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Abstract
Despite rapid progress in the development of quantum algorithms in quantum computing as well
as numerical simulation methods in classical computing for atomic and molecular applications, no
systematic and comprehensive electronic structure study of atomic systems that covers almost all of
the elements in the periodic table using a single quantum algorithm has been reported. In this
work, we address this gap by implementing the recently-proposed quantum algorithm, the
Bayesian phase difference estimation (BPDE) approach, to determine fine structure splittings of a
wide range of boron-like atomic systems. Since accurate estimate of fine structure splittings
strongly depend on the relativistic as well as quantum many-body effects, our study can test the
potential of the BPDE approach to produce results close to the experimental values. Our numerical
simulations reveal that the BPDE algorithm, in the Dirac–Coulomb–Breit framework, can predict
fine structure splittings of ground states of the considered systems quite precisely. We performed
our simulations of relativistic and electron correlation effects on Graphics Processing Unit by
utilizing NVIDIA’s cuQuantum, and observe a×42.7 speedup as compared to the Central
Processing Unit-only simulations in an 18-qubit active space.

1. Introduction

Quantum computing and quantum information processing are currently among the fastest growing areas of
research in modern science. In particular, recent rapid progress in the development of quantum hardware
such as proof-of-principle experiments of surface code quantum error correction [1–3] motivates us to
anticipate fault-tolerant quantum computing (FTQC) in the future. Among the wide landscape of diverse
topics in quantum computing, sophisticated ab initio electronic structure calculations of atoms and
molecules on quantum computers have especially attracted much attention due to their promising
real-world applications [4–6]. Aiming for practical quantum computations, proper choice of a versatile
quantum algorithm that can treat both light and heavy elements in the periodic table on the same footing is
of crucial importance. The total energy of an atom or an atomic ion increases with atomic number. The
variational quantum eigensolver [7, 8] is one of the most extensively studied algorithms for quantum
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chemical calculations on near-term quantum devices, but its ability to predict energies of heavier systems
with a sufficiently small standard deviation is limited by a massive increase in the measurement cost. In
contrast, quantum phase estimation (QPE)-based approaches [9–12] are able to compute total energies of
atoms and molecules with nearly constant measurement overhead regardless of the magnitude of total
energies, although development of sophisticated theoretical methods to produce wave functions accurately
even with reasonable approximation in a method is necessary [13–16]. The quantum circuit for QPE is
usually too deep to execute on a noisy intermediate-scale quantum device, but QPE is anticipated to be a
powerful tool for electronic structure calculations of atoms and molecules in the FTQC era. A systematic
study of the electronic structure of atoms and atomic systems with different atomic numbers entails
accounting for the relativistic effects, since the associated physical effects become prominent for the heavier
elements. It is worth noting that even for the lighter atoms, physical phenomena that originates due to
relativistic effects, such as the fine structure splitting, can be experimentally measured. However, most of the
quantum simulations for quantum chemical calculations reported so far employ a non-relativistic
Hamiltonian, and works in literature that take into account relativistic effects are still quite limited [17–21].

In this backdrop, we report numerical quantum simulations for the direct calculation of fine structure
splitting of boron (B) isoelectronic sequence (5⩽ Z⩽ 103, where Z is the atomic number of the considered
system) by using a Bayesian phase difference estimation (BPDE) algorithm in conjunction with the
four-component relativistic Dirac–Coulomb and Dirac–Coulomb–Breit Hamiltonians. Fine structure
splitting is, as discussed below in detail, a purely relativistic effect and is affected by electron correlation, and
therefore sophisticated treatments of both relativistic and correlation effects are necessary to calculate it
quantitatively [22–28]. Since experimental fine structure splittings of wide variety of isoelectronic ions have
been reported [29], they are good testing grounds for the sophisticated quantum chemical calculations on a
quantum computer. The BPDE algorithm, which is recently proposed by one of the authors of the current
work [30–32], is a general quantum algorithm for the direct calculation of energy gaps at the full
configuration interaction (FCI) level of theory and it is suitable to compute small energy differences of
systems with large total energies using a quantum computer. Since the BPDE algorithm can calculate an
energy gap at the FCI level within an active space in the smallest Trotter decomposition error limit, the
quality of the energy gap calculated at the FCI and BPDE is in principle the same. Note that the FCI
calculation on a classical computer is based on the diagonalization of the Hamiltonian matrix, and
eigenvalues of the electronic states belonging to the same symmetry can be obtained simultaneously. As we
discuss in detail below, fine structure splitting is the energy gap between the electronic states with the same
orbital and spin angular momenta (L and S) but different total angular momentum J. Calculation of fine
structure splitting on a classical computer usually requires two separate CI calculations for two different J
values. Conventional QPE-based FCI approaches on a quantum computer can in general compute the total
energy of only one state in a single run, and therefore two separate QPE calculations are required to evaluate
the fine structure splitting. In contrast, the BPDE algorithm is designed to calculate the energy gap directly,
thereby allowing one to calculate the fine structure splitting in a single execution. Accelerating the
computation times for quantum simulations using state-of-the-art techniques is an extremely important
factor in carrying out numerical simulations of nearly a hundred systems rapidly. In this context, graphics
processing unit (GPU) based quantum circuit simulations will become increasingly important for verifying
the accuracy of quantum algorithms and developing new methods. In this work, we report such an
acceleration by utilizing GPU with NVIDIA’s cuQuantum Software Developer Kit [33]. To the best of our
knowledge, this is the first comprehensive study of electronic structures of isoelectronic atomic series those
covers almost all elements in the periodic table using a quantum algorithm.

Fine structure splitting refers to the energy separation caused by the consequence of couplings between
electron spin angular momentum, S, and the orbital angular momentum, L, corresponding to two atomic
states with different values of the total angular momentum quantum number, J. As an example, the electronic
configuration of the ground state of B atom (Z= 5) in the non-relativistic scheme is (1s)2(2s)2(2p)1.
However, in the relativistic case, the degeneracy in six p spin-orbitals is lifted and they split into two pj=1/2

and four pj=3/2 spin-orbitals. As a result, the electronic states
2P1/2 = (1s1/2)

2(2s1/2)
2(2p1/2)

1 and
2P3/2 = (1s1/2)

2(2s1/2)
2(2p3/2)

1 have different energies. The experimental value for the fine structure
splitting of B atom is 15.287 cm−1 [34], while in boron-like tungsten (W69+), the energy gap is
1.1802× 107 cm−1 [35] (about six orders of magnitude larger than that of B). As pointed out above, the fine
structure splitting is a purely relativistic effect and is affected by electron correlation. The extent to which the
fine structure splitting is affected by electron correlation depends on the choice of system as well as the
chosen states [22, 36]. In the case of B-isoelectronic sequence, the correlation effects reduce in importance as
we go from lighter to heavier ions, while for our choice of states for these systems (2P1/2 and

2P3/2), pair
correlation effects are the most important. In particular, the two particle-two hole excitations that result in
configurations such as (1s1/2)

2(2p1/2)
1(2p3/2)

2, (1s1/2)
2(2p1/2)

2(2p3/2)
1, and (1s1/2)

2(2p3/2)
3 are dominant.
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Figure 1. Quantum circuit for the BPDE algorithm. A probability of obtaining the |0⟩ state in the measurement of the first qubit
is provided in equation (4). The probability is maximized when∆E=∆ε, where∆E is the energy gap of interest.

From the view point of quantum computation, a careful choice of systems such that their fine structure
splittings span six orders of magnitude, followed by accurate determination of these quantities by a suitable
quantum algorithm (BPDE in this case) would be a testament to the versatility of that algorithm.

2. Principle of BPDE

A typical quantum circuit for the BPDE algorithm is illustrated in figure 1. Here, we have used the notation
‘Had’ for the Hadamard gate to distinguish it from the Hamiltonian, H. P(∆εt) is a phase rotation gate
defined as

P(∆εt) =

(
1 0
0 ei∆εt

)
, (1)

where∆ε is used as the estimator of the energy gap and t is the length of the time evolution. |Φ0⟩ in figure 1
is an approximated wave function for the ground state that can be generated by using a shallow quantum
circuit. An approximated excited state wave function |Φ1⟩ is generated by applying a shallow Excit circuit to
|Φ0⟩. As discussed below, in the present calculations the quantum circuit for the generation of |Φ0⟩ consists
of five Pauli-X gates, and the controlled-Excit circuit is realized by two CNOT gates. These approximated
wave functions can be expanded in the basis of eigenfunctions {|Ψ⟩} as

|Φ0⟩=
∑
j

cj|Ψj⟩ (2)

and

|Φ1⟩=
∑
k

dk|Ψk⟩, (3)

where cj and dk are the corresponding expansion coefficients. Using equations (2) and (3), the probability of
measuring the |0⟩ state, Prob(0), in the quantum circuit depicted in figure 1 is calculated as

Prob(0) =
1

2

1+∑
j,k

|cj|2|dk|2cos
{(

∆Ejk −∆ε
)
t
} . (4)

From equation (4), if the approximated wave functions have sufficiently large overlap with the
eigenfunction of corresponding target states, Prob(0) becomes maximum around the point where∆ε equals
the energy difference between the two targeted states. Thus, we can calculate the energy gap by finding that
value of∆ε that gives maximum Prob(0). In the BPDE algorithm,∆ε is optimized by means of Bayesian
inference in the following procedure. (I) Define a prior distribution Pr(∆ε) by a Gaussian function, in which
the mean, µ, corresponds to an initial estimate of the energy gap with a standard deviation σ. Note that σ
determines the energy range of the Bayesian search, and it should be large enough so that true∆E locates
between (µ−σ) and (µ+σ). (II) Repeatedly execute the quantum circuit in figure 1 with a fixed evolution
time t= 1.8/σ and different∆ε in the range between (µ−σ) and (µ+σ) and generate the∆ε vs. Prob(0)
plot. Then, the plot is fitted by a Gaussian function and is used as a likelihood function Pr(0|∆ε; t). (III)
Calculate a posterior distribution Pr(∆ε|0; t) using the equation

Pr(∆ε|0; t) = Pr(0|∆ε; t)Pr(∆ε)´
Pr(0|∆ε; t)Pr(∆ε)d(∆ε)

. (5)

Since both Pr(0|∆ε; t) and Pr(∆ε) are given as Gaussian functions, we can easily compute the posterior
distribution. (IV) If the standard deviation of Pr(∆ε|0; t) is smaller than the convergence threshold EThre,
then return the mean of Pr(∆ε|0; t) as the estimate of∆E. Otherwise return to step (II) using the posterior
distribution as the prior distribution in the next iteration.
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3. Method of computation

The time evolution of wave functions is implemented using conventional techniques as follows. The
second-quantized electronic Hamiltonian, built out of creation and annihilation operators (denoted below
by a† and a respectively, and with their indices p, q, r, and s running over the chosen single particle basis), is
given by

H=
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

gpqrsa
†
pa

†
qasar (6)

and is transformed to a qubit Hamiltonian, which then takes the form

H=
∑
j

wj (σN−1 ⊗σN−2 ⊗ ·· ·σ0) ,σ ∈ {I,X,Y,Z} , (7)

using the Jordan–Wigner transformation [37]. In the equations (6) and (7), hpq and gpqrs refer to the one-
and two- electron integrals, while in the qubit Hamiltonian, wj refers to the pre-factors for each of the terms
in the transformed Hamiltonian, with each wj being a product of either a one- or a two- electron integral and
a multiplicative factor resulting from the transformation itself. Subsequently, the quantum circuit
corresponding to the time evolution operators is constructed [38] using second-order Trotter–Suzuki
decomposition [39–41].

In the present study, we tested two different Hamiltonians: HDC and HDC+B. HDC is the Dirac–Coulomb
Hamiltonian, defined by the equation (in atomic units (a.u.))

HDC =
∑
i

[
cαi · pi +(βi − 1) c2 +Vn (ri)

]
+
∑
j>i

1

rij
, (8)

while HDC+B contains an additional term, VB, given by

VB =−
∑
j>i

{
αi ·αj

2rij
+

(
αi · rij

)(
αj · rij

)
2r3ij

}
(9)

to take into account the full Breit interaction in addition to HDC. In the above equations, c is the speed of
light, α and β are the 4× 4 Dirac matrices, pi is the momentum operator associated with the ith electron,
Vn(ri) is the electron–nucleus potential, and 1/rij is the electron–electron Coulomb interaction term (in
a.u.). A recent theoretical study by Wan and coworkers showed that relative contributions of Breit
interactions to the fine structure splitting of B-isoelectronic sequence are significant for light elements, and is
as large as 14.55% for neutral boron [28].

For the accurate computation of fine structure splitting, it is important to treat the 2P1/2 ground state
and the 2P3/2 excited state on an equal footing [22]. In this work, the one- and two-electron integrals were
computed at the Dirac–Fock level for the state with one electron removed from the corresponding target
systems (B+ and its isoelectronic sequence) using our own in-house code. Gaussian-type universal basis
(α0 = 0.01 and β= 1.80) with 40 s1/2, 39 p1/2, and 39 p3/2 orbitals is used for the Dirac–Fock calculations.
The large and the small components of Dirac–Fock orbitals are kinetically balanced [42]. In the BPDE
simulations, we tested two types of active spaces; (1s, 2s, 2p) with 10 qubits and (1s, 2s, 2p, 3s, 3p) with 18
qubits, without adopting any qubit tapering techniques. Note that two-qubit tapering based on electron
number conservation rule in the parity basis and the symmetry-conserving Bravyi–Kitaev transformation
[43] assumes non-relativistic calculations in which the electron spin quantum number is a good quantum
number. Applying these techniques to relativistic calculations is not straightforward. Throughout this paper,
when we use, for example, the notation (18q, HDC+B), it specifies the active space and Hamiltonian being
used.

We now comment on the effect of Trotter error on our results. It is known that Trotter decomposition
error depends on the maximum atomic charge of a system [44], and therefore finer Trotter decomposition
should be employed for heavier elements. In the present study, we set the time length of a single Trotter step
as t/M=min[0.2,10/|h00|], whereM is the number of Trotter slices and h00 is the one-electron integral
corresponding to electron–nuclear attraction of the 1s1/2 electrons. We used single Slater determinant wave
functions for the approximated wave functions of the 2P1/2 and the

2P3/2 states:
|Φ0⟩= |(1s1/2)2(2s1/2)2(2p1/2)1⟩ and |Φ1⟩= |(1s1/2)2(2s1/2)2(2p3/2)1⟩, respectively. In this case, |Φ0⟩ is
prepared by using five Pauli-X gates, and the controlled-Excit circuit in figure 1 is realized by two CNOT
gates. The difference between the energy expectation values of two approximated wave functions is used as

4
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the initial mean of the prior distribution: µini =∆ERef = ⟨Φ1|H|Φ1⟩− ⟨Φ0|H|Φ0⟩, and the initial standard
deviation of the prior distribution is set as σini =max[0.1,10|µini|] in units of hartree. In step (II) of the
BPDE algorithm, we draw 21 samples in the range of (µ−σ) to (µ+σ) with a constant interval, and execute
the quantum circuit 5000 times for each sample to construct the likelihood function. The convergence
threshold for Bayesian optimization in the step (IV) is set to be inversely proportional to the time of a single
Trotter step, EThre = 0.001M/t hartree. These computational conditions were selected to calculate the fine
structure splitting of B-isoelectronic sequence with similar computational costs regardless of the atomic
number Z. Using these conditions, the number of Trotter slices,M, in the final iteration is about 1000 for all
atoms being studied.

The numerical simulation program for the BPDE algorithm was developed using Python3 with
OpenFermion [45], Cirq [46], and cuQuantum [33] libraries. To execute numerical simulations with GPU
acceleration, we prepared the simulation environment on a Supercomputer ‘Flow’ Type II subsystem in
Nagoya University. The ‘Flow’ Type II subsystem consists of the FUJITSU Server PRIMERGY CX2570 M5,
including the Intel Xeon Gold 6230 with 20 cores× 2 sockets, and the NVIDIA Tesla V100 (Volta)× 4 GPUs,
thus 33.888 TFLOPS in a node. 384 GiB (DDR4 2933 MHz) memory, and 6.4TB/node SSD in each node are
available. In addition, local shared storage (BeeGFS, BeeOND, NVMesh) is also provided. The total number
of nodes is 221, and hence total FLOPS is 33.888 TFLOPS× 221 nodes= 7.489 PFLOPS. The numerical
simulations for 10 qubit active space were executed on Linux workstations without GPU accelerations, and
those for 18 qubit active space were carried out on ‘Flow’ Type II subsystem. Because the BPDE algorithm
computes the likelihood function based on statistical sampling of the measurement outcome, the algorithm
returns different values for every run. In this study, all the numerical simulations were carried out five times.
The standard deviations of five runs for B are about 0.7–2.0 cm−1, and those for boron-like ions (99 atoms in
total) are on average 199.8, 163.2, 136.3, and 167.7 cm−1 for (10q, HDC), (18q, HDC), (10q, HDC+B), and
(18q, HDC+B), respectively, and they are sufficiently small compared to the calculated values of∆EBPDE.

4. Results and discussion

The fine structure splitting values obtained from the numerical simulations of the BPDE algorithm using
(18q,HDC+B) as well as the experimental values [29] are plotted in figure 2(a), and the ratios∆EBPDE/∆EExptl
and∆EBPDE/∆ECASCI are given in figures 2(b) and (c), respectively. Note that CASCI is the acronym for
complete active space configuration interaction, and it corresponds to the FCI treatment within the selected
active orbitals. All the calculated fine structure splitting values are provided in the supplemental material. For
light elements, deviation of the∆EBPDE values from experimental ones appears to be large, but this
observation is a consequence of the fine structure splitting being small. In fact, the fine structure splitting of
B calculated using the BPDE algorithm with (18q, HDC+B) is∆E= 12.5287± 0.9813 cm−1, and the absolute
error with respect to the experimental value is only about 3 cm−1. Another possible reason for the significant
deviation of∆EBPDE/∆EExptl values from 1 for low-Z elements is related to the quality of the approximated
wave functions. As we discussed in section 2, the peak position of the likelihood function can be shifted in the
presence of contributions from electronic states other than the target states. Electron correlation effects are
more significant and the overlap squared values |⟨Φ0|Ψ0⟩|2 and |⟨Φ1|Ψ1⟩|2 are smaller for low-Z elements.
This means that the contributions other than the |c0|2|d1|2cos{(∆E01 −∆ε)t} term in the right hand side of
equation (4) are not negligible for low-Z elements, which can affect the estimated energy gaps∆ε. For
example, the calculated |c0|2 and |d1|2 values of B atom are 0.9335 and 0.9334, respectively, but those of Lr98+

are 0.9999 and 0.9919, respectively. However, the∆E value of B obtained from the BPDE simulations is very
close to that calculated at the CASCI level (12.2715 cm−1), and therefore departure of the∆EBPDE value from
the experimental one cannot be fully explained by the quality of the approximated wave functions. The most
reasonable explanation for the deviation of∆EBPDE/∆EExptl from 1 is the limited active space size. In
particular, absence of the 3d orbitals in the active space may lead to an insufficient description of angular
correlation [47], which is expected to be important for low-Z elements. We expect that inclusion of more
virtual orbitals (3d, 4s, 4p, and above) can further improve the accuracy of the fine structure splitting. Note
that all the∆EBPDE/∆ECASCI values (figure 2(c)) are in the range 0.92 and 1.05, thus indicating the ability of
the BPDE algorithm in being able to reproduce the CASCI fine structure splitting very accurately.

The agreement in the values of∆EBPDE with∆EExptl in highly charged ions is also worth emphasizing. In
this context, we note that for heavier ions, relativistic effects are dominant and electron correlation effects
becomes less significant. Nevertheless, the fine structure splittings computed by using the BPDE algorithm
are closer to the experimental values than those estimated from the reference wave functions∆ERef. For
example, the fine structure splitting in boron-like tungsten (W69+) is calculated to be
∆ERef = 11,841,730 cm−1 and∆EBPDE = 11,800,183 cm−1 for (18q, HDC+B), and the experimental value is
∆EExptl = 11,802,000 cm−1. These results also exemplify the capability of the BPDE algorithm in predicting

5
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Figure 2. Results of numerical simulations of the BPDE-based fine structure splitting calculations. (a) The fine structure splitting
values calculated by the BPDE algorithm using (18q, HDC+B) (red line) and experimental values (green circles). (b) The
∆EBPDE/∆EExptl values. (c) The∆EBPDE/∆ECASCI values.

Table 1. The root mean square deviations of the∆EBPDE from∆EExptl.

Hamiltonian Size of active space RMSD/cm−1

HDC 10 9966.6
HDC 18 10 139.7
HDC+B 10 698.0
HDC+B 18 605.3

the energy gap accurately. The root mean square deviations of the∆EBPDE from∆EExptl were summarized in
table 1. It is worth noting that the agreement with the experimental values drastically improved by
considering the Breit interaction, and the larger active space with more sophisticated Hamiltonian (18q,
HDC+B) gives the best agreement.

In order to check for GPU acceleration in our numerical quantum circuit simulation, we executed the
BPDE calculations of boron fine structure splitting with 8, 10, 16, and 18 qubit active spaces in conjunction
with HDC+B on our Linux workstation (CPU: Intel Xeon-Gold 6134, GPU: None) and ‘Flow’ Type II
subsystem (CPU: Intel Xeon-Gold 6230, GPU: NVIDIA Tesla V100). The 8 and 16 qubit active spaces were
prepared by fixing the occupation number of 1s1/2 orbitals in the 10 and 18 qubit active spaces, respectively.
For 8 and 10 qubit active spaces, we also carried out the BPDE simulations on ‘Flow’ Type II subsystem
without using GPU. All the simulations were performed five times using single thread.

6
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Table 2. Average time taken for BPDE quantum circuit simulation for B atom fine structure splitting, in units of seconds.

‘Flow’ Type IIb

Size of active space Workstationa w/o GPU w/o GPU with GPU

8 628 731 177
10 2197 2267 588
16 73 452 — 4830
18 387 328 — 9081
a CPU: Intel Xeon-Gold 6134, GPU: None.
b CPU: Intel Xeon-Gold 6230, GPU: NVIDIA Tesla V100.

The average simulation time of five runs are given in table 2. From the table, the speedup in
GPU-accelerated quantum circuit simulations is significant, especially when a larger active space is
employed. For smaller active spaces (8q and 10q), the speedup is about×4. By contrast, for 16 and 18 qubit
active spaces, GPU-based simulations provide substantial speedups of 15.2 and 42.7 times, respectively. Note
that the computation times of both CPU and GPU-based quantum circuit simulations scales exponentially
with the number of qubits, but the exponent is smaller for GPU than CPU. It is worth noting that that all
simulations were completed within a week by using a supercomputer with GPUs, whereas executing all
calculations solely on workstations without GPUs will take about a year.

5. Summary

Our numerical quantum simulations show that the fine structure splitting of the boron isoelectronic
sequence can be computed very accurately by appropriately considering both relativistic and quantum
many-body effects using the BPDE algorithm. By using the (1s, 2s, 2p, 3s, 3p) active space and the relativistic
Dirac–Coulomb–Breit Hamiltonian, the fine structure splittings in boron isoelectronic sequence were
predicted within 605.3 cm−1 of the root mean square deviation from the experimental values. This root
mean square deviation value is the smallest among the four cases involving different combinations of
Hamiltonian and number of qubits that we tested. It is noteworthy that the deviations in the calculated fine
structure splittings from the experimental values do not increase nearly as much as they do with increase in
atomic number. Two of our important findings in this work regarding accuracy of the calculated fine
structure splitting are (a) that it is crucial to include Breit interactions for accurate predictions of fine
structure splittings for the systems that we have considered, and (b) that it is necessary to include virtual
orbitals to improve our results for the lighter systems (neutral boron and the lighter boron-like ions).
Considering the fact that the BPDE algorithm is a FTQC or an early-FTQC algorithm, it is quite challenging
to run the BPDE algorithm on today’s real quantum hardware. Recently, the BPE-based FCI calculations of
H2 molecule using an ion trap quantum processor have been reported [48]. Since the BPDE algorithm is free
of the controlled-time evolution operation that is necessary for conventional BPE algorithm, BPDE is
potentially more suitable for hardware executions than BPE. However, as we discussed in section 3, two-qubit
tapering technique is generally not applicable to relativistic quantum chemical calculations. Sophisticated
quantum circuit optimizations [49, 50] to reduce the depth of the circuit and the number of two-qubit gates
are necessary for proof-of-principle demonstrations of the BPDE-based fine structure splitting calculations
on a quantum computer, even if we use small active space. Speedup in numerical simulations of quantum
circuits by using GPU in conjunction with NVIDIA cuQuantum is significant, especially when large active
space is employed. We observed×42.7 speedup for 18-qubit active space simulations. Such acceleration of
quantum circuit simulations is important to test the ability of the quantum algorithms to handle problems of
larger size, for further development of quantum algorithms for various applications.
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