses at the
interface.

Extensive viability tests were conducted by using a
laser with an 805-nm wavelength, which demonstrated the
wide compatibility of various surface characteristics of the
receiver and the ability to place ultrathin microstructures [99].
Figure 11(c-i) shows examples of an array of silicon chips
that were transferred onto a silicon substrate to bridge gold
traces. Multiple silicon chips (100 µm × 100 µm × 3 µm)
were successfully printed layer by layer with high precision
for the construction of 3D assemblies in figure 11(c-ii). To
demonstrate the ability to transfer chips to non-flat substrates,
a 320-nm-thick silicon chip was printed on a ceramic micro-
sphere (figure 11(c-iii)). Moreover, the microLED chip is
still functional after being placed on a silicon substrate
(figure 11(c-iv)). Notwithstanding all this, a foreseeable chal-
lenge of this process is the limitation to chip materials. Chip
materials with high reflectivity or low absorptive to the NIR
laser are incompatible. Also, the required high temperature
(100 ◦C–200 ◦C) at the interface may bring damage to the
chips. Also, the shear forces caused by the thermal mismatch
cause a relatively long delamination time (∼0.5 ms), which
may limit the maximum transfer efficiency. Moreover, much
research still needs to be done to quantitatively discuss import-
ant process parameters and their impact on the process accur-
acy. Figure 11(d) shows the maximum lateral error after trans-
fer versus the receiving substrate spacing (i.e. standoff height
[99]). The transfer error can be negligible when the standoff
height is less than 20µm.However, other factors have not been
carried out yet.

4.3. Self-assembly techniques

Self-assembly is a process that a massive number of inde-
pendent components can spontaneously form into ordered

arrangements. The traditional mass assembly techniques gen-
erally include four steps, i.e. positioning the donor substrate,
picking up, positioning the receiver substrate, and placing.
Each of these steps has become extraordinarily difficult when
facing the massive number of chips with microscale sizes.
A significant difference from the working principle of the
aforementioned techniques is that the self-assembly tech-
nique requires only one step, i.e. placing the microLED
chips in the corresponding fluid medium, which enables the
microLED chips to be oriented and positioned in a predeter-
mined location through medium transport and shape recog-
nition. As an ingenious approach, self-assembly techniques
use several physical force fields that can orient individual
chips and filter out all parts that are in the wrong posi-
tions. These abilities may well greatly simplify the whole
working procedures to largely increase the transfer effi-
ciency. According to the specific physical fields for trans-
ferring and orientation, self-assembly techniques can be
divided into two categories, i.e. fluid self-assembly, and
magnetic/electric self-assembly.

4.3.1. Fluid self-assembly. Representative fluid self-
assembly is illustrated in figure 12(a). A specially designed
receiver substrate is placed in a self-assembly bath at a spe-
cific angle such as ∼30◦ to help the chips move gently due
to gravity [221]. Once freestanding microLED chips are sub-
merged in the liquid medium (e.g. acidic ethylene glycol),
the liquid medium allows microLED chips to move freely
until they come into touch with the molten alloy at the pre-
determined locations to form a stable bonding. microLEDs
are positioned and oriented by shape recognition and surface
tension-driven self-alignment. Shape recognition is achieved
through complementary shapes (pits) of microLEDs on the
receiver substrate [222, 223]. Thus, as shown in figure 12(b),
only microLEDs with specific shapes, such as a round shape
with a 160 µm radius, can be adaptable for shape recognition.
In contrast, surface tension-driven self-alignment uses capil-
lary forces of the molten alloy on the substrate (figure 12(c)
[224]). At first, a confined liquid drop (molten alloy) is
arranged in a pre-designed pattern (figure 12(c-i)). The molten
alloy spontaneously forms a meniscus shape due to capillary
forces (figures 12(c-ii, iii)). This action tends to align the chip
to the target location (figure 12(c-iv)). Generally, an essential
design criterion for capillary self-alignment is that the liquid
molten alloy constrained by a receptor and a chip (or a part
of it) possesses sufficient high potential energy to recover to
its equilibrium shape so that this recovery process can sustain
the self-aligning motion. Their strong abilities of the orienta-
tion of microLEDs have been well demonstrated. The results
indicate fluid self-assembly can achieve a 97% transfer rate
with self-assembly rate of 40 000 units h−1 for 100 µm-sized
components if only mechanical positioning (without electrical
connections) is considered [107].

To further promote transfer efficiency, Jacobs et al intro-
duced an automated RTR fluid self-assembly system, as
illustrated in figure 12(d). This system contains two parts
[25, 80, 102]: (a) RTR assembly part (shaded in gray), which
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Figure 12. (a) Illustration of fluid self-assembly process. (b) An example of the specially designed microLED in fluid self-assembly process
[103]. (a), (b) Reproduced with permission from [103]. (c) Schematic illustrating the principles of surface-tension-driven self-alignment. (d)
Illustration of RTR fluid self-assembly process. (e)–(f) Web angle and vibration frequency as a function of assembly rate in the RTR fluid
self-assembly process. (d)–(f) [25] John Wiley and Sons.

consists of motor, rollers, customized agitator, and polyimide
web with precisely controlled process parameters such as web
moving speed and tension. (b) The component recovery and
dispensing unit (shaded in blue), primarily utilizes the prin-
ciple of a jet pump to transport un-assembled chips upward in

a closed fluid channel, releasing them above the substrate and
tumbling them down under gravity. It has also been revealed
that the RTR fluid self-assembly process requires strict con-
trol of gravity (i.e. the tilt angle of the receiving substrate) and
vibration frequency (0–30 Hz). The effect of the web angle on
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Figure 13. (a) An example of a microLED with ferromagnetic material. (b) A programmed magnetic self-assembly process. (c) Schematic
representation of the field configured assembly process: (i) The selected receptor electrode is electrically biased and initiates an electric field
at the Si substrate, which allows the transport and assembly of a chip; (ii) Lateral view of the layer structure of a field configured assembly;
(iii) A photomicrograph of the receptor array. The interconnecting tracks of the receptor electrodes are visible underneath the overlying
metal shield and the polymer planarization layer. (d) An example of a microLED chip being successfully integrated by configured electric
fields. (c), (d) Reprinted with permission from [229]. Copyright (2004) American Chemical Society.

the assemble rate is shown in figure 12(e). A slight decrease
in assembly rate can be observed at higher tilt angles, mainly
because the chips start sliding too fast, and some of them
slide over the solder bumps, instead of being captured imme-
diately. The assembly rate as a function of vibrational fre-
quency is shown in figure 12(d), the optimal frequency should
be >20 Hz. Otherwise, at a too low vibration frequency, the
agitation is not strong enough to overcome non-specific adhe-
sion and gravity, and most chips remain stationary. Through a
series of optimizations, RTR fluid self-assembly can achieve
a assemble efficiency of 15 000 chips (square 500 µm chips)
per hour with a yield rate of >99%.

Looking ahead, a lot of further work still needs to be done
on fluid self-assembly techniques to meet the requirements of
mass transfer techniques. On the one hand, most of the existing
fluidic self-assembly techniques stay on some simple shapes
of microLED chips (e.g. above-mentioned round and square).
Therefore, to improve the universality, more complex 3D geo-
metries of microLED chips need to be investigated [225]. On

the other hand, further optimization of chip size, solder mater-
ials and assembly automation systems is necessary. Typically,
to address interconnect stability and improve transfer yields,
solder stacks with low melting point shells (e.g. Bi33.7In66.3
solder shell [222, 226]) can be further introduced so that after
assembly at low temperatures, a short reflow step at a higher
temperature can be used to form the alloy to increase the melt-
ing point of the interconnect.

4.3.2. Magnetic/electric fluid self-assembly. A stronger
self-alignment ability is the most salient feature of the
magnetic/electric assembly techniques. For the magnetic
self-assembly, a magnetic field between the microLEDs and
the receptor site is required. As shown in figures 13(a), a
thin strip of ferromagnetic material (e.g. nickel, iron, etc) is
deposited at the microLED surface as a p-type contact and the
adjacent metal pad acts as an n-type contact [227]. For per-
manently magnetized hard magnetic materials, self-assembly
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may not require an external magnetic field. By contrast, the
magnetization of soft magnetic materials is highly depend-
ent on the external magnetic field and they tend to revert to
a non-magnetized state with the removal of the magnetic field.
Thus, magnetic self-assembly of soft or superparamagnetic
components requires an external magnetic field. During the
magnetic assembly process, the microLED chips are placed
on a vibrating magnetic substrate (figure 13(b)). Magnets with
opposite polarity are arranged adjacent to each other on the
table. The center of the edge between the adjacent magnets
becomes the node of maximum magnetic field strength. Once
themagnetic microLED chips are placed on the vibratingmag-
netic table, they can be randomly dispersed by vibration. With
the assistance of the magnetic field, the chips are arranged par-
allel to each other at the nodes of maximum magnetic field
strength to achieve the self-assembly process.

In electric self-assembly, a phenomenon of electrophoretic
transport (charged particles move toward the electrode oppos-
ite to their electric polarity) is applied, which makes the chips
move and locate at the selected receptor sites. As shown in
figure 13(c-i), O’Riordan et al recently reported a prelimin-
ary idea of the programmable electric self-assembly (i.e. field
configured assembly, FCA [228, 229]), where the electric
fields can be configured by selective addressing receptor
sites pre-patterned onto a silicon substrate. The silicon sub-
strate consists of 4 × 4 circular arrays of receptor electrodes
(100 µm diameter and 250 µm spacing) with counter elec-
trodes (500 µm diameter) located at the four corners of each
array (figure 13(c-ii)). The conductive interconnect tracks con-
nect each electrode to a unique contact pad located at the peri-
phery of the chip (figures 13(c-ii, iii)). The electric field simu-
lation in figure 13(d-I) shows that an electric field can indeed
be generated between a unique receptor electrode point on
the silicon chip and the counter electrodes at the four corners
with a magnitude sufficient to affect electric-field-assisted
device transmission. Figures 13(D-ii)–(D-iv) shows a success-
ful transmission of a microLED chip with a 50 µm diameter.
Initially, a microLED chip was located at the top right receptor
electrode, and after applying an electrical bias of approxim-
ately 20 V to each adjacent target receptor electrode, in turn,
the chip was delivered to the bottom right receptor finally. It
is worth noting that it is still necessary to ensure the shape of
the microLEDs is commensurate with the receptor.

Due to the extremely high requirement on the success rate
for mass transfer, until now, the above self-assembly techno-
logies cannot be applied in large-scale production, therefore,
transfer yields related data are still available. There are still
many technical problems to be solved to avoid the missed chip
as little as possible. Thus, deep studies of the effect of pro-
cess parameters on alignment accuracy are needed, such as
the strength of the magnetic/electrostatic field, the distance
and direction between the chip and site, the size and shape
of the chips, and the degree of magnetization/electrostatics.
Another limitation is the microLED chips for self-assembly
need special structural characteristics and functional proper-
ties. For example, magnetic self-assembly can only be applied
with microLED chips with magnetic components, while elec-
tric fluid self-assembly requires charged microLED chips.

Also how to transfer different colors of RGB microLED chips
separately is currently unclear.

5. Conclusion and future perspective

Mass transfer technique offers the possibility of large-scale,
highly efficient and high-yield heterogeneous integration
of microLED arrays into spatially organized, functionally
arranged 2D and 3D layouts. It creates a number of new applic-
ations and industrialization opportunities for next-generation
microLED displays and new microLED-based electronics,
which are impossible by conventional pick-and-place tech-
niques. In the past decade, the development of mass
transfer is generally converging on realizing the following
targets: (a) satisfy the needs of cutting-edge applica-
tions that hinder from the minuscule size of microLEDs
and solve the relevant issues including high accuracy
positioning, and selective integration with large numbers;
(b) replace the complex, highly expensive, and time-
consuming multiple steps of conventional assembly meth-
ods with digital/parallel processes to greatly enhance the
throughput, cost-efficiency, and manufacturing flexibility;
(c) broaden the process window that can enable a determin-
istic and reliable transfer process and tolerate a little more
process variation due to the hardly avoidable fabrication error
for high-reliability requirements.

Recently, various techniques based on ingenious design
concepts and processing principles have been established and
developed toward the above targets. All these techniques
are based on clever manipulation of the interfacial adhesion
between themicroLED chips and the growth/intermediate sub-
strate. In this review, recent advancements in mass trans-
fer techniques were overviewed. The necessary considera-
tions to properly utilize interfacial adhesion control for desired
purposes were summarized. Two essential techniques, which
are epitaxial lift-off techniques and pick-and-place techniques
were introduced from basic mechanism to the state-of-the-art
demonstrations. Despite recent progress, there is a continu-
ing need for further development before these mass transfer
techniques become reliable manufacturing candidates for the
industrialized manufacturing of microLED displays.

Firstly, a further in-depth study of interfacial adhesion
mechanisms is necessary. The essential relationship between
the process parameters and interface reaction (e.g. adhesion
strength, fracture mechanics, and chip peeling/flighting state)
can undoubtedly provide quantitative guidance for the high
reliability of mass transfer. For example, as in the case of
epitaxial lift-off techniques, a complicated film delamination
mechanism involves the synergistic effects of applied physical
fields (e.g. mechanical loads and laser irradiations) and chem-
ical reactions (e.g. ablation in LLO, chemical etching in CLO),
thus building complex coupling models of physics, mechan-
ics, and chemistry is essential. As another example, in fluid
self-assembly, the interface surface energy is an important
parameter needed to be carefully considered, however, there
still lacks a direct measurement method at a microscopic
scale, which may increase the uncertainty of this technique
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resulting from some indeterminate process parameters (can
only be determined by trial and error). The continuing efforts
to develop more simple and accurate methods for interface
bonding energy measurement and establish corresponding
theoretical models are still necessary, which will facilitate
a more deep understanding of some interface microscopic
phenomena.

Secondly, although lots of small-area transfer schemes have
been extensively verified, a further improvement in the reli-
ability, accuracy, and efficiency of large-area transfer tech-
niques is still an area of tremendous opportunities. For contact
µTP techniques, the parallel transfer can only be realized by
expanding the number of transfer heads. However, the micro-
column of an elastic stamp tends to collapse during contact
transfer, and it is difficult to make individual transfer heads in a
small size for an electromagnetic or electrostatic stamp. These
challenges can probably be overcome by further optimization
of the structural design and manufacturing processes of trans-
fer heads. For laser non-contact transfer techniques, although
the time for a single transfer is considerably short, the transfer
rate is still greatly limited by themoving speed of the laser spot
and the number of chips that can be transferred by a single spot.
Inncreasing the moving speed of the spot by vibrating mirror
scanning (the high-speed vibrating mirror can achieve tens of
thousands of scans per second) and the number of spot arrays
by optical projection mask and optical space modulation is the
future trend. As for the magnetic/electric fluid self-assembly,
arrayedmagnetic and electric fields need to be introduced. And
for contact µTP techniques, the parallel transfer can only be
realized by expanding the number of transfer heads. However,
the micro-column of an elastic stamp tends to collapse during
contact transfer, and it is difficult to make individual transfer
heads in a small size for an electromagnetic or electrostatic
stamp.

For achieving high reliability, the development of high
precision micro-fabrication/position technologies and mater-
ial preparations for chips, transfer stamps, and receiver sub-
strates/solders are hotspots, since lots of mass transfer tech-
niques rely on some specific properties/shapes at specified
positions. For example, the fluid self-assembly technique has
special requirements for adhesives, which ask for better fluid-
ity, high bonding selectivity between assembled and unas-
sembled surfaces, and acid/high-temperature resistance con-
sidering subsequent processes. However, the present acrylate
heat-curing adhesives and solders do not fully meet these
requirements. In addition, to improve the transfer accuracy, the
introduction of optical position calibration systems or auxili-
ary positioning technologies may become a focal point. Until
now, the optical alignment for contact µTP is still challenging,
and further improving sensor resolution and marking stamp
materials with better contrast is necessary to achieve a brighter
fiducial mark. On the other hand, Emine Eda Kuran et al have
proved that LIFT can combine with a magnetic-assisted align-
ment technology. The chip was transferred by LIFT firstly,
while the autonomous positioning can be achieved with the
help of magnetic traction.

Further exploration of cost-efficient mass transfer tech-
niques is full of challenges as well as opportunities. The devel-
opment of reversible laser-assisted µTP has important prac-
tical significance which can easily achieve high throughput
for large-scale and high-output manufacturing with the help
of parallel laser systems and automated platforms. To reduce
fabrication costs, a reusable stamp is essential. However, the
laser-induced physical/chemical modifications of the reusable
stamp need to be carefully controlled to avoid undesirable
distortion or damage. In addition, most of these stamps rely
on phase transition of smart materials (e.g. SMP), there-
fore how to further reduce response time through technical
innovation of materials and configurations is worth investig-
ating. Also, inventions that can simplify processing steps to
reduce the manufacturing cost are favorable. For example, the
development of selective epitaxial lift-off processes (specific
microLEDs are directly transferred from the source substrate
to the target substrate) may probably avoid a series of inter-
mediate steps. Moreover, decreasing the cost of mass transfer
equipment deserves the same consideration. The commonly
used excimer laser systems (cost millions of dollars) may be
replaced by relatively low-cost laser systems (solid-state laser
or fiber lasers).

Finally, looking into the future, with a series of tremendous
efforts, mass transfer techniques can prepare microLEDs dis-
plays of various sizes at low cost. As a result, OLED and LED
displays will be replaced, as microLEDs have more advant-
ages for OLEDs and LCDs. The application of microLEDs is
not limited to displays, but also will be combined with optical
communication, wearable, smart lights and other applications.
Especially, high-end glass-based AR/VR can provide a high
brightness of 100 000 nits, high ppi > 2000, and high con-
trast of 100 000:1 to view in an outdoor environment. This
brightness cannot be provided by OLED. Since wearable
micro-LEDs can be prepared in large areas, wearable micro-
LEDs can be widely used not only for biomedical applica-
tions (including biosensors, medical devices and optogenetic
stimulators) but also for large area detection in devices such
as aircraft and vehicles. Also, higher brightness than broad-
area OLED at high current density is a significant advant-
age of microLEDs in the application of VLC, as one of the
disadvantages of VLC is the short communication distance.
Therefore, in the future, integrated microLEDs can achieve
higher data transmission (e.g. 12Gb/s [230, 231]), leading
to an accelerated convergence of communication techniques
interactions.

In summary, the excellent performance of will cer-
tainly revolutionize the applications of displays soon. A
lot of potentially disruptive technologies for mass produc-
tion of microLED displays may be developed by a further
in-depth study of laser-induced interface phenomena, multi-
scale adhesion-controlled interface, micro/nanomanufacturing
technology, etc. These considerations suggest that this field
of study will remain active and dynamic, promising more
versatile, effective, and cost-efficient mass transfer techniques
for microLED displays fabrication in the near future.
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