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TOPICAL REVIEW
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Abstract
In this review, we present important concepts to describe inorganic–organic interfaces in hybrid
solar cells. We discuss the formation of hybrid interfaces, provide an introduction to the
ground-state electronic structure of the individual components, and detail the overall electronic
landscape after combining into a hybrid material for different relevant cases. We then explore the
impact of hybrid interfaces on photophysical processes that are crucial for the photovoltaic
performance of hybrid solar cells. Within this framework, we discuss methods for hybrid interface
modification toward the optimization of hybrid solar cells, such as doping, the application of
interlayers, and morphological control.

1. Motivation: why go hybrid?

A hybrid solar cell utilizes organic and inorganic semiconductors (OSCs/ISCs) to convert sunlight into elec-
tricity using the photovoltaic effect. The interfaces that are formed between the inorganic and organic material
domains of these devices, which control many of their key attributes, are naturally called hybrid interfaces.

Hybrid interfaces are often implemented to improve certain interface properties or facilitate functions that
would be impossible in a non-hybrid configuration. Two important examples are shown in figure 1. But hybrid
interfaces may also come into being through pure necessity, for example, the need to collect charges from an
organic bulk heterojunction at an (inorganic) metal oxide electrode. This review covers both these varieties of
hybrid interface, though it is the promise of the former that is our main motivation.

What could be the appeal of hybrid solar cells in today’s photovoltaics landscape? For decades now, multiple
junction cells featuring III–V semiconductors have been the champions of ultimate solar cell power conversion
efficiency, while the more economical cells based on silicon, CdTe, CIGS(e), and more recently lead halide
perovskites continue to gain efficiency [1]. With these technologies standing dominant, and indium tin oxide
(ITO) and other effective inorganic transparent conductors in place, what are the properties through which
OSCs can complement or even out-perform ISCs?

1.1. Chemical composition and compositional tuning
The virtually infinite flexibility in adjusting the chemical structures of organic materials allows the fine-tuning
of their chemical, electronic, and mechanical properties. This allows combining controlled surface bond-
ing, efficient passivation, and selective charge transport in a single molecule. It also permits alteration of the
solubility characteristics, which opens up a large variety of processing routes.

Solar cells are slated to eventually supply a large fraction of the world’s electricity demand [2]. To provide
the required terawatts of electrical power, the sheer scale of solar cell production necessitates replacement
of solar cell components employing scarce resources, like indium and gallium, with more earth-abundant
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Figure 1. Illustration of two roles played by hybrid interfaces for efficient photocurrent generation. (a) Exciton harvest.
(b) Selective charge transport.

materials. Since organic materials are comprised largely of carbon and hydrogen, replacing their inorganic
counterparts in solar cells can address some issues of material scarcity. Furthermore, introducing innovative
materials that are cheaper or require lower processing temperatures harbors the potential to reduce the costs
and energy requirements for fabrication and recycling. Such advances can further improve the ecological and
economic benefit of solar cells and accelerate the transition to a sustainable way of life.

1.2. Photophysics
π-conjugated organic molecules and polymers can exhibit very strong electronic absorption bands. While the
bandwidth of these absorption features in a single chromophore is typically not comparable to the contin-
uum absorption of a bulk crystalline semiconductor, the many sources of broadening that act upon these
electronic bands, particularly in the solid state, as well as the increasing density of allowed electronic transi-
tions above the optical gap can lead to what is effectively a quasi-continuous absorption band. Therefore, the
thickness of a π-conjugated organic film can be a fraction of that of inorganic absorbers while still achieving a
comparable absorbance. Since thinner solar cell absorber layers favor a higher device voltage due to a reduc-
tion in bulk defect-mediated recombination, thinning the inorganic absorber layer by the incorporation of a
light-harvesting organic chromophore layer may be a useful device strategy [3].

OSCs are excitonic, and thus can exhibit the spectral conversion processes singlet fission and triplet fusion.
When used in conjunction with an already-mature high-efficiency ISC, these processes offer a promising path
toward surpassing the Shockley–Queisser limit [4], which describes the efficiency of an ideal single-junction
solar cell, wherein the only loss mechanism is that of radiative recombination, under one-sun excitation [5, 6].
Pushing the efficiency of mainstream solar cells beyond this limit is important, because continuously falling
solar cell prices imply that the balance of systems costs (the costs of the utilities and services required for
electricity production from solar cells) account for an increasing fraction of the total system costs. In the
limit of the cost of the solar cell itself being negligible and fixed balance-of-systems costs, improving the solar
cell efficiency—making more electricity per module—is the only route to a reduction in the cost per unit of
electricity.

1.3. Hybrid composite materials
While the focus of this review is on interfaces between disparate material domains, it is noteworthy that inter-
mixing of organic and inorganic components on a finer scale can yield important new materials. Hybrid
organo-lead halide perovskites and quantum dots with organic ligands are examples of hybrid and nano-
composite structures. In both cases, the essential function of the organic counterpart is initially structural
in nature, but the organic component can additionally contribute electronic functionality, for example due to
surface trap passivation, or when organic chromophores are integrated into the organic component.

Many more niche factors may induce an interest in the development of hybrid solar cells. Expanding the
material range can benefit applications with specific boundary conditions like mechanical flexibility [7, 8],
aesthetics [9, 10], or radiation hardness [11].
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Given the complexity of hybrid inorganic–organic systems, it is no surprise that their comprehensive treat-
ment is still in its infancy. In this review, we aim to identify concepts to describe interfaces of hybrid solar cells
both in the ground and excited states. We first define hybrid interfaces and discuss their formation. This is
followed by an introduction to the electronic structure of the individual components and their impact on the
overall electronic landscape after combining into a hybrid material. We later explore the impact of hybrid
interfaces on various photophysical processes that occur in photovoltaics. Finally, we discuss methods for
hybrid interface modification that enable tuning of the excited state dynamics, such as doping, the applica-
tion of interlayers, and morphological control. To keep this review focused, the details of solar cell structure
outside of the hybrid interface are considered only insofar as they provide the necessary background for dis-
cussing the interface. Other aspects are covered by other hybrid solar cell reviews [12–21], as well as recent
reviews on organic [22–24] and inorganic [25–28] solar cells. For a technology analysis we refer the reader to
reference 29.

2. The hybrid interface

Inorganic–organic composites rely on the synergistic effects of combining two materials classes that have typ-
ically been treated separately according to their physical properties. This is done in order to improve different
aspects of performance, often in ways that deviate from commonly employed theories, such as mean field the-
ory or effective medium approximations. The rule of mixtures is a foundational concept in materials science
that defines upper and lower boundaries for the properties that composites can express. It states that compos-
ite properties can be estimated as the volume weighted average of the properties of the included phases. This
rule most frequently applies when considering macroscale composites. The IUPAC defines a hybrid material
as a ‘material composed of an intimate mixture of inorganic components, organic components, or both types
of components’ for which ‘the components usually interpenetrate on scales of less than 1 μm’ [30]. As the
dimensions decrease, strong deviations from the properties of the individual materials can often be observed.
For instance, an electrical conductivity has been reported for nanoparticle/polymer hybrid materials that can-
not be described as a combination of the individual components, and instead is dependent on an unusually
high conductivity at the hybrid interface [31, 32]. Important properties can arise depending on whether the
inorganic and organic materials share orbital overlap or interact via van der Waals forces. While many proper-
ties of hybrid materials are accessible by just relying on intimate contact, certain exotic properties necessitate
orbital overlap. This intermixing can result in profound changes in the optoelectronic properties as a result of
the inherent differences in the properties of the individual constituent materials, such as their exciton degener-
acy, increased absorption coefficients for hybrid excitons, dipole strength, or the lifetime of charge carriers [33].
One example is the formation of hybrid excitons at hybrid interfaces that are predicted to give rise to a greatly
enhanced optical non-linearity [34]. As a result, inorganic–organic hybrid materials have been identified as
key technologies for the further development of optoelectronic devices.

Hybrid solar cells consist of ISCs [35] and OSCs [36]. ICSs and OSCs express significantly different prop-
erties that are ultimately derived from their different bonding characteristics. Where inorganic materials are
typically comprised of atoms bonding predominately via covalent or ionic mechanisms, organic semiconduct-
ing materials are more likely to be comprised of a series of alternating π bonds with molecules interacting via
weaker van der Waals bonding. These differences in bond energies have a profound effect on the optoelec-
tronic properties (as discussed in sections 3 and 4) and morphologies. ISCs will readily form hard crystalline
structures (although their amorphous counterparts are also technologically important) with open shell struc-
tures that have highly reactive surfaces that require passivation in order to control the desired properties. The
morphology of interfaces between ISCs and organic materials (not necessarily semiconductors) is discussed in
the remaining part of this section. While organic materials encompass a wide variety of form and function, we
discuss only those of particular importance for optoelectronic applications, namely ligand shells, π-conjugated
polymers, and small molecules.

2.1. Interface chemistry: ligands and SAMs
To control the termination of an inorganic material, organic molecules can be attached to their surface via
coordination or covalent bonds. Understanding ligation effects is of central importance for detailing the conse-
quent evolution of the optoelectronic properties in hybrid materials and interfaces. The functional headgroup
can have varying iono-covalent or weak binding characteristics with the inorganic surface. M L H Green pre-
sented a formalism for understanding this interaction at the molecular level via the covalent bond classification
(CBC) theory, which was later expanded to inorganic nanoparticle systems [37–39]. According to CBC theory,
ligands can be classified into three different categories according to the number of electrons they contribute to
the interfacial bond. L-type ligands are neutral donors that rely on lone pairs for coordination with inorganic
surfaces, resulting in relatively weak, dative bonds, and contributing two electrons to the inorganic constituent.
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Figure 2. Schematic representations of several representative hybrid solar cell technologies highlighting the organic, inorganic,
and interfacial layers. (a) A generalized hybrid interface, highlighting the interface (IF) functionalization. Thin films grown via (b)
organic molecular beam deposition and (c) solvent-based film casting. The orange color indicates an interlayer (e.g. a dielectric)
that modifies the interface transfer processes. Nanoparticles with (d) self-assembled monolayer (SAM) and (e) ligand shell. The
orange interface unit is a linker that facilitates the attachment of the organic unit and can additionally control transfer processes.

X-type ligands tend to have an odd number of valence electrons and rely on iono-covalent interactions with
the inorganic surface, thereby contributing one electron. Z-type ligands interact with surfaces as pure accep-
tors, relying on the back-donation of two electrons from the inorganic surface, and in this case contributing
zero electrons.

Ligands are critical components during solution-based inorganic nanoparticle synthesis that enable modu-
lation of the nucleation and growth processes, but can have detrimental effects when they remain on the surface
after synthesis due to their insulating and sometimes poorly surface passivating properties. The ligands used
during synthesis are typically comprised of a functional coordinating head group, a predominately saturated
ligand core that provides solubility characteristics (and also results in electronically insulating behavior), and
terminal groups that can contain functional components (see figures 2(d) and (e)). In large part, tailoring
the functional component is usually done during a post-synthetic ligand exchange process [40–42], although
there are also reports of direct target ligand functionalization during synthesis [43–46]. The concepts of lig-
and exchange on nanoparticles can also be applied to more macroscale inorganic systems in terms of chemical
attachment.

The ligand exchange process or the attachment of an organic layer to an ISC without ligands typically
occurs by submerging the inorganic material in a solution that contains the target organic molecules or their
precursors. The likelihood of the subsequent exchange reaction is driven by a combination of thermody-
namic parameters, including the electroneutrality principle, hard-soft acid–base theory, chelation, and steric
effects [47]. The resulting organic film is sometimes referred to as a self-assembled monolayer (SAM). The
specifics of the organic monolayer (degree of order, molecular orientation, etc) can often be traced to details
of the molecule–substrate bond (chemical elements of the bonding partners and denticity) and the chemical
structure of the molecule [48–53] and can be influenced by post-deposition heat treatment [54]. Precursor
molecules for attachment to metal oxide surfaces can feature a range of different functional groups [55–57],
including hydroxyl, phosphonic acid, and carboxylic acid groups. Attachment is facilitated by coordination
bonds to metal atoms in the oxide surfaces. Chalcogenol ligands can additionally be used to link organic
molecules to, e.g. transition metal-chalcogenide surfaces [58].

In the case of covalent functionalization of the elemental semiconductors Si and Ge, the ISC usually begins
the reaction with a hydrogen-terminated surface, a metastable state that results from chemical etching of
the native oxide surface. In this case, the organic linker group has to either replace the hydrogen or insert
itself in between the ISC and the hydrogen (hydrometalation reactions). These processes require initiating
the surface chemistry via heat, electrochemistry, photochemistry, and/or the formation of an organic radical.
Covalent modification of Si and Ge has been successfully realized through a range of different synthetic routes
[59–62] and optimized toward minimized oxide formation, maximized surface coverage, and excellent and
stable surface passivation [63–67].

Of particular relevance for hybrid solar cells is the case that the attached organic molecules contain a
chromophore unit that can act as donor or acceptor for energy transfer from or to the inorganic. Most promi-
nently, dye-sensitized solar cells (DSSCs) combine the large oscillator strength of organic molecules with
highly conductive ISCs. Silicon [68], PbS [69], and all-inorganic perovskite [70] nanocrystals have also been
functionalized with organic chromophores.

2.2. Interface morphology
When considering organic small molecules or polymers, it is important to keep in mind that these are three-
dimensional systems whose properties are anisotropic. The orientation of these molecules relative to inorganic
surfaces is critical to the resulting properties, and can be classified as edge-on, face-on, end-on, or disor-
dered/amorphous depending on how the organic materials are arranged (see figure 3). All ordered classi-
fications can also have an associated tilt angle that arises due to structural and energetic factors, such as the
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Figure 3. Schematic illustrations of molecular orientations with respect to the substrate: (a) face-on packing orientation;
(b) edge-on packing orientation; (c) end-on packing orientation; (d) face-on orientation with a tilt angle (α); (e) edge-on
orientation with a tilt angle (β); and (f) disordered packing orientation with mixed face-on and edge-on orientation. Reproduced
from [71] with permission of The Royal Society of Chemistry.

planarity of the molecule, the structure of the side chains, the presence or absence of a coordinating head group,
and the orientation of the crystal facet that the organic material is coming into contact with. The morphology
of the molecules at the inorganic–organic interface does not necessarily represent that of the bulk of the OSC.
In many π-conjugated systems, and in particular for π-conjugated polymers, the ordering is described in terms
of π–π stacking or lamellar stacking, which corresponds to packing in the direction of the π-orbitals or the
side chains, respectively. Charge transport in π-conjugated materials can occur along the π-conjugated back-
bone (where it is fastest) or in the π–π stacking direction (where the reliance on interchain hopping results in
slower transport), and is frequently impeded in the lamellar stacking direction due to the insulating aliphatic
chains making interchain hopping in this direction unfavorable [72]. There has been a strong drive to develop
methods for controlling the orientation and stacking motifs of these π-conjugated systems in order to improve
aggregation behavior and achieve desired molecular orientations for improved performance.

When fabricating monolithic solar cells, layers of organic small molecules are often grown by organic
molecular beam deposition or physical vapor deposition onto the inorganic counterpart that acts as sub-
strate. In this case, the geometric structure of the first organic layer(s) and the growth mode strongly
depend on the interfacial interaction. Organic film growth both on atomically clean as well as passi-
vated Si have been actively studied for more than thirty years [73–79] and will be used here as per-
tinent example. In the chemisorption limit, the epitaxial registry and orientation of the first molecu-
lar layer is dominated by specific organic–inorganic interactions [80–83]. In contrast, in the physisorp-
tion limit the intermolecular interaction dominates the molecular assembly. However, the interface can
induce the formation of so-called thin film phases [84, 85]. The resulting film morphologies sensi-
tively depend on the deposition rate, as well as the reactivity, crystallinity, and temperature of the ISC
surface [86, 87]. For weak organic–inorganic interactions, Volmer–Weber growth, dewetting, and des-
orption is often observed at temperatures around room temperature [88–92], especially under vacuum
conditions. This can be a severe problem when attempting to probe interface properties, since a large
fraction of the OSC is not, in fact, in contact with the ISC even for low film thicknesses. Some-
times a small decrease of the substrate temperature is enough to prevent the dewetting and desorption
[85, 90]. As another instructive example we mention p-sexiphenyl (6P) on ZnO, for which it was shown that
the 6P molecular orientation can be switched by using different ZnO crystal faces of a given ISC [93] and that
the growth mode can be controlled by partial fluorination of 6P [94]. Quite generally, partial fluorination is a
potent strategy for subtly tuning organic film morphologies [95, 96].

The reverse deposition sequence (inorganic on organic) has also been successfully demonstrated [97, 98],
but is usually avoided due to the high risk of damaging the organic material. Low-temperature deposition
schemes exist for a number of ISCs that can help reduce detrimental effects on the OSC.

Due to their high molecular weight, the thermal evaporation of polymers is difficult. Deposition of poly-
mers and large and/or sensitive molecules under vacuum conditions is possible via electrospray deposition
[99–102]. More typically though, polymers are deposited from solution processing methods, such as spin-
coating, blade coating, or printing, among others, which results in edge-on or face-on stacking. When an
end-on morphology is desired, polymers can also be chemically attached via either ‘grafting to’ or ‘grafting
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Figure 4. Schematic representations of the density of states for (a) 3D crystalline ISCs, (b) 2D quantum wells, (c) 1D quantum
wires, (d) 0D quantum dots, (e) amorphous ISCs with weak localization highlighting the mobility edge, (f) Gaussian model for
OSCs highlighting the LUMO location as determined by the tangent to the inflection point of the Gaussian curve, and (g)
exponential model for OCS highlighting the LUMO location. (a)–(d) [107] John Wiley & Sons. [Copyright © 2007 WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim]. (e)–(g) Reproduced from [142] with permission of The Royal Society of Chemistry.

from’ approaches [103, 104]. The ‘grafting to’ approach utilizes pre-formed polymers that associate to the inor-
ganic surface via chemical attachment, but can result in poor coverage due to steric effects. The ‘grafting from’
technique takes advantage of a surface-bound initiator from which the polymer is grown via chain growth poly-
merization. End-on orientation can also be achieved by use of a fluorinated surface-segregated layer and/or
suitable SAMs [105, 106].

3. Electronic structure

We now turn to a discussion of the optoelectronic properties of hybrid interfaces, starting with the ground
state electronic structure, which controls the fate of photo-generated charge carriers.

3.1. Intrinsic energy levels of ISCs and OSCs
The relevant energy levels for optoelectronic devices are those that derive from the valence shell of the atomic
constituents. Intermixing of atomic orbitals gives rise to occupied and unoccupied molecular orbitals. In ISCs
the atoms of the whole lattice overlap, which leads to formation of a continuum of energy levels known as
energy bands. The highest occupied band and the lowest unoccupied band are the valence band (VB) and
conduction band (CB), respectively. When the dimensions of inorganic materials are reduced from the bulk
to lower than the Bohr radius of the exciton, they can eventually experience quantum confinement in one
[108–110] or more [111–114] dimensions. As particle size is reduced, there are fewer available electronic states
in the CB and VB, and eventually this results in the widening of the bandgap and development of discreet states
near the band edges. Depending on the number of quantum confined dimensions, there can be profound
effects on the density of states (DOS), as shown schematically in figure 4, and this can therefore significantly
influence the optoelectronic properties, especially at heterointerfaces. Within the strong confinement regime,
the dielectric constant will also be impacted by particle size, and in core–shell type structures, the dielectric
constant of the matrix material will significantly impact the properties of the quantum confined material. This
has the result of modulating the absorption coefficient, donor energy levels, and electric field concentration
within the dots, among other effects [115–117], which in turn will determine the electronic properties at
heterointerfaces.

In contrast, π-conjugated organic molecules in the condensed state feature large orbital intermixing only
within the molecular building blocks, whereas intermolecular hybridization is typically weak. This gives rise
to comparably smaller intermolecular band dispersion [118, 119]. Accordingly, the electronic energy levels are
primarily determined by the occupancy of the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO). π-conjugated polymers feature bands that derive from the hybridiza-
tion along the extended polymer chain. State energies additionally depend on the local electrostatic potential,
which is influenced, e.g. by molecular sliding [120] and disorder [121].

The surface disrupts the periodic structure of a solid. The resulting asymmetric potential gives rise to addi-
tional electronic states (Tamm/Shockley states) [122]. In addition, the different number of bonding partners
at the surface compared to the bulk can result in dangling bonds, surface reconstructions, and the formation
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Figure 5. The energy-level alignment at hybrid interfaces with characteristic electronic structures. (a) Weak interaction at the
interface (surface-passivated ISC, no notable electrostatic polarization or push-back effect) and no notable band bending (very
few free charge carriers in the OSC, no significant overlap of energy levels). Example: Tc/H–Si [135, 136]. (b) Similar to (a) but
with a doped OSC, which gives rise to band/energy-level bending in the OSC and ISC. Example: α-NPD:F6TCNNQ/ZnO [137].
(c) The LUMO of organic acceptor molecules overlaps energetically with the ISC occupied DOS. This gives rise to an ISC-to-OSC
electron transfer and, in turn, a potential difference across the interface. This can be divided into two contributions: an abrupt
potential step at the interface (interface dipole, ΔϕID) and a gradual potential gradient that extends into the ISC bulk (band
bending, ΔϕBB). The shares of these two contributions depends on the density of surface states and bulk dopant concentration.
Example: F6TCNNQ on an ISC [138, 139]. Additional details for each example are given in the main text below.

of distinct surface crystal phases, as well as a structural relaxation of the surface layers. A different molecu-
lar orientation can be present at the surface than expected from the bulk structure [123]. Native defects in the
near-surface region can sensitively influence the surface potential of ISCs, as observed, e.g. for ZnO [124–126].
Due to these effects, the surface electronic structure differs from that of the bulk, which can manifest itself
as increased energetic broadening of the DOS or the formation of additional distinct states, leading to shal-
low and deep traps for charge carriers. The surface structures of many atomically clean and passivated ISC
surfaces have been established in the last decades. However, this is not true in all cases. One example is the
ZnO(0001) surface (i.e. the Zn-terminated facet of ZnO), for which it is still not fully clear whether and how
the observed periodic structures [127] and oxygen species [128, 129] at the surface derive from surface recon-
structions [130], adsorbates like hydroxyl groups [131], sub-surface hydrogen [132], or a combination thereof
[133, 134].

Figure 5 presents one-particle energy-level diagrams for three characteristic hybrid interface configura-
tions. Such diagrams are frequently used to depict the energy-level alignment (ELA) at interfaces. To that end,
the energies of occupied (unoccupied) orbitals/bands are determined by measuring their ionization energies
(electron affinities), which correspond to the energy difference between the neutral ground state and the final
state with one extra hole (electron) in the orbital/band, respectively. These are also the energies which are most
relevant for charge transport.

Upon the removal of an electron, the polarization of the environment screens the bare charge. This dielec-
tric stabilization of the hole reduces the ionization energy (IE). Conversely, the addition of an electron generates
a distortion in the local electronic and atomic structure that stabilizes the electron affinity (EA) [140, 141]. The
charge and the response of the environment is jointly referred to as a polaron. Polaronic effects have a large
influence on the charge transport in OSCs [72, 142–148] and quantum dots [149, 150].

ISCs typically have relatively large dielectric constants, which results in effective screening of the charge
carriers [151]. This leads to the working principle that bulk 3D ISCs are populated exclusively by free charge
carriers at room temperature. Polaronic effects can in most cases duly be ignored for this category of materials,
at least at room temperature and above.

Energy levels are typically given either with respect to the Fermi level or the vacuum level. Note that in
the context of interfaces, the vacuum level refers to a location just on top of the surface of the materials and
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not at infinity [152–154]. For this reason, energy levels with respect to the vacuum level are sensitive to the
surface potential that the electron traverses when leaving the material. This also applies to the work function,
which is defined as the energy difference between the Fermi level and vacuum level. Changes in the surface
potential directly translate to a corresponding change in the work function and the energy levels referenced
to the vacuum level. These energies thus depend, e.g. on the facet of the ISC crystal or the molecular orien-
tation in the organic layer [155–157]. This effect is particularly pronounced in organics, since they feature
a very anisotropic charge distribution, with the π-orbitals giving rise to a negative partial charge above and
below the π-conjugated plane [158]. This effect can be exploited to tune the energy levels via the implemen-
tation of an extra surface potential. This can be achieved, e.g. via a polar surface termination in the case of
ISCs [136, 159, 160] and intra-molecular polar bonds in the case of OSCs [156, 158, 161, 162].

3.2. Interface formation
It is often instructive to arrive at the final ELA of a particular interface by first aligning the energy-levels
of the individual components assuming vacuum-level alignment, and second incorporating effects induced
by the formation of the interface (see figure 5). In the following we initially assume that the intrinsic elec-
tronic structures of either constituent also hold for their surfaces and that no new states form upon interface
formation.

One effect that has to be considered is a possible difference in screening efficiency at the interface compared
to the ISC and OSC bulk. It was found that the electronic screening for small molecules is more efficient
when they are on a metal surface than when surrounded by other molecules, which gives rise to a decreased
electronic gap at the metal–molecule interface compared to the bulk [163–173]. Since ISCs, polymers, and
small molecules can have very different dielectric constants, a similar effect can be expected at hybrid interfaces
[174, 175].

Next, we consider the ELA in the absence of any significant electronic interaction at the intimate interface.
This means we first ignore the possibility of the formation of an interface dipole. In this case, vacuum-level
alignment persists also after interface formation and controls the ELA directly at the interface. In contrast, the
ELA far away from the interfaces is controlled by the Fermi-levels of the two materials. A possible misalignment
of the Fermi levels for assumed vacuum-level alignment gives rise to a charge-carrier redistribution across the
interface and within the materials to guarantee electronic equilibrium. This leads to a gradual potential drop
that facilitates the alignment of the two Fermi-levels. This potential drop is referred to as band bending. In
cases where no bands form, the term energy-level bending is appropriate. Importantly, sufficient free charge
carriers are required for full alignment of the Fermi-levels, which is not guaranteed for OSCs, as discussed in
the following.

Undoped OSC on passivated ISC (figure 5(a)): small molecule OSCs often have gaps >2 eV [36, 176] and,
thus, very small intrinsic charge carrier densities. In these cases and the absence of (intentional or uninten-
tional) doping, vacuum-level alignment persists well into the bulk and no significant band bending occurs for
organic layer thicknesses relevant for most opto-electronic devices [152, 177]. In this case, the Schottky–Mott
rule applies according to which the hole-injection barrier (HIB, the energy difference between the HOMO of
the OSC and the Fermi-level of the ISC) is equal to the difference of the IE of the OSC and the work function
of the ISC (ϕ), HIB = IE − ϕ.

As a prototypical example, we discuss tetracene (Tc) on crystalline silicon (c-Si) with hydrogen termination
(H–Si). The ELA of this interface was experimentally derived via ultraviolet photoelectron spectroscopy (UPS),
as shown in figure 6(a) [135, 136]. Indeed, no significant work function change was observed upon interface
formation, evidencing vacuum-level alignment at the Tc/H–Si interface. Notably, the experimentally derived
ELA deviates from theoretical calculations shown in panel (b) of the same figure [178]. While the latter predicts
the Tc HOMO to be lower in energy than the Si VB, the inverse configuration is observed experimentally.
Possible reasons for the discrepancy are differences in Si doping (n-type in the experiments vs intrinsic in the
calculations) and defects. In addition, the calculations were performed for the intimate interface and include
the full screening of the Si surface. In contrast, due to the pronounced Vollmer–Weber growth mode of Tc
on H–Si [90], the UPS experiments mostly probe Tc in multilayers, for which the screening is only by other
Tc molecules. Lastly, the Tc orientation that was considered in the calculation is more upright than the one
that was recently derived for ultrathin Tc on H–Si [90]. Due to the electrostatic effects discussed above, IEs for
Tc films with the molecules in an inclined configuration should be higher than for those with more upright
molecules, as has been observed for related molecules [179, 180].

Greiner et al systematically investigated a number of OSC/metal oxide interfaces [183] where ϕ covered
a large energy range. They found characteristic regimes for the relationship between the HIB on the one
hand and IE and ϕ on the other hand. The behavior is essentially the same as what had been reported pre-
viously for N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB, another name is α-NPD,
which is used below) on a variety of organic and inorganic substrates [184] and is shown in figure 7. Below a
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Figure 6. (a) Ultraviolet photoelectron spectroscopy results for Tc/H–Si(111). Secondary electron cut-off (SECO, left) and
valence band (VB, right) spectra for H–Si(111) after deposition of Tc films of the indicated thicknesses. The SECO directly
corresponds to the sample work function ϕ. The dotted line illustrates that ϕ is essentially unchanged by the formation of the
hybrid interface. The fact that a prominent Si VB signal can be observed also for nominal multilayers is a clear indication for a
Vollmer–Weber growth mode. For the VB spectra shown in the upper part of the figure, the H–Si(111) contribution has been
subtracted to emphasize the Tc-derived DOS. The inset shows the VB onset of H–Si(111) measured at normal emission
geometry. This gives access to the Si VB maximum at the center of the Brillouin zone. Reprinted with permission from [136].
Copyright (2020) American Chemical Society. (b) Electronic structure at the Tc/H–Si(111) interface calculated from hybrid
density functional theory. The left part shows the projected DOS for the H–Si(111) substrate atoms (black) and the Tc atoms
(orange) for the configurations displayed in the right part. The central part shows corresponding schematic energy diagrams.
Reproduced from [178]. © IOP Publishing Ltd. All rights reserved.

critical ϕ value, the Schottky–Mott rule applies. Note, however, that in contrast to the case of Tc/H–Si dis-
cussed above, additional interface dipoles can occur that do not depend on the ELA. Two examples that are
discussed in more detail in the corresponding subsection below are the electrostatic polarization due to the
interaction of the molecular quadrupole moment and the ISC surface as well as the ‘push-back’ effect that is
caused by Pauli repulsion. We define an effective work function ϕeff that accounts for these effects. Above the
critical ϕeff, Fermi-level pinning sets in. This behavior can be explained with electrostatic considerations alone
[182, 185, 186], by assuming that the charge equilibrium between the electronic systems of the organic
molecules and the underlying substrate is expressed by the Fermi–Dirac distribution function. As illustrated
in figure 8, once the OSC HOMO DOS and the ISC Fermi-level start overlapping substantially (ϕ≈ IE), elec-
tronic equilibrium requires charge redistribution across the interface to guarantee overall charge neutrality.
The two regimes are characterized by slope parameters S = d(ΔEH)/dϕeff of S = 0 and S = 1. As illustrated
in figure 9, an abrupt transition between the two extreme S values is only observed for sufficiently thick films
and narrow HOMO DOS. The less abrupt transition observed for realistic interfaces is sometimes referred to
as ‘soft’ Fermi-level pinning [187, 188]. Compared to the bulk, interface layers can have significantly higher
degrees of disorder [18, 189], giving rise to a broadened DOS. This affects the interfacial ELA [190] and makes
the Fermi-level pinning softer [187]. Molecules at the interface can feature a different molecular-orientation
distribution than those in the bulk [191, 192], and are subject to a different electronic screening [167, 193, 194].
As explained above, both effects influence IE and EA and, thereby, the pinning behavior at the interface. For
example, it is the combination of more pronounced screening at the hybrid interface (estimated to be 0.3 eV)
and the adoption of a flat-lying molecular orientation that is thought to drive the 6P/ZnO(0001) interface into
the pinning regime, which is different than what is expected from the ELA between multilayer 6P films and
ZnO(0001) [195].

Zahn et al investigated the ELA of a number of interfaces between OSCs and H–Si, Se–GaAs, and S–GaAs
that, assuming vacuum-level alignment, have a large energetic distance between the Fermi level of the ISC and
the molecular orbitals of the OSC, but were found to not obey the Schottky–Mott rule [196, 197]. Defects in the
ISC [198] and a molecular rearrangement as a function of coverage [196] were discussed as possible reasons for
the observed behavior. Later, one of these molecules, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA),
was investigated for additional substrates that span a large ϕ range. After formation of the PTCDA film, all
samples exhibited essentially the same work function and ΔEH, independent of the initial ϕ and reactivity of
the substrate (see figure 7). This was attributed to a high density of interface states for this OSC [199]. The
additional DOS can be accounted for via a Lorentzian broadening and gives rise to intermediate values of S, as
shown in figure 9 and further detailed in [182, 199–201]. Alternatively, a new DOS in the gap of the OSC can
also describe the observed behavior. The effect is that the gap of the OSC essentially becomes much narrower,
and so does the ϕ range without pinning. The identical substrate-independent pinning was also observed for
1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-hexacarbonitrile (HATCN) [181] and is included in figure 7.
However, for HATCN the intra-gap DOS was also observed beyond the interface region. For this reason, a
chemical defect rather than interface states was inferred in this case.
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Figure 7. (a) and (b) Work functions and HIBs (EHOMO), respectively, for thin films of the indicated OSCs on different substrates
that cover a large substrate work function range. The plots for NPB exhibit two regimes with S = 1 and S = 0 while the other
OSCs exhibit substrate-independent pinning, i.e. no substrate work function regime with S = 1. Reprinted with permission
from[181]. Copyright (2020) American Chemical Society.

Figure 8. Illustration of the ϕ regimes with characteristic slope parameters S. Note that a possible push-back effect and effects of
a finite layer thickness are not included in this simple sketch.

This occurrence of Fermi-level pinning is related to the observation that the Schottky barrier height at
metal/ISC interfaces cannot be readily tuned via the metal work function, which has puzzled scientists and
plagued device specialists for the better part of the second half of the twentieth century. Also in this case,
the resulting interface chemistry is often (but usually not adequately [202]) accounted for via a Lorentzian
broadening of the DOS.

In cases where the OSC is Fermi-level pinned, its intrinsically low free charge carrier density is significantly
increased due to contact doping from the ISC. The additional carriers give rise to a drastically increased energy-
level bending in the OSC [203, 204]. A complex distribution of the charge carriers can result for OSC bilayers.
In these cases, the Fermi level of the conductive substrate controls the energy levels of the whole organic layer
stack [205–209] (NB: also under illumination [210, 211]). This situation can give rise to energy-level shifts
upon formation of the organic hetero-interface that can be mistaken for interface dipoles at that interface.
However, these are not due to the interaction at the interface at all, but rather a charge carrier redistribution
that guarantees electronic equilibrium throughout the whole layer stack [203, 212].
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Figure 9. Calculated HIBs for an OSC as a function of the effective substrate work function ϕeff for several values for (a) film
thickness as well as (b) width σ and (c) Lorentzian contribution of the HOMO DOS. If not otherwise noted the film thickness is
10 nm and the DOS shape is purely Gaussian. Reproduced from [182]. CC BY 4.0.

Figure 10. (a) Energy level schemes as obtained from ultraviolet and x-ray photoelectron spectroscopy for the contact between
ITO and the molecular semiconductor zinc-phthalocyanine. The left (right) side shows the energetic structure for undoped
(p-doped with F4TCNQ with a mole ratio of ∼0.033) zinc-phthalocyanine. Reprinted from [224], Copyright (2001), with
permission from Elsevier. (b) The same as (a) but for the molecular semiconductor N,N,N’,N’-tetrakis
(4-methoxyphenyl)-benzidine (MeO-TPD) doped with F4TCNQ (mole ratio ∼0.04) on silver, ITO, and PEDOT:PSS. Reprinted
from [208], with the permission of AIP Publishing.

Doped OSC (figure 5(b)): additional charge carriers in organic layers can be induced via doping of the
organic films [213–217]. While it was initially believed that molecular doping proceeds via integer charge
transfer, there is strong evidence that a charge-transfer complex formation occurs instead in cases where the
dopant and matrix consist of small molecules in intimate contact [218, 219]. It is still being debated under
which conditions integer charge transfer or charge transfer complex formation prevails. As a note of caution,
we would like to point out that diffusion of dopant molecules to the interface has been observed [220–223].
In these cases, the interaction between dopant molecules and the ISC can mimic doping-related effects.

For doped OSCs, significant band/energy-level bending occurs also in thin films. As can be seen in
figure 10(a), doping significantly decreases the width of the space charge layer in the OSC and gives rise to
a different ELA between multilayer films of the OSC and ITO [224]. Figure 10(b) shows band bending in the
OSC for substrates with different work functions [208]. Here, band bending in the OSC achieves a common
ELA between the HOMO and EF within a few nm.

In the above example, the inorganic ITO is degenerately doped while the OSC is not. The opposite config-
uration is observed for poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) on n-type H–Si.
PEDOT:PSS is a highly doped organic polymer that is used as a high-performance charge-selective transport
material, and depending on the formulation, can be prepared from several solvents, including water [227].
Formation of the PEDOT:PSS/H–Si interface leads to strong band bending in Si and the formation of an inver-
sion layer at its surface [225], as shown in figure 11(a). Notably, the height of the Schottky barrier is directly
related to the PEDOT:PSS work function. This is very different from the case of metal/Si contacts, where Schot-
tky barriers significantly deviate from what is expected from the metal work functions [202, 228, 229]. This
strongly indicates that interface states are much less important for H–Si contacts to PEDOT:PSS than to met-
als. Figure 11(b) shows a series of PEDOT:PSS/H-Si interfaces with different PEDOT:PSS formulations [226].
While no indication for band bending in PEDOT:PSS was observed, it was found that potential variations in
the PEDOT:PSS layer do occur. These were attributed to a dipole layer either at the PEDOT:PSS/H–Si interface
or at the PEDOT:PSS surface.

A case where band-bending was observed both in the inorganic and OSCs is discussed in reference [137]
and shown in figure 12. Here, n-type ZnO and p-doped α-NPD form a hybrid pn-junction.

We note that molecular doping can also be used to passivate charge carrier traps in OSCs, and thereby
improve the carrier mobility by orders of magnitude [230–232].
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Figure 11. (a) Energy-level diagram for PEDOT:PSS (PH1000, Heraeus Clevios) on hydrogen-terminated n-type c-Si. The
energies (except for the Si band gap and EA) were derived from capacitance-voltage and UPS measurements. Reproduced from
[225]. CC BY 4.0. (b) Energy-level diagrams for several different PEDOT:PSS formulations as indicated. The lower limit of the
band bending is taken from the Si 2p core level shift measured with x-ray photoelectron spectroscopy. All other energies (except
for the Si band gap) were derived from UPS. Reproduced from [226]. CC BY 4.0.

Interface dipoles: interface dipoles arise in cases of a preferential vertical charge distribution at the interface
[155, 233]. If matter replaces the vacuum on top of surfaces of inorganic materials, Pauli repulsion gives rise
to the ‘push-back’ or ‘pillow’ effect, which is well-known for organic/metal interfaces [173, 234, 235]. The
name refers to the fact that the adsorbate displaces the electron-density that spills out of clean metal surfaces.
The electron density redistribution gives rise to an interface dipole. The identical phenomenon was reported
to occur at metal oxide/organic interfaces. Here, an interface dipole of approximately 0.3 eV was consistently
observed for a number of different interfaces [137, 183, 224, 236] and attributed to the push-back effect.

In some cases, interface formation was found to induce an intramolecular charge density rearrangement.
At the interface between 6P and the non-polar (101̄0) facet of the ionic semiconductor ZnO, Della Sala et al
reported an electrostatic coupling of the molecule with the periodic dipolar electric field generated by the
Zn–O surface dimers that gives rise to an induced vertical dipole moment [237]. Additional evidence for the
importance of the molecular quadrupole moment comes from organic heterojunctions. Calculations predict
that at the C60/pentacene interface, the non-zero multipole moments of pentacene gives rise to electrostatic
polarization of C60 [238]. A particularly strong lateral quadrupolar interaction was measured for a blend
formed by a single-monolayer of flat-lying perfluoropentacene and pentacene molecules [162]. DFT calcu-
lations for the OSC/SAM/gold interface indicate that intramolecular polarization also occurs at the OSC/SAM
interface [239].

Different to such induced dipoles, polar molecules have a permanent dipole moment. If polar molecules
exhibit a preferential alignment at the interface, they give rise to an interface dipole [240, 241], as will be further
discussed in the context of organic interlayers below.

An interface dipole can also be caused by substrate-to-adsorbate ground state charge transfer at the inter-
face. On the one hand, states of OSCs and ISCs can hybridize, which leads to fractional ground state charge
transfer at the intimate interface. On the other hand, interfacial charge transfer can be also due to integer charge
transfer between localized states in the ISC (e.g. defects) and molecular orbitals localized in the OSC. In many
cases, a detailed understanding of the quantum-mechanical nature of the ground state charge transfer is still
not established. This is due to mainly two reasons:

(a) A theoretical description is challenging. For example, the ELA and, thus, the amount of interfacial electron
transfer (IET) depends on the employed theoretical method [242]. The sensitivity to the employed method
also extends to describing fractional and integer charge transfer [243]. Recent calculations found that both
transfer mechanisms can be present at hybrid interfaces simultaneously [244].

(b) The real interface structure is often unclear. However, the structure of the inorganic surface (defects, recon-
structions, terminating atom type, presence of adsorbates) and the adsorption geometry of the organic
molecules (adsorption site, molecular orientation, adsorption-induced changes in the molecular confor-
mation) control the electronic structure at the interface and which part of the inorganic and organic
materials interact most intimately.

Experiments that probed the electronic (and in some cases also the geometric) structures of a number of
different moderate molecular acceptors on transition metal oxides identified a prominent role of ISC near-
surface defects for the observed interfacial ground state charge transfer [124, 126, 134, 245–248]. The charge
transfer is due to the misalignment between OSC EA and ISC Fermi-level (cf figure 8) and larger EAs give
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Figure 12. Schematic energy level diagrams at the hybrid interface between (a) the molecular semiconductor α-NPD and
ZnO(0001) and (b) α-NPD p-doped with 2 vol% F6TCNNQ and ZnO(0001). Gray shaded energy bands indicate the energy
levels of ZnO(0001) before molecular adsorption. Reproduced from [137]. © IOP Publishing Ltd. All rights reserved.

Figure 13. (a) Calculated band bending contribution to the overall work function change as a function of surface state density for
F6TCNNQ deposited on undoped GaN. Circles indicate the measured band bending contributions for the indicated different
surface preparation conditions. The surface state density obtained from this procedure agrees well with the value that can be
determined from the bulk donor concentration and the initial surface band bending (before F6TCNNQ deposition) for the same
samples, as further detailed in reference [138]. (b) Band bending contribution for ZnO(000-1) with different bulk dopant
concentrations. Reprinted from [138], with the permission of AIP Publishing.

rise to a more pronounced effect. Therefore, strong acceptor molecules offer a means of quantifying the ISC
bulk and surface DOS [138, 139, 188, 249, 250]. To that end, the fraction of charges originating from the ISC
surface is compared to the fraction stemming from its bulk. As illustrated in figure 5(c)), electron transfer
from the bulk and the surface both give rise to a potential drop across the hybrid interface, but only the latter
also registers as band bending. The potential drop (bend bending) directly corresponds to the work function
change (ISC energy level shifts) upon interface formation, both of which can be probed with photoelectron
spectroscopy. This procedure was used to systematically investigate how surface treatments and the bulk dopant
concentration affect the ISC surface DOS [138]. As can be seen in figure 13, a strong effect of the surface state
density is observed in all investigated cases. Notably, a pronounced influence of the bulk doping is observed
only at very high dopant concentrations.

Note that while the described procedure allows quantifying the influence of the surface states on the charge
redistribution across the interfaces, it does not allow a resolution of the nature of the interaction at the hybrid
interface. The two very strong acceptors, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNNQ)
and 2,2-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6TCNNQ) are an interesting case. While a
pronounced chemical shift in the nitrogen atoms of molecules at the interface (indicative for charge transfer)
are observed for H–Si [251], this is not the case for ZnO [249, 252]. Therefore, despite further insightful inves-
tigations with other techniques [253, 254], the exact nature of the interfacial interaction at these organic/ZnO
interfaces is not yet completely resolved.
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The introduction of insulating interlayers induces the transition from fractional to integer charge transfer
[255]. The thickness of the interlayer controls the number of transferred charges [205, 207, 209, 256], which
shows that an interface dipole is formed between substrate and overlayer, whereas the insulating interlayer is
neutral. The opposite trend in interface chemistry strength can be induced by covalently binding the organic
and inorganic materials at the hybrid interface. The ELA at these interfaces has been studied as well and we list
examples for Si [63, 257] and TiO2 [258, 259].

We conclude this section by noting that organic and hybrid materials are often prone to chemical changes
and structural rearrangements. The rate of these aging processes can be significantly increased by exposure
to vacuum and irradiation. References [260, 261] give a good overview about how these effects should be
considered when determining the relevant energy levels for organo-halide perovskites, which is a particularly
dynamic material class.

4. Photoinduced excited state dynamics

The purpose of a solar cell is to convert incident light into electricity via the photovoltaic effect. In broad terms,
this is achieved by delivering electrons and holes that have been generated by photoexcitation of a semicon-
ductor to separate electrical contacts, where an attached electrical load can be driven. A well-optimized solar
cell operated at the maximum power point maintains a chemical potential difference between the electron
and hole populations that is close to the band gap energy of the semiconductor. Charge carrier recombina-
tion within the solar cell beyond the amount necessary to satisfy thermodynamic constraints is a loss process,
which reduces the chemical potential difference between electrons and holes, expressed as a reduction in the
quasi-Fermi level splitting, and hence the achievable voltage of the solar cell.

The exact process by which a solar cell converts light into usable electricity depends on the details of the
cell design, and this must be disambiguated in order to give a concise account of the relevant excited state pro-
cesses. Our scope in this work is restricted to the different variations of hybrid inorganic–organic solar cells,
and the hybrid interfaces of these devices in particular. We first make an important distinction regarding the
nature of the semiconductor light absorber. For an OSC absorber layer, photoexcitation leads to exciton for-
mation, and the mechanics of charge separation are chiefly concerned with driving efficient exciton separation
at heterojunctions while providing a device structure that supports electron and hole diffusion away from the
heterojunction. An OSC absorber also allows for spectral conversion processes, such as singlet fission, to be
implemented. In the case of the semiconductor light absorber having a negligibly low exciton binding energy
(this corresponds with all classical bulk ISCs, but also with the bulk hybrid lead halide perovskite family), free
electron–hole pairs are generated directly upon photoexcitation.

In the following, we briefly discuss exciton formation and transfer mechanisms, and then collect the dif-
ferent possible exciton evolution pathways available in hybrid solar cells (see sketch in figure 14). We then
separately discuss the role of the hybrid interface in the two different cases described above, namely that (i)
excitons or (ii) free charge carriers arrive at a hybrid interface.

4.1. Exciton formation within OSC and ISC layers
If a photon reaches an absorber of the solar cell, it may get absorbed by inducing an electronic transition for
which the energy difference between initial and final state corresponds to the photon energy. The immedi-
ate effect of the electronic transition can be described as the filling of one formerly unoccupied higher-lying
electron level and the simultaneous creation of a hole in the lower-lying level. In response to the electronic
transition, the electronic and atomic structure of the local environment adapts to the new charge configura-
tion and stabilizes it. This is referred to as electronic and lattice relaxation, respectively, and the former is much
faster than the latter. An exciton is a quasi-particle that consists of the electron-hole pair as well as the envi-
ronmental response. The exciton binding energy is the energy difference between the bound electron–hole
pair and the situation where the electron and hole are sufficiently separated for their Coulomb interaction to
be negligible. The exciton immediately after the transition is ‘hot’, since it typically contains excess vibrational
and/or electronic energy compared to the lowest excited state of the same multiplicity. Accordingly, the exciton
is considered ‘cold’ once it has thermalized by shedding this excess energy.

As mentioned previously, the relatively large dielectric constants of bulk crystalline ISCs reduces the
Coulomb attraction between geminate electron–hole pairs as a result of dielectric screening. These materi-
als are often referred to as non-excitonic since the exciton binding energy is small, on the order of a few meV
[262], which is less than the thermal energy available at room temperature. The electron–hole pairs produced
by photoexcitation rapidly dissociate into free charge carriers, and excitonic effects can be largely ignored.
Despite different initial expectations, hybrid lead halide perovskites also appear to be non-excitonic by this
definition [263, 264].

This is in contrast to what occurs in the case of a typical π-conjugated organic material [265, 266] and low-
dimensional ISCs [114, 267–272]. Here, two factors combine to produce distinctive excitonic effects. A low
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Figure 14. Summary of the possible pathways from photon absorption to charge collection for different hybrid solar cell
concepts (labeled at the top). The process displayed in the very right requires interdigitated contacts since both charge carriers
have to be extracted on the same side of the hybrid interface.

dielectric constant for organic and organic-dominated hybrid materials results in weak dielectric screening
and hence a strong Coulomb interaction between electrons and holes. In addition, a high degree of spatial
confinement in one or more dimensions occurs, resulting in localizing and hence increasing the Coulomb
attraction of electrons and holes [273]. This leads to the formation of strongly bound and localized (Frenkel)
excitons upon photoexcitation. These necessitate dissociation in order to generate photocurrent in a solar cell.

Frenkel excitons exhibit significant correlation effects, meaning the total electron spin of the exciton sensi-
tively affects the state energy (equivalently, the exciton binding energy). Neglecting for simplicity the various
spectroscopic selection rules that come into play, the allowed optical transitions for such a system will be
between the electronic ground state and exciton states with the same total electron spin, while optical tran-
sitions between unlike spin states are forbidden. According to Hund’s rule for maximum multiplicity, triplet
excited states (corresponding to a total electron spin of 1) will always be lower in energy than singlet excited
states (total electron spin of zero) for a given principle quantum number.

The substantial energy difference between singlet and triplet excited states in some OSCs can be exploited
for useful functions. Singlet fission is a process by which a singlet exciton splits into two triplet excitons of
approximately half the energy, located on adjacent chromophores [274, 275]. The inverse process is named
triplet fusion or triplet–triplet annihilation. Both processes have the potential to support solar cell efficiency
beyond the Shockley–Queisser limit in hybrid solar cells, with singlet fission serving as an exciton multipli-
cation scheme that can reduce thermalization losses [4, 135], while triplet fusion can be used in concert with
a triplet sensitizing light absorber to generate additional photocurrent from light that is sub-resonant with
the optical gap of a solar cell [276, 277]. Several species of quantum dots, especially those from the metal
chalcogenide family, have been employed to similar effect in exciton multiplication and triplet fusion schemes
[278–280].

Experiments that probe excitons usually measure energy differences (e.g. optical transitions) that do not
directly correspond to energy-level differences of the two non-interacting single particles. For example, the
difference between the HOMO IE and the LUMO EA (the transport gap) deviates significantly from the energy
of the first optical excitation (the optical gap). This is because even in their simplest representation, excitons
have to be described as two bound particles (electron and hole) that interact with themselves in addition to their
environment. Therefore, one has to be particularly careful when discussing excited states of organic molecules
in a one-particle energy-level diagram, as detailed in reference [281].

4.2. Free charge carrier collection
Some hybrid solar cell working principles rely on free charge carriers arriving at hybrid interfaces. This is the
case when only non-excitonic absorber materials are used (case IX). However, it also applies to cases where
the organic layer itself contains a heterojunction which facilitates exciton dissociation (case OXb). Hybrid
interfaces in these devices are formed between the absorber layer and an electrode or transport layer. Examples
are an ISC absorber in contact with an organic charge selective contact, or an OSC heterojunction in contact
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with metal oxides. In a tandem cell architecture, both the organic and inorganic layers produce free charge
carriers. In this case, the hybrid interface between these two absorber layers serves as a recombination layer
[282–287].

Free charge carriers are generated at heterojunctions in excitonic systems, or directly upon photoexcitation
of a non-excitonic semiconductor. In the former case, electrons and holes diffuse through separate material
domains to their respective electrodes. In the latter, electrons and holes have to be separated by steering their
respective currents toward separate electrodes. The current densities for electrons and holes are controlled by
their conductivities and the gradients of their electrochemical potentials, which, in turn, is equal to their quasi
Fermi levels [288]. Maximizing the carrier current to the appropriate contact thus requires a negative gradient
of the respective quasi Fermi level and a sufficiently high conductivity, while minimizing the current in the
reverse direction requires the opposite. To achieve this anisotropy, at least two distinct regions of the device
are required.

A Si pn homojunction is a frequent realization of this requirement. Here the doping level across a mono-
lithic silicon slab is deliberately varied in order to implement the required spatial variation in carrier con-
ductivity. Another strategy for charge carrier separation is the implementation of heterojunctions, where the
semiconductor absorber is interfaced with unlike materials, which impart the functions of carrier selectivity
[288]. In perhaps the simplest example of this concept, high/low work function metals can be used to cre-
ate charge-selective heterojunctions on silicon. However, the high density of gap states at the interfaces gives
rise to non-ohmic contacts [202, 228, 229] and leads to substantial surface recombination losses [289]. A more
successful approach is found in silicon heterojunction cells employing thin amorphous silicon heterojunctions
[290]. Dopant-free hetero-contacts are another approach [291–293]. A number of hybrid heterojunctions con-
sisting of organic materials on crystalline silicon have been reported [294–297]. In this role, the strength of
organics are their weak interface chemistries, which may reduce the detrimental effects of Fermi-level pinning
(compared to metals) and give rise to better passivation of the ISC (compared to inorganic dopant-free hetero
contacts). PEDOT:PSS has shown great promise as a hole-selective contact on silicon [298–301]. In section 3
we discussed the ELA at the PEDOT:PSS/H–Si interface. Here, we discuss the charge transport properties. Two
different models could apply: in a heterojunction between a p-type semiconductor (PEDOT:PSS) and n-type
semiconductor (c-Si), the transport processes are dominated by the diffusion of minority carriers. In contrast,
a contact between a metal-like semiconductor (PEDOT:PSS) and a high-mobility semiconductor (c-Si) should
behave as a Schottky diode, where thermionic emission over the Schottky barrier controls the charge transport.
Jäckle et al found that the PEDOT:PSS/H–Si interface behaves like an abrupt pn heterojunction rather than a
Schottky diode [225].

The ELA at the hybrid interface controls a possible contact doping into the interface-near region of the
absorber layer, which selectively influences the local conductivity for electrons and holes [288, 302–305], but
also leads to non-radiative recombination for materials with low mobility, like OSCs [204, 306]. For sufficiently
low bimolecular recombination rates, the large increase in mobility already for ultralow doping [232], together
with a positive effect on the built-in field, outbalances the increased recombination and warrants employing
electrode materials with work functions that force the contacts beyond the onset of ohmic transition [187].

The current density–voltage (J–V) characteristics and open circuit voltage VOC at a hybrid heterojunction
between an organic p-type semiconductor (i.e. the Fermi level of the contact material is closer to the OSC
HOMO than to its LUMO) and an inorganic n-type semiconductor was semiclassically calculated by Renshaw
and Forrest [151]:

J = Js

[
exp

(
qV

nOkBT

)
− χ(V)

]
− Jph, Js ∝ exp

(
−ΔEOI

kBT

)
(1a)

qVOC = ΔEOI − nOkBT ln

(
kr

kr + kd

q〈a〉NHOMONckrec

Jph

)
. (1b)

Here, nO is the ideality factor that depends on the trap density. Jph is the total photocurrent, which is
the sum of the exciton current generated in the OSC times the exciton dissociation efficiency at the inter-
face and the direct carrier generation current in the ISC. χ(V) is the bias-dependent reverse-bias factor with
χ(0) → 1. The interface energy gap ΔEOI is the energy difference between IE of the OSC and the EA of
the ISC. kr (kd) are the hybrid CT state recombination (dissociation) rate. The field dependence kd can be
described by the Onsager–Braun model [307, 308]. 〈a〉 is the characteristic width of the hybrid CT state at the
organic–inorganic interface. NHOMO (Nc) is the OSC HOMO (ISC VB) effective DOS. krec is the bimolecular
recombination rate. Further details and formulas for OSC/ISC interfaces with other type configurations can
be found in reference [151].

Charge transport through SAMs on ISCs in a metal/organic/ISC configuration was studied for a number
of inorganic–organic combinations and modeled as thermionic emission over a Schottky barrier attenuated
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by tunneling through a ‘molecular insulator’ [63, 257, 309], akin to the transport through a metal-oxide-
semiconductor junction [310]. Recently, a SAM of methyl-substituted carbazole on ITO has been utilized as
the hole-selective layer of a lead halide perovskite absorber used within a silicon/perovskite tandem solar cell
[311]. The SAM made a key contribution to the record-setting device performance and high photostability
through fast hole extraction and minimized nonradiative recombination at the hole-selective interface. The
compositional flexibility and self-limiting monolayer growth of the carbazole derivative, the attributes of which
belong to organic molecules in particular, appear instrumental in this function, and make this a good example
of the potential boon of hybrid approaches to solar cell interfaces.

4.3. Exciton diffusion and harvest at hybrid interfaces
While single electrons and holes carry a net charge and therefore respond to a gradual electrostatic potential,
like band bending, or to a gradient in the quasi-Fermi level, this is not the case for excitons, which are electri-
cally neutral. The Coulombically bound pair of charges that constitute an exciton cannot spontaneously drift
apart from one another, at least when the exciton binding energy exceeds kT. An abrupt change in some elec-
tronic property—for instance, the EA—is required to drive exciton dissociation, as is typically implemented at
heterojunctions. Here we discuss the case that excitons must travel to a hybrid interface prior to their conver-
sion into free charge carriers (cases OXa and OXc) through dissociation at the hybrid interface (cases HXa and
HXa’), or exciton transfer across the hybrid interface followed by spontaneous dissociation in a low-exciton
binding energy SC (case HXb).

Excitons are typically required to migrate throughout the absorbing medium before encountering a suitable
interface. Exciton transfer, migration, or diffusion, as distinct from exciton dissociation, refers to the concerted,
resonant relaxation and excitation of electronic transitions in nearby absorbers giving rise to the appearance
of an exciton moving throughout a system. Many such transfers may take place before an exciton ultimately
expires via recombination or dissociation. The mechanism by which excitons undergo transfer depends on
the nature of the electronic transitions involved in the donor (the initially-excited excitonic center) and the
acceptor (which may be excitonic or non-excitonic).

In the case of both donor and acceptor transitions being electric dipole allowed, the dominating exci-
ton transfer process is usually Förster resonance energy tranfer (FRET), wherein the transition dipoles of the
exciton donor and acceptor couple through the Coulomb interaction, analogous to classical dipole–dipole cou-
pling, and electronic energy is exchanged through a virtual photon. The effective range of FRET is expressed
as a critical radius, R0, defined as the donor–acceptor separation at which the FRET quantum yield reaches
0.5; R0 values of around 5 nm are typical in molecular solids [312]. While FRET was first formulated in terms
of distinct molecular or atomic entities as donor and acceptor, FRET at hybrid interfaces is an important topic
in the research of hybrid optoelectronic devices [34, 44, 313]. It has been invoked to describe the transfer of
electronic energy to bulk crystalline silicon from metal chalcogenide nanocrystals [314, 315] as well as from
fluorescent organic molecules [316].

In the case that the exciton donor and acceptor lack an electronic dipole allowed transition at the rele-
vant frequency, Dexter energy transfer may become significant. The Dexter transfer mechanism is based on
the exchange interaction between adjacent chromophores that bear resonant electronic transitions, and per-
mits a non-negligible rate of resonance energy transfer between molecules in spite of the lack of an electric
dipole allowed transition [317–319]. Dexter transfer is the mechanism by which triplet excitons may migrate
throughout materials when the radiative relaxation of triplet excitons to a singlet ground state is strictly for-
bidden. Since this applies exactly to singlet fission materials, both in the exciton diffusion and transfer stage,
Dexter transfer is particularly relevant for incorporating singlet fission into solar cells [320].

FRET typically occurs at a much higher rate and at longer range than Dexter energy transfer, hence for
materials in which FRET is active, the rate due to Dexter is usually negligible. On the other hand, where radia-
tive relaxation of triplets is strictly forbidden, the triplet lifetime is significantly greater than that of singlet
excitons, hence the low energy transfer rate may be counteracted. A key metric is the exciton diffusion length,
which depends on both the lifetime and the hopping rate. It has been shown that, given optimal energetics
of singlet and triplet excitons, triplet exciton diffusion can occur via a cooperative singlet and triplet exciton
transport mechanism [321].

Exciton dissociation relies on IET. For relevant cases it is often assumed that IET can be described in the
limit of weak electronic coupling between donor and acceptor, and, thus, non-adiabatically [318, 322–326].
In the framework of Marcus theory, this yields for the IET rate at a hybrid interface:

KIET =
2π

h

∫
dEρ(E)|H(E)|2 1√

4πλkBT
exp

[
− (λ+ΔG − E)2

4λkBT

]
. (2)
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Here ΔG is the free energy difference between electron acceptor and donor and relates to the ELA. ρ(E)
is the ISC DOS at energy E, H(E) is the electronic coupling matrix element between donor and acceptor at
energy E, and λ is the reorganization energy [327–329] that is related to polaronic effects.

Equation (2) is instructive since it combines several interface parameters that can, at least conceptually, be
individually modified. In the following we substantiate the relevance of these parameters.

There is clear evidence that the interfacial ELA sensitively affects exciton harvest. The ELA at the
organic/ZnO interface was shown to control the exciton transfer efficiency [330]. For organic heterojunctions,
the ELA and the VOC of corresponding solar cells were found to correlate [331] (although with a significant
offset of ∼0.5 eV that is thought to be linked to intramolecular vibrations [332, 333]). An optimal driving
force has been reported for converting excitons into free carriers in excitonic solar cells [334]. A similar driv-
ing force optimum was also found for triplet exciton energy transfer at the interface between pentacene and
PbSe nanocrystals [335]. For organic/metal oxide DSSCs, a correlation between the electron injection and the
driving force was observed [323].

The electronic coupling, H, was identified as another crucial parameter [336]. The influence of H was
systematically studied for DSSCs via the linker type and the incorporation of insulating interlayers [323, 337].
Equation (2) also expresses the fact that the donating OSC state should overlap with a dense manifold of states
in the accepting band of the ISC in order to achieve a high IET rate. We note that ρ(k) has to be considered
as well, since it was shown that FRET from quantum dots into the indirect ISC Si relies on phonon-assistance
[314].

While instructive, equation (2) might not be adequate to describe the most relevant interface processes for
exciton harvest.

Firstly, the suitability of Marcus theory in some circumstances has been questioned [338], partially due
to the observation of fast transfer times that requires the transfer to be described adiabatically. Such small
transfer times were observed for organic/TiO2 [339] and organic/Si [340] interfaces and also for organic
heterojunctions [341–343].

Secondly, the relationship between the parameters of equation (2) and the overall exciton dissociation effi-
ciency becomes less simple if the forward process must strongly compete with other parasitic processes, for
instance, recombination from a charge transfer state. For example, exciton dissociation at the organic/TiO2

interface can be injection or diffusion limited [344]. A good interface has to facilitate efficient injection, mean-
ing a sufficient rate of electron transfer, but more crucially, a minimal rate of the reverse process. Achieving
optimum performance may entail striking a compromise between competing rates.

Lastly, the driving force for exciton dissociation via electron transfer and the rate of subsequent charge
separation away from the interface may be related. After the charge transfer over a hybrid interface, electron
and hole reside on opposite sides of the interface. Such a state is referred to as CT state (‘CT exciton’ and
‘bound charge pair’ are also sometimes used). If injection and subsequent CT state separation occurs coher-
ently, the relevant free energy difference is that for the complete process instead of that for the initial IET. For
example, a higher driving force for the initial IET increases the probability for hot CT states, which in turn
might increase the probability for successful exciton dissociation. CT states have been observed in the fol-
lowing subset of hybrid interface systems: Zn(Mg)O/organic [345, 346], (In)GaN/organic [109], CdS/organic
[347], and transition-metal dichalcogenide/organic [348, 349]. We note in passing that it might be instructive
to additionally analyze the CT excitons in van der Waals heterostructures [350], since they allow to study the
response of hybrid excitons to a local potential [351], their intra-layer and interfacial interaction [352], the
role of momentum conservation [353, 354], and Coulomb engineering of the bandgap and excitons [355].
However, it is still debated whether hot or cold CT states drive exciton dissociation in these materials, and
the answer may well be material-dependent. CT states as mediators of recombination was reported for some
hybrid systems [356–358]. Non-coherent exciton dissociation via cold CT states has been reported for the
poly(3-hexylthiophene-2,5-diyl) (P3HT)/TiO2 interface [359].

While we note that qualitative differences between organic/organic and organic/ZnO interfaces have
been reported [359, 362], it is instructive to consider findings from all-organic heterointerfaces, which have
been more widely studied. In particular, the body of work on the role of hot CT states in charge separa-
tion is significantly larger [326, 363, 364]. Driving force, delocalization, and electron–hole separation were
reported to improve the performance for organic heterojunctions and hint at the importance of hot CT states
[341, 342, 365–370]. The pathway to separated charges via a hot CT state is illustrated in figure 15. On the
other hand, current generation with high efficiency was also observed from relaxed CT states [371–373]. Pos-
sible processes that derive from the interface morphology and can assist charge separation from a cold CT state
are illustrated in figure 16 [361]. In addition, screening of the charge carriers [364], the mesoscopic structure
[374, 375], entropy [376], and different mobilities of electron and holes [377] can assist exciton dissocia-
tion. These findings indicate in particular the importance of mesoscopic interface structures that give rise
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Figure 15. Concept of charge separation mediated by vibronically hot CT states. Potential crossings of exciton (XT), CT, and CS
states, together with the vibrational wave functions on the respective states. The solid and dashed black lines illustrate the
vibrational ground (ω0) and excited (ωn) states, respectively. Reprinted with permission from [360]. Copyright (2013) American
Chemical Society.

Figure 16. (a) Schematic of the energetics at a donor–acceptor interface in the absence of a field and as a function of
electron–hole separation distance reh. (b) The same as (a) when an electric field is present. The electrical gap and the optical gap
are shown. Their difference is due to the Coulomb attraction between electron and hole. The Coulomb energy is indicated by the
gray line. The fact that the energies are actually broadened is indicated by the Gaussian line shape that superimposes on the levels.
The electrostatic potential gradient reduces the energy barrier by ΔE1. Energetic disorder further reduces the barrier by ΔE2.
ΔE3 is a compensation resulting from the zero-point oscillation energy of the electron–hole pair in the Coulomb potential. EA is
the energy that still needs to be overcome to separate charges. [361] John Wiley & Sons. [Copyright © 2019 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim].

to gradients in crystallinity and intermixed phases that facilitate charge delocalization and favorable energy
cascades [378].

5. Modifying hybrid interfaces

The chemical and electronic structure of hybrid interfaces is highly tunable by virtue of the many interop-
erating components, and many approaches have been undertaken to improve their optoelectronic functions.
Figure 17(a) summarizes schematically the three interface modification categories discussed in the following.
Example modification materials are given in the figure caption. We discuss the effects of the modification
schemes via the expected influence on the parameters in equation (2), namely the driving force ΔG, the elec-
tronic coupling H, and the density of acceptor states of the ISC ρ. Echoing a point made previously, enhancing
the yield of the desired forward process can also be achieved by reducing the rate of competing loss processes,
and interface modifications can also be made to this end.

5.1. Doping
Modifying the ISC by doping allows tuning its electronic interface structure. The electronic structure controls
the DOS that are available for accepting charge transfer. This is expressed by ρ in equation (2). Notably, ρ for
acceptor states that give rise to bound CT states are to be avoided. As shown in figure 18, Cs doping of ZnO
reduces the density of these gap states and the associated effect of electron trapping at the interface [358]. Also
N doping of ZnO was shown to facilitate de-trapping of electrons [381].
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Figure 17. (a) Interface structure showing schematically a combination of different interface modifiers (orange). Example
modifier materials are given in brackets below and discussed in the main text. ISC doping can be used to tune the surface
potential (ZnO:Sn), fill gap states (ZnO:Cs, ZnO:N), or passivate the surface (Si:B). The inorganic interlayer (IL) can represent a
dielectric layer (SiO2, TiO2, ZrO2, Al2O3, MgO, ZnO, Y2O3, Nb2O5, HfOxNy) or a (highly electronegative) surface-passivating
agent (TiCl4, NF3). The π-conjugated core of the SAM can be identical to the molecules that make up the OSC. In this case,
conceptually only the linker of the SAM serves as interface modifier. Alternatively, the whole SAM can act as modifier, e.g. by
facilitating an interface dipole or energy cascade. The green-red-striped filling accounts for both cases. (b) Illustration of how a
linker with suitable chemical structure and an inorganic interlayer with optimized thickness allows for efficient injection and
effectively prevents geminate recombination. (c) Illustration of an inorganic interlayer additionally modified with a
sub-monolayar of acceptor molecules (F4TCNQ, F6TCNNQ, HATCN) that induce an interface dipole (μ). Dipoles with opposite
orientations can also be introduced via donor molecules (19-electron organometallic sandwich compounds [379, 380]).

Figure 18. (a) Cross-section of the inverted bilayer architecture. Light is incident through the glass substrate and the transparent
ITO cathode and ZnO:Cs electron acceptor layer. (b) J –V characteristics of representative hybrid ZnO:Cs/P3HT photovoltaic
devices with increasing Cs doping level, measured under mismatch-corrected AM 1.5G conditions with 100 mW cm−2 light
intensity. Comparing the undoped device (open squares) with the optimally doped device (open diamonds) shows the increase in
power conversion efficiency upon doping. (c) Simplified model of the processes at the metal oxide/polymer interface after
illumination by above-band-gap light, illustrating how a reduction of ZnO gap states by Cs doping leads to a smaller number of
bound electron–hole pairs and more free charges. [358] John Wiley & Sons. [Copyright © 2016 WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim].

Extrinsic doping with Sn [382] as well as intrinsic doping from surface defects was shown to control the ELA
at oxide/organic interfaces [124, 126, 183]. Changes in the ELA have direct implications for ΔG for forward
and backward IET processes as well as for the available ρ [382].

A suitable boron (B) doping profile at Si surfaces gives rise to electron transfer from unsaturated dangling
bonds on the Si surface to sub-surface B atoms, thereby passivating the surface Si dangling bond state. This
de-activated ISC surface was found to induce a face-on orientation for some organic adsorbates [383–385],
indicative of a larger H than in the case of chemically passivated surfaces.

Doping in the alloy regime allows tuning the band gap of the ISC. For example, the combination of ZnMgO
and ZnO can be used to form a quantum well structure at the ISC surface and, which enhances FRET to an
organic overlayer [313, 386].

5.2. Inorganic interlayers
As shown in figure 19, several insulating oxide interlayers (SiO2, TiO2, ZrO2, Al2O3, [387, 388] MgO
[388, 389], ZnO, Y2O3 [388]) were found to improve the efficiency of the exciton dissociation process of
DSSCs. Suppressed recombination due to an increased electron–hole separation after injection was sug-
gested as the primary reason for the improvements. Passivation of surface states has also been found to be
important [390].

At the P3HT/TiO2 interface, a Nb2O5 interlayer was shown to suppress the formation of CT states [391].
Also in this case, the interlayer was shown to reduce non-geminate recombination both when P3HT and PbSe
colloidal quantum dots were used as absorber.

Already in the 1980s, Ng and Card reported an asymmetry in the SiO2 tunneling barriers to electrons
(low barrier) and holes (high barrier) [392], showing that interlayers can be used to achieve charge-selective
transport. Essentially the same effect was also reported for TiO2 [393, 394].
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Figure 19. (a) Illustration of the interfacial charge-transfer processes occurring at the nanostructured TiO2/Al2O3 blocking
layer/dye/electrolyte interface of DSSCs. (b) Transient absorption data monitoring photoinduced absorption of the dye cation
following optical excitation of the dye RuL2(NCS)2 adsorbed on nanocrystalline TiO2 films with (a) 0, (b) 1, and (c) 2 Al2O3

overlayer coatings. (c) Current/voltage characteristics of typical DSSCs fabricated employing RuL2(NCS)2 sensitized (a) TiO2,
(b) SiO2/TiO2, and (c) Al2O3/TiO2 films. Data are shown for film thicknesses of 8 mm and cell active areas of 0.8 cm2. The data
shown were obtained under AM1.5 simulated sunlight calibrated to ∼100 mW cm−2. The insert shows the corresponding dark
current data. All data were obtained for non-scattering films with transparent counter electrodes. Reprinted with permission from
[387]. Copyright (2003) American Chemical Society.

Figure 20. Evidence for oxide formation at the buried PEDOT:PSS/H–Si interface from hard x-ray photoelectron spectroscopy.
Presented are Si 2s spectra of silicon substrates that are (a) freshly HF-dipped and (b) 2 weeks oxidized in ambient, as well as those
that are covered with PEDOT:PSS and post-treated with DMSO (c) directly after preparation and (d) after storing 2 weeks in
nitrogen. Besides the elemental silicon, silicon dioxide and silicon suboxides (if present) at the surfaces are indicated. Reprinted
with permission from [395]. Copyright (2016) American Chemical Society.

Figure 20 presents an example for an unwanted oxide interlayer. As resolved with hard x-ray photoelectron
spectroscopy, the buried Si-PEDOT:PSS interface contains a non-intentional sub-stoichiometric silicon oxide
layer immediately after fabrication of the polymer layer [395]. When stored under N2, the interface contin-
ues to oxidize and forms stoichiometric SiO2. The oxide formation likely derives from residual water in the
PEDOT:PSS film and a more stable surface passivation should be chosen, since the uncontrolled silicon oxide
growth is expected to deteriorate the interface properties. These results were recently substantiated by a more
extensive study [396].

As shown in figure 21, the triplet harvest yield at the Si-organic interface could be enhanced by using
a sub-nm hafnium oxynitride (HfOxNy) interlayer [397]. By contrast, no improvement was reported when
using LiF interlayers at the same interface [398]. However, the thinnest interlayer in the latter study was 5 nm,
significantly beyond the narrow thickness range for which a positive effect of the interlayer was reported in
reference [397]. The HfOxNy interlayer was also found to reduce the surface recombination in Si via field-
effect passivation. The passivation effect was most pronounced in the spectral region where Tc absorbs light.
This indicates that charges from Tc excitons accumulate at the HfOxNy-modified interface, which might also
mediate triplet dissociation. Since the interlayer has a larger dielectric constant than the ISC in this case, a more
efficient screening of the Coulomb potential of the electron-hole pair might also contribute.

Another kind of interlayer is the terminating surface layer. For example, TiCl4 is a common passivation
reagent for TiO2 that can be used for trap-state engineering [399]. For elemental ISCs like Si, the simplest
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Figure 21. Enhancement of silicon photoluminescence due to a light-facing Tc layer (a) flow diagram summarizing the two
pathways that increase the silicon photoluminescence. Following photoexcitation of Tc (blue) or silicon (dark purple), electric
field effect passivation (orange charges) is caused by exciton dissociation at the interface or charge diffusion from the silicon.
Additional electron–hole pairs in silicon can also be created by singlet exciton fission in Tc (green) and triplet energy transfer
(light red). (b) Key processes at the Tc–silicon interface. kST and kTT are the rate constants of singlet and triplet exciton transfer,
respectively; kF is the Tc fluorescence rate constant; kloss is the rate constant of non-radiative triplet deactivation and kSF(B) is the
net rate constant of singlet exciton fission, which depends on the applied magnetic field B. e−, electrons; h+, holes. The top part
presents a simplistic model of the effect of an applied magnetic field on singlet exciton fission. Application of a strong field
(B > 0.05 T) increases the singlet exciton density, [S1], and decreases the triplet exciton density, [T1]. (c) The effect of the applied
magnetic field described in (b) is an overall decrease of the silicon photoluminescence. The magnitude of the decrease depends on
the thickness of the HfOxNy layer, with a clear peak at 8 Å. Reprinted by permission from Springer Nature Customer Service
Centre GmbH: [Spinger Nature] [Nature], [397] (2019).

termination consists of hydrogen. In comparison, more electronegative groups are expected to give rise to an
increase of the work function by up to more than 2 eV [159, 160]. Such a large work function increase has
indeed been realized experimentally by exposing H–Si to NF3 [136]. In the same work, it was shown that this
polar surface termination allows tuning the ELA at the hybrid interface in much the same way as discussed
below for organic interlayers.

We note that quantum dots can also be used as acceptor interlayers in energy cascades that funnel charges
[400] or excitons [315] from an OSC.

5.3. Organic interlayers
Organic interlayers can be used to tune the work function of ISCs within a range of several eV via the intro-
duction of surface dipoles. This can be achieved via induced dipoles generated by donor or acceptor molecules
that drive a preferential electron rearrangement between the ISC bulk and its surface [139, 249, 251, 379]. The
molecular modifiers are typically prepared via vacuum-deposition, but can also be grown from solution [401].
Alternatively, molecules that bear a permanent dipole moment and are preferentially aligned, e.g. by anchoring
to the ISC surface, also give rise to a surface dipole [52, 258, 345, 402, 403].

The change in work function can be used to tune the ELA at the hybrid interface, as illustrated in
figure 17(c), 22, and 23. This was observed, e.g. at organic/ZnO [249, 330, 345, 406] organic/H–Si [136, 380],
and organic/TiO2 [258, 407–409] interfaces. A change in ELA can be used to increase (decrease) ΔG as well
as the ρ overlap between the OSC and ISC for electron injection (recombination), thereby enhancing exci-
ton dissociation [410]. As can be seen in figure 24, this modification enhances the short circuit current (JSC)
but the same change in ELA also reduces the VOC [405, 406]. This follows from the fact that equation (1b)
depends on the interface energy gap ΔEOI. In a related case, the opposite approach was employed for a non-
solar cell structure. Here, ELA tuning toward smaller ΔG was used to enhance the exciton transfer yield at
the ZnO-organic interface and attributed to the fact that the transferred excitons undergo dissociation at the
modified hybrid interface with significantly reduced rates [330]. In another study, ELA tuning via molecular
acceptors did not notably improve the triplet exciton dissociation at the organic/H–Si interface [136]. C60 was
one interlayer material examined in this study. In this case, the interface dipole at the ISC/interlayer interface
was compensated by a second, unintentional interface dipole at the interlayer/organic interface. This example
shows the importance of experimentally confirming an ELA tuning scheme. Co-adsorption of modifier and
dye was used in DSSCs to obtain SAM blends [411]. In a recent example, this strategy facilitated an increase
of the cell efficiency from 11.1% to 12.9% [412].

Molecular acceptors not only induce ground state charge transfer from the substrate, but can also accept
photogenerated charges from the OSC. This resembles closely the standard operation mode of conventional
all-organic solar cells. In hybrid solar cells, this can be exploited to assist exciton harvest via an energy cascade,
as further discussed in relation to surface-bonded dyes below. Here we mention that for a zinc phthalocyanine
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Figure 22. (a) Effect of interlayers of the electron donor mesitylene pentamethylcyclopentadienyl ruthenium dimer
[RuCp∗(mes)]2 and the electron acceptor F6TCNNQ on the energy-levels at the organic/H–Si(111) interface. (Left) SECO and
valence spectra for H:Si(111)/[RuCp∗(mes)]2/α-NPD (blue), H:Si(111)/α-NPD (black), and H:Si(111)/F6TCNNQ/α-NPD
(red). The α-NPD thickness is ca. 5 nm in all cases. The work function is obtained from the SECO onsets as indicated in the
figure. The typical α-NPD valence region spectral shape is clearly observable for all cases. The HOMO onset of α-NPD (indicated
by numbers) shifts according to the work function of donor/acceptor-modified H:Si(111), and varies between 0.5 and 2.9 eV. All
films were deposited by thermal evaporation in UHV. (Right) Analogous data for films of the polymer semiconductor
poly[(9,9-dioctylfluorene-2,7-diyl)-alt-(benzo [2,1,3]thiadiazole-4,7-diyl)] (F8BT, thickness of ca. 4 nm) deposited by solution
processing in a glovebox. The F8BT VB onset shifts according to the Si work function change. The structures of the molecules and
the polymer are shown next to the spectra, and the schematic heterojunction structures are on the right and left sides.
Reproduced from [380]. CC BY 4.0. (b) Electroluminescence (EL) from α-NPD deposited on SAM-modified ZnO. The inset
shows a clear correlation between the energy position of the EL maximum and the corresponding energy gap between the CB
minimum of ZnO and the HOMO onset of α-NPD derived from UPS. Reprinted with permission from [345]. Copyright (2015)
American Chemical Society.

Figure 23. (a) Two-dimensional plot of background-subtracted two-photon photoemission data for 60 nm Tc/H–Si(111).
(b) One-dimensional slices of the data in (a) at the indicated times. The S1 and T1 positions were determined by visual inspection
and comparison with the time series measured for another Tc film reported previously [404]. (c) (Left) One-particle energy-level
diagrams for the unmodified Tc/H–Si(111) interface. The energy levels for the Tc HOMO and H–Si(111) VB were derived from
the data shown in (b) and figure 6. Unoccupied states do not have an IE and the Tc LUMO is indicated only for completeness.
(Center) and (right) Energy-level diagrams with shifted Tc/c-Si ELA due to the introduction of interface dipoles of two different
magnitudes. Reprinted with permission from [136]. Copyright (2020) American Chemical Society.

(ZnPc) interlayer, theoretical and experimental results revealed that ZnPc molecules in direct contact with a
ZnO surface insert new energy levels due to a strong ZnPc/ZnO coupling, and that electron injection from
these new energy levels of ZnPc into ZnO is highly efficient [406]. This possibly contributes to the observed
increase in photocurrent and an overall increase in power conversion efficiency.

Similar to inorganic interlayers, organic interlayers can reduce the charge carrier recombination at the
hybrid interface via a decreased coupling between organic and ISC [406]. However, an organic interlayer does
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Figure 24. (a) Schematic of bilayer TiO2/polymer devices with dipolar modification of titania surface. The table lists the
substituent-R group on the para position of the benzoic acid accompanied by their calculated dipole moments. (b) Molecular
structures of the benzene carboxylic molecules with varying amounts of carboxylic acid groups. (c) Molecular structures of the
three Ru(II) dyes as interface modifiers. (d) J –V curves of TiO2/160 nm P3HT bilayer devices with and without interface
modifications employing para-substituted benzoic acid derivatives under illumination. (e) VOC and JSC of devices shown in (e)
plotted against the dipole moment of the modifiers. A dashed line is drawn as a guide to the eye. Reprinted from [405], with the
permission of AIP Publishing.

not necessarily prevent the formation of CT states across the hybrid, as evident from CT emission and absorp-
tion observed for SAM-modified organic/ZnO interfaces [345]. In this case it was found that the change in
ELA induced by the dipole moment of the SAM induces a corresponding change in CT state energy, as shown
in figure 22(b).

IET relies on electronically coupling the donor and acceptor. Covalently attaching the organic chromophore
to the semiconductor surface allows to systematically control H (as introduced in equation (2)) via the linker.
The unoccupied DOS fraction on the linker calculated for the isolated molecule was found to be highly
correlated with the initial IET efficiency [344]. It has been shown that increasing the distance between the
electron-donating group of the organic and the electron accepting TiO2 by introducing saturated CH2 units
in the linker (thereby decreasing H) considerably decreases the rate of electron injection in DSSCs [413].
π-conjugated linkers were found to result in much higher IET rates than when using saturated CH2 units
[414, 415]. Given a strong-enough dye-inorganic coupling, light absorption and charge transfer can occur as
a coherent process [339].

Notably, different H’s for initial IET and interfacial recombination can be achieved by rational design. This
is because the initial IET between organic and inorganic constituents proceeds via formerly unoccupied states
(the LUMOs of the neutral molecule, LUMO, LUMO+1, . . . , and the CB of the ISC) while the final state of the
interfacial recombination is the HOMO of the molecular cation or the VB of the ISC. Therefore, it is possible
to manipulate the spatial distribution of the electronic states so as to permit the forward IET while shutting
off the recombination channel. Figure 25 shows a clear correlation between charge recombination half-time
and spatial separation of the dye cation HOMO orbital from the TiO2 surface. From this, an exponential
dependence of the electronic transfer rate constant on the separation can be derived [337].

In a similar way, asymmetric substitution of otherwise symmetric molecules can induce directionality of
the excited state energy and improve injection into the ISC [416], as shown for zinc tetraphenylporphyrin
(ZnTPP) in figure 26. A common structural motif for asymmetric organic sensitizers is a donor-π-bridge-
acceptor configuration.

The attachment of dye molecules is also important for quantum dots. If quantum dots act as absorbers,
transfer from the quantum dots to the OSC can be used to extract their energy. Triplet exciton transfer to
attached organic molecules was observed for quantum dots made, e.g. from PbS [417], Si [68], and per-
ovskites [70, 418, 419]. Exciton dissociation was observed, e.g. for CdSe quantum dots via hole transfer to
phenothiazine [420].
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Figure 25. Logarithm of the charge recombination half-time determined from transient absorption data as a function of the
spatial separation of dye cation HOMO orbital from the TiO2 surface. The influence of the free energy driving force ΔG has been
factored into the half-time data to give ‘free energy optimized’ values. The solid line corresponds to an exponential distance
dependence. The chemical and supramolecular structures 1–5 are included in the figure. For the other chemical structures, the
reader is referred to [337]. Reproduced from [337] with permission of The Royal Society of Chemistry.

Figure 26. Chemical structures and HOMO/LUMO frontier molecular orbitals of ZnTPP with and without asymmetric
substitution. Reproduced from [416] with permission of The Royal Society of Chemistry.

Surface-bound dyes can be used as mediators for exciton harvest from an organic overlayer by acting as
electron acceptors [405]. The investigation of a series of acceptor interlayers substantiated that a suitable energy
cascade can improve exciton dissociation at organic/TiO2 interfaces [421]. However, the same scheme does
not work for ZnO, which the authors ascribe to the more pronounced and unfavorable interface dipole in that
case. A different study that employed diethylphosphonate-benzodiathiazole terminated thiophene oligomers
of different length highlighted the role of the energetics across the molecularly modified hybrid interface and
suggested that both a large energy offset and a suitable energy cascade facilitate exciton dissociation and prevent
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Figure 27. (a) Atomic force microscopy (AFM) images for the indicated systems. (b) X-ray diffraction (XRD) data for the same
films as in (a). (c) Top (bottom) Devices with C60 interlayers of at least (less than) one monolayer and a Tc layer thickness of
60 nm (100 nm) (AMOLF). Reprinted with permission from [136]. Copyright (2020) American Chemical Society.

Figure 28. (a) and (b) AFM images of 20 nm C60 thin films on a sapphire substrate without and with pentacene interlayer.
(c) and (d) XRD data for the same films as in (a) and (b).[429] with permission of The Royal Society of Chemistry.

recombination [422]. Energy transfer from P3HT to a surface-bonded dye, followed by electron injection from
the dye into TiO2 represents an alternative pathway for exciton harvest [423].

In the electronic structure section we discussed ground-state charge transfer between organic layers and
inorganic surface states. This suggests that organic interlayers can passivate ISC surface states. Another
passivation mechanism is the chemical attachment of stable moieties that saturate surface radicals and
prevent the formation of detrimental chemical species like sub-oxides. While much work has been done
on inorganic–inorganic passivation schemes as a result of the growth of the semiconductor industry,
inorganic–organic passivation schemes are gaining importance in the optoelectronic fields. Examples for
chemisorbed and physisorbed organic interlayers that were found to passivate ZnO defects are mentioned
in [424]. Other cases where surface-bonded organic molecules were used for surface passivation comprise
perovskite solar cells [311, 425, 426] and Si [427, 428].

5.4. Role of interface morphology changes
The same organic layers in contact with the pristine or modified ISC surface may give rise to very different OSC
morphologies (molecular orientation, disorder, growth mode, preferred crystal phases). As shown in figure 27,
for Tc on H–Si(111), a 2 nm C60 interlayer was found to dramatically increase the roughness and reduce the
crystallinity of the Tc films for the same deposition conditions. Accordingly, devices with C60 interlayers of
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more than one monolayer essentially do not work [136]. Organic interlayers can also improve the crystallinity
of the OSC film, as shown in figure 28: C60 grows as an amorphous film when deposited directly on sapphire,
whereas a pentacene interlayer gives rise to a highly crystalline C60 film [429]. Similarly, diindenoperylene-
covered SiO2 gives rise to enhanced C60 crystallinity compared to the pristine substrate [430].

These effects are important, because film morphology and polymorphism sensitively influence, e.g. exciton
dissociation [148, 189, 374, 375, 431, 432] and singlet fission [191, 433–435]. The molecular orientation at the
hybrid interface was shown to influence exciton quenching rates [436] and the lifetime of charge-separated
states [437]. The interlayer-induced change of OSC morphology can be exploited in rational ways to better
control the interface structure [18, 438, 439].

6. Conclusions & outlook

Progress in the field of hybrid solar cells is a mixed bag. On the one hand, the use of OSCs in combination with
ISC absorbers to realize purely electronic functions like charge-selective transport and surface passivation has
come a long way, and reaping benefits like reduced production cost and increased stability seems within reach.
In particular, using OSCs as dopant free hetero-contacts holds enormous potential to ease fabrication of c-Si
solar cells with the potential extra benefit of increased efficiency.

On the other hand, harvesting excitons at hybrid interfaces still remains very inefficient, aside from in
DSSCs and quantum dot solar cells. Initially, the higher degree of charge delocalization in ISCs compared
to OSCs was one appealing aspect of hybrid solar cells, since the associated more efficient screening seems
to promise efficient exciton dissociation at hybrid interfaces based on experimental results [440] and semi-
classical modeling [151]. However, experiments [440] and calculations [362, 441–443] also indicate that the
ISC surface can act as a trap for charge carriers, and thus hinder exciton dissociation at hybrid interfaces.
A similar trapping is not observed, e.g. for the corresponding organic/fullerene interface [362, 440]. More
importantly, experiments find that at organic heterojunctions, often no significant driving force is needed to
efficiently split thermalized charge transfer states. This means that the interface with an ISC is not, in fact,
required for efficient exciton harvest from an OSC.

However, exciton-harvesting hybrid interfaces have other potential advantages. For example, if singlet fis-
sion in an excitonic SC can be tapped via exciton harvesting at a hybrid interface, this opens up a non-tandem
cell approach to exceeding the Shockley–Queisser single junction limit with silicon, the quintessential solar
cell material. Notably in such a device concept, current matching between absorber layers is not required.
However, the hybrid interface in such a device has steep requirements, and must support efficient exciton
dissociation or injection, excellent passivation of both semiconductor materials, and in the case of a hetero-
junction devices, high selectivity charge extraction from silicon. These commingled functions pose a challenge
to device designers.

In attempting to review this diverse field, we have discussed prevalent concepts used to describe relevant
interfaces in hybrid solar cell technologies. We have presented a comprehensive discussion of mechanisms that
govern the electronic structure and excited state dynamics at these interfaces, as well as strategies to control
them. However, this is still a far cry from a complete description of the complex property-function relationships
in hybrid solar cells. This is due partly to the sheer breadth of the field, which prohibits an all-encompassing
review, but also to the inherent complexity of those interfaces that do indeed function successfully [444]. The
following is a shortlist of these complexity-compounding phenomena:

• 3D morphologies, such as bulk heterojunctions, the nanostructured interface of a DSSC, and the sur-
faces of thin film perovskites, imply complications for investigations, both theoretical and experimental.
Theoretical modeling that can account for local quantum effects while capturing the relevant spatial
and temporal dimensions is being attempted, but whether the employed structures are representative
of the real 3D arrangements still needs to be established. Experiments are often performed on planar
interfaces that enable controlled interface preparation and straightforward data interpretation. How-
ever, these might miss the role of the surface curvature [441] as well as low-dimensional features like
defects that gain in importance for 3D structures, highlighting the necessity of techniques capable of
probing buried interfaces.

• Research on organic bulk-heterojunctions indicate that gradients in crystallinity at the interface, as well
as phases that feature intermixing, facilitate energy cascades and charge delocalization. Such mesoscopic
structures are challenging to rationally implement at hybrid interfaces.

• Calculations for organic hetero-interfaces suggest the need to control the electrostatic potential land-
scape beyond interface dipoles [374, 375, 432].

• The triplet exciton harvest at the interface between Tc and HfOxNy-covered Si might be assisted by tran-
sient interface dipoles that arise from accumulation of photo-generated charges [397]. This suggests that
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ISC surface states do not just act as recombination centers and sensitively influence the ELA and surface
band bending, but can also give rise to transient local fields.

These considerations indicate that controlling both the morphological microstructure as well as the elec-
trostatic potential in space and time is required to realize an efficient exciton harvest. To get a handle on this
complexity requires experimental methods capable of probing all of these properties and processes.

A number of methods are available to study solar cells on different spatial and temporal scales [28]. How-
ever, different effects might contribute to what can be observed by the different methods [445]. This ham-
pers directly linking derived parameters, like energies from optical and (inverse) photoelectron spectroscopy
[194, 345]. Probing both ground state and excited state energies with the same technique should alleviate this
issue, as laid out in reference [281].

For resolving the excited state dynamics, our current understanding is largely based on all-optical
pump–probe spectroscopy, which can routinely achieve sub-ps resolution. In comparison, time-resolved x-ray
spectroscopy is still underdeveloped. However, spectroscopy in the x-ray regime has a number of important
advantages over all-optical characterization techniques. It provides elemental, chemical, and surface sensitivity,
allowing selective probing of the materials building the hybrid interfaces, rather than the less informative bulk.
In addition, the high spatial resolving power of x-ray microcopy (a few 10 nm) allows to selectively probe sin-
gle grains of the typically multi-crystalline organic films, and can thus help disentangle some of the structural
complexity at the interfaces. Laser pump and x-ray probe spectroscopy at storage ring synchrotron sources
can readily resolve ns to μs dynamics from interface state charging [446] and surface photovoltage build-up
[447]. Recently, pioneering experiments have resolved triplet signatures in the sub-100 ps timescale [448]. By
not relying on a pump–probe scheme but instead using the core–hole lifetime as an internal clock, IET can
be resolved on a sub-10 fs timescale [449, 450]. Given the advent of next-generation synchrotron sources, free
electron lasers, and high harmonic generation, as well as advances in computational methods, the future of
excited state dynamics investigations at hybrid interfaces looks promising.
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[245] Lanzilotto V, Lovat G, Otero G, Sanchez L, López M F, Méndez J, Martín-Gago J A, Bavdek G and Floreano L 2013
Commensurate growth of densely packed PTCDI islands on the rutile TiO2(110) surface J. Phys. Chem. C 117 12639–47

[246] Lanzilotto V, Lovat G, Fratesi G, Bavdek G, Brivio G P and Floreano L 2015 TiO2(110) charge donation to an extended
π-conjugated molecule J. Phys. Chem. Lett. 6 308–13

[247] Gruenewald M et al 2015 Integer charge transfer and hybridization at an organic semiconductor/conductive oxide interface J.
Phys. Chem. C 119 4865–73

[248] Kelly L L et al 2016 Spectroscopy and control of near-surface defects in conductive thin film ZnO J. Phys.: Condens. Matter 28
094007

[249] Schlesinger R et al 2013 Controlling the work function of ZnO and the energy-level alignment at the interface to organic
semiconductors with a molecular electron acceptor Phys. Rev. B 87 155311

[250] Xu Y et al 2013 Space-charge transfer in hybrid inorganic-organic systems Phys. Rev. Lett. 111 226802
[251] Wang H, Levchenko S V, Schultz T, Koch N, Scheffler M and Rossi M 2019 Modulation of the work function by the atomic

structure of strong organic electron acceptors on H–Si(111) Adv. Electron. Mater. 5 1800891
[252] Mawass M-A, Niederhausen J, Hengge M, Raoux S and Kronast F 2019 Sample cartridge with built-in miniature molecule

evaporator for in situ measurement with a photoemission electron microscope Ultramicroscopy 200 1–5
[253] Meisel T, Sparenberg M, Gawek M, Sadofev S, Kobin B, Grubert L, Hecht S, List-Kratochvil E J and Blumstengel S 2018

Fingerprint of charge redistribution in the optical spectra of hybrid inorganic/organic semiconductor interfaces J. Phys. Chem. C
122 12913–9

[254] Schöttner L, Erker S, Schlesinger R, Koch N, Nefedov A, Hofmann O T and Wöll C 2020 Doping-induced electron transfer at
organic/oxide interfaces: direct evidence from infrared spectroscopy J. Phys. Chem. C 124 4511–6

[255] Hollerer M et al 2017 Charge transfer and orbital level alignment at inorganic/organic interfaces: the role of dielectric interlayers
ACS Nano 11 6252–60

[256] Hurdax P, Hollerer M, Puschnig P, Lüftner D, Egger L, Ramsey M G and Sterrer M 2020 Controlling the charge transfer across
thin dielectric interlayers Adv. Mater. Interfaces 7 2000592

[257] Alon H et al 2018 Effect of internal heteroatoms on level alignment at metal/molecular monolayer/Si interfaces J. Phys. Chem. C
122 3312–25

[258] Winkler S, Xin Q, Li C, Kera S, Müllen K, Ueno N, Koch N and Duhm S 2018 Modification of TiO2 (1 1 0)/organic hole
transport layer interface energy levels by a dipolar perylene derivative Electron. Struct. 1 015007

[259] Rangan S, Katalinic S, Thorpe R, Bartynski R A, Rochford J and Galoppini E 2010 Energy level alignment of a zinc(II)
tetraphenylporphyrin dye adsorbed onto TiO2(110) and ZnO 112̄0 surfaces J. Phys. Chem. C 114 1139–47
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